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Abstract

MacGregor, Donald G.; Gonzalez-Caban, Armando. 2008. Decision modeling
for analyzing fire action outcomes. Res. Pap. PSW-RP-258; Albany, CA: U.S.
Department of Agriculture, Forest Service, Pacific Southwest Research Station.
67 p.

A methodology for incident decomposition and reconstruction is developed based
on the concept of an “event-frame model.” The event-frame model characterizes a
fire incident in terms of (a) environmental events that pertain to the fire and the fire
context (e.g., fire behavior, weather, fuels) and (b) management events that repre-
sent responses to the fire environment. The model defines a sequential set of event-
frames according to temporal and contextual factors (e.g., management processes)
that yield a visual representation of an incident decomposition. The set of event-
frames decomposes an incident into discrete units of analysis that can incorporate
other models or processes (e.g., decision analysis) to describe decision elements of
a fire incident. Based on the reconstructions reported here, we find that decision
processes differ according to the incident and its events. From the reconstruction
of the Old Fire, we identified how some incident decisions are actually legacy
decisions. These are for anticipated incidents—ones for which even extreme occur-
rences have been envisioned and action contingencies established. From the recon-
struction of the Fork Fire, decision modeling revealed that local knowledge plays a
key role in early management stages as well as in management decisionmaking
several days into an incident. Our analysis reaffirms that although fire is a continu-
ous, exponential process that changes seamlessly, if abruptly at times, management
is a discrete process that changes linearly and in discontinuous stages with the
intention of avoiding a purely reactionary management response. However, this
fundamental incompatibility between fire as a nonlinear, continuous process and
management as a linear and discontinuous one means that discontinuities in man-
agement processes may impede management performance.

Keywords: Event-frame model, Old Fire, Fork Fire, wildfire decisionmaking,

fire management.

Summary

Although the vast majority of wildland fires are suppressed effectively in initial
or extended attack, on relatively rare occasions fires become exceptionally large,
resulting in unusual resource damages, significant financial impacts, and even loss

of life. Understanding how to better manage large fires and to improve methods for



controlling their costs and impacts requires a detailed knowledge of the decision-
making processes that were ongoing at the time of the incident. Fire reviews under-
taken post hoc tend to focus predominantly on incident characteristics and not on
the broader decisionmaking context within which incident management occurs. The
intent of the research reported here is to use the theories, concepts, and language of
decisionmaking to develop models for decomposing and reconstructing large-fire
decision processes. A theory of incident decomposition is developed based on a
hierarchical set of influences that include (a) incident-specific factors, (b) pre-
incident factors, and (c) legacy influences that reflect historical factors such as

land use policies. The hierarchical set of influences is organized in terms of “meta
decisions” that result in conditions that subsequently influence the decision process
and outcomes of specific fire incidents.

A methodology for incident decomposition and reconstruction is developed
based on the concept of an “event-frame model.” The event-frame model character-
izes a fire incident in terms of (a) environmental events that pertain to the fire and
the fire context (e.g., fire behavior, weather, fuels, resources at risk) and (b) man-
agement events that represent responses to the fire environment. The model defines
a sequential set of event-frames according to temporal and contextual factors (e.g.,
management processes) that yield a visual representation of an incident decomposi-
tion. The set of event-frames decomposes an incident into discrete units of analysis
that can incorporate other models or processes (e.g., decision analysis) to describe
decision elements of a fire incident.

As a basis for this approach, a set of relevant theoretical models of decision-
making are discussed in terms of their essential concepts and language. Decision
models serve as a basis for the development of a knowledge acquisition approach
that is used to reconstruct key decision processes on actual fire incidents. The recon-
struction process uses a combination of incident documentation and a decision
process tracing protocol (DPTP) to guide interviews with key incident personnel.
Incident documentation (e.g., Incident Command System [ICS-209], Wildland
Fire Situation Analysis [WFSA]) provides a basis for the development of an initial
event-frame model. The DPTP is a framework of decision concepts and language
that identifies a set of knowledge probes to which interviewees respond. Each of
the knowledge probes is linked to a theoretical model. Responses to the knowledge
probes are then used to identify the relevant theoretical models to include in the
reconstruction. The results of the reconstruction are represented graphically as

influence diagrams and process models.



To illustrate how the reconstruction process is applied, two case studies are
examined. One case study is based on the Fork Fire, which occurred on the
Mendocino National Forest (NF) in August of 1996. A second case study is the
Old Fire, which occurred on the San Bernardino NF in October of 2003. The case
studies are illustrative, but are not intended to be fire reviews. They were chosen
to provide a realistic basis for demonstrating the approach and types of outputs it
produces. No attempt is made to evaluate the quality of decisionmaking on the case
incidents.

Although decisionmaking can be conceptualized as a process of evaluating
alternatives represented in terms of a decision tree, there are other decision models
and languages that describe in greater detail and with more fidelity the realism of
dynamic, time-pressured decisionmaking where multiple influences interact to form
an impression on the decisionmaker that guides their actions. Based on the recon-
structions reported here, we find that decision processes differ according to the
incident and its events. From the reconstruction of the Old Fire, we identified how
some incident decisions are actually legacy decisions. These are anticipated inci-
dents—ones for which even extreme occurrences have been envisioned and action
contingencies established. Although no large fire can be thought of as a normal
occurrence, it is within reason to think of events like the Old Fire as “normal
catastrophes,” similar to the concept of “normal accidents” that has been used to
characterize some major technological accidents (Perrow 1984).

Within ongoing incidents, decision processes can differ considerably depending
on the stage of the incident and on how management processes are structured and
executed. From the reconstruction of the Fork Fire, we observed fundamental
differences in decision processes between initial/extended attack and ongoing
incident management team (IMT) management. Decision modeling revealed that
local knowledge plays a key role in early management stages as well as in manage-
ment decisionmaking several days into an incident. We note that fundamental and
important discontinuities may exist in these different management decisionmaking
stages. Our analysis reaffirms that although fire is a continuous, exponential process
that changes seamlessly, if abruptly at times, management is a discrete process that
changes linearly and in discontinuous stages. This fundamental incompatibility
between fire as a nonlinear, continuous process and management as a linear and
discontinuous one means that discontinuities in management processes may impede
management performance. A definition and operationalization of these concepts

may be found in the notion of decision-process discontinuities.



The results of this project identified the following directions for further

research.

Apply Methods to a Larger Base of Incident Cases

This project provides potentially powerful insights into how decision processes can
be revealed through the application of decision science theories and concepts to fire
incidents. Additional cases need to be examined for further validation of this

approach to understanding large-fire decisionmaking.

Identify Approaches for Incorporating Decision Modeling Into
Fire Reviews and Accident Analysis

Field-related research could see to identify how the methods developed in this
project could be incorporated into management review activities. Possible methods
include workshops and seminars on the approaches in the present study and how
they can be directly applied in the field, as well as the development of a set of in-
depth protocols directed toward understanding key decision stages of fire incidents,

such as initial attack (IA) and extended attack (EA) and management transitions.

Improving the Worst-Case Scenario Process

Our research identified dramatic effects a worst-case analysis can have on down-
stream decision processes associated with large-fire management. At present, the
process for constructing a worst-case analysis or scenario is not standardized within
the fire management community. Given the importance of a worst-case analysis in
developing an appropriate basis for comparing strategic alternatives and for com-
municating to line management the potential scope and impact of an emerging
incident, better standards and procedures could be developed and communicated
concerning how a worst-case scenario should be constructed and represented. Cur-
rent methods from the decision and risk sciences that offer guidance on worst-case
analyses need to be translated and applied in the context of fire management

decisionmaking.

Improving Accessibility and Usability of Local Knowledge

Local knowledge was shown to be of significant importance in the decision pro-
cesses associated with IA and EA as well as ongoing IMT management. How-

ever, significant management discontinuities can exist that inhibit or prevent local



knowledge from entering into decision processes. Effort should be placed on under-
standing in greater detail how local knowledge of all aspects of the fire situation can

be made more accessible and usable to incoming IMT members.

Effects of Individual Differences in Initial and Extended Attack
Decisionmaking

The application of control theory to the decision processes associated with IA and
EA identified a set of trigger conditions that determine when and how the decision
to transition to a higher level of incident management occurs. These trigger condi-
tions relied on an affective assessment of the relationship between current capabili-
ties, resources required, and the fire situation. Effort should be directed toward
understanding how individuals differ with respect to risk assessment in ongoing [A
and EA operations, and how they differ with respect to the conditions under which

they decide that an upward transition is needed.

Characterizing Discontinuities in Decision Processes

Ideally, shifts from one management mode to another would be continuous and
well-articulated. In reality, the continuity between management modalities may be
disrupted or impeded. This project identified a number of potential discontinuities
in decision process that arise from management events and activities on large fires.
These discontinuities pose potential challenges to effective and continuous
decisionmaking. Research could further examine decision-process discontinuities

and how they can influence incident decision processes and outcomes.
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Decision Modeling for Analyzing Fire Action Outcomes

Introduction

Each year, thousands of fires occur on public lands. The vast majority of these fires
are effectively suppressed in initial attack (IA) at a relatively small size, usually an
acre or two, or less. Of fires that exceed IA, most are suppressed in extended attack
(EA) and rarely exceed 100 acres or more. However, for a small proportion of all
fires, generally less than 1 percent, unusual environmental, fuel, or resource cap-
ability conditions can result in particularly large or uncharacteristic fires that have
as outcomes high monetary costs, loss of high-valued public or private resources,
and (in the extreme case) loss of human life. Although large fires are relatively
rare, they tend to lead to a high level of postincident analysis to determine (a) the
possible causes and attributions of the catastrophic outcomes, and (b) actions or
steps that can be taken to help prevent or mitigate similar occurrences in the future.
An accounting of the incident is required in terms of decisions and decision factors
that influenced the outcome.

This paper reports on the development of a process for analyzing fire incidents
to help improve fire management practices. The focus of the research is a method
for analyzing fire incidents in terms of decisionmaking principles, using the
language of decision and risk analysis as a basis for representing the relationship
between fire management decisionmaking and incident outcomes. The essential
spirit of the approach is embodied in one of the central concepts from decision
analysis, that of decomposition. The essence of decomposition is that large, com-
plex problems can be understood better by breaking them down or “decomposing”
them into smaller, more tractable problems that can be solved or characterized in
some detail. The individual components of the decomposition are then recon-
structed or assembled into a whole. Decomposition is the fundamental principle on
which decision and risk analysis are based (Frohwein and Lambert 2000, Haimes
1998, Keeney and Raiffa 1976, Raiffa 1968) and has been applied in numerous
other contexts including judgmental forecasting (e.g., Armstrong 2001, MacGregor
2001).

Different models give us concepts to work with, and no one model or theory
tells the whole story. Multiple models are needed to describe complex decision-
making. We can only capture the richness and complexity of fire management
decisionmaking on large incidents by examining incidents through the lenses of
multiple models and theories. Each theory provides different concepts and frame-
works that give insights into how decisionmaking is done, the factors that influence
decisionmaking, and the relationship of a stream of incident-related decisions to the

ultimate outcome of the incident.
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Large-fire decisionmaking is a multilayered phenomenon. It has properties of
organizational decisionmaking as well as individuals’ decisionmaking. In this
project, we first develop the general concept of an incident decomposition and
identify a tiered layering of social, organizational, and incident factors that influ-
ence incident-specific decisions and decision outcomes. We then review a set of
relevant theories and models relating to dynamic decisionmaking as a basis for
identifying concepts and principles that have value in explaining or characterizing
incident decision. We then apply this theoretical development to the decomposition
of an incident in terms of an event-frame model, by which key events relating to
the incident are set out in a temporal sequence and represented according to a set
of concepts and principles identified in the overview of models. The structure of
an incident is populated with two general sources of information: the documenta-
tion generated as part of the incident, and a protocol approach for key incident
personnel. The protocol is based on a framework of concepts from the overview of
decision theories and models. The overall approach is then illustrated in the context
of two case studies. The purpose of the case studies is to show how the language of
decisionmaking and the structure of the event-frame process can be used to charac-
terize and represent decisionmaking on an actual incident.

It is not the purpose of this study to serve as an incident review of the cases
chosen as examples. Neither the time nor the resources were available to conduct
such an exercise. The purpose of the project is to demonstrate how decision science
principles can be transferred from a set of theories of models and applied to key
decisions on a fire incident. This demonstration may be useful for improving
the processes by which fire reviews are conducted, as well as identifying training
opportunities in decision-support cases where more effort and resources can be

applied to understanding an incident in greater detail.

The Language of Constructed Decisionmaking

Over the past several decades, a number of theories have been advanced to describe
how people do or should make decisions, including economic decision theory,
subjective expected utility theory, Bayesian decision theory, behavioral decision
theory, cybernetic control theory, and naturalistic decisionmaking. These theories
constitute explanations for observable behavior based on concepts and constructs
that are not directly observable, but that become available or are inferred based on
observed behaviors, verbal descriptions of mental processes or events, and deduc-

tions based on controlled laboratory experiments. When these explanations pertain
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to what people purportedly do, they constitute a descriptive theory; when they
pertain to what people should do, they constitute a prescriptive theory, by which it
is meant that the theory represents a normatively appropriate or optimal scheme
that if followed by the decisionmaker will lead to the best course of action. Tradi-
tional theories of decisionmaking based on economic theory relied upon the logic
of mathematics for their prescription. More recent theories rely on a combination
of process and logic (e.g., decision analysis; cybernetic theory) or on the notion of
an expert decisionmaker (e.g., naturalistic decisionmaking) as a benchmark by
which to gauge the quality of decision performance.

In both cases, however, explanations for behavior in terms of decisionmaking
concepts constitute a language-based description. As such, they are an emergent
phenomenon, a reflective construction based on the mental activities people ex-
perience (e.g., images, thoughts, intentions, expectations) and the physical actions
people take (e.g., behaviors) expressed in terms of a decisionmaking language
derived from one or more decisionmaking theories. We refer to these as decision-
making languages because they have properties in common with languages in
general: (a) a semantic structure that gives meaning to the terms of the theory and
therefore the language, (b) a grammar that defines the system of rules for generat-
ing meaningful statements in the theory or language, and (c) a syntax that defines
the way in which statements in the language are formed.

We refer to the construction as reflective for two reasons. First, the term reflec-
tive refers to the tendency of decisions to be manifest in one’s actions. Second,
reflectiveness also captures the seriousness of intent and consideration that is char-
acteristic of those actions and circumstances important enough to represent in terms
of a decisionmaking language.

Like natural human languages, decisionmaking languages each provide a
unique perspective on decisionmaking according to their particular variations of
the basic language properties of semantics, grammar, and syntax. Each language
provides a unique perspective on decisionmaking and leads to a different construc-
tion of a decision.

We characterize decisionmaking as an emergent phenomenon because it comes
into being as a result of our descriptions of human behavior. Decisionmaking is not
an intrinsic property of human consciousness and action, but rather is an emergent
property of mental activities and physical events in the same sense that liquidity
is an emergent property of the movement of H,O molecules. Emergent decisions

are computational interpretations that arise from information flows, attitudes,
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perceptions, beliefs, behaviors, and collaborative (or social) interactions that are
represented according to the language and terminology of a particular theory of
decisionmaking.

In general, it is difficult if not impossible to construct an explanation of human
actions in decisionmaking terms without recourse to language. Indeed, it is argu-
able that we cannot think with any degree of coherence without recourse to lan-
guage of some type, even if the language is simply metaphorical. Languages serve
as the basis for all communication, and an understanding of different decision-
making languages improves our ability to represent and understand human actions
and their outcomes from a more complete set of perspectives, as each language will
provide a richer characterization of some aspect of decisionmaking than will others.
Thus, there is no single “right” or correct language by which explanations of
decisionmaking can be constructed. Therefore, the best way to understand a set
of circumstances as a decision problem is to characterize it in terms of several

languages or theories.

A General Model for Incident Decomposition

Decomposing a fire incident requires a guiding structure that identifies the factors
influencing incident decisions and outcomes. A framework for this decomposition
represents incident decisions and outcomes as the result of factors specific to an
incident as well as factors and influences present at higher organizational and social
contextual levels (fig. 1).

The framework comprises multiple levels of influence beginning at a broad
social level that includes laws, statutes, and cultural values (Si’s in the model).
These general influences are exterior to the organization but influence organiza-
tional meta decisions (O,’s in the model) that include policies, plans, and proce-
dures that set an organizational contextual frame for how decisions specific to an
incident are structured and evaluated. These incident-specific decisions are shown
in the model as a set of alternatives (Ai,j’s) associated with decision problems that
are linked to a temporal dimension associated with the incident. In the course of a
given incident, a number of such decision situations arise and can be given a
temporal location. Likewise, decision outcomes and effects (E’s) resulting from
incident decisions can be given a temporal location as well. In an actual incident

analysis, decision outcomes and effects are linked to subsequent decisions.
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Figure 1—General model of incident decomposition. Adapted from Paté-Cornell 1993.

An Influence Diagram Representation

The essential elements of the model can be represented as an influence diagram
depicting the relationship between components at each of the levels. Influence
diagrams are a form of visual representation that depicts relationships between
components of a decision problem (e.g., Oliver and Smith 1990). Arrows between
components denote an influence, where an influence expresses knowledge about
relevance. A causal relationship is not necessarily implied, but an influence exerts a
force such that knowing more about A directly affects our belief or expectation
about B.

For an actual case, an influence diagram would be complex and would show
not only the relationships between levels, but also the relationships between con-
cepts at each level as well as the relationships between incident outcomes and the
societal and organizational levels. A relatively simple model serves to illustrate how
the relationships might be portrayed in terms of influences using some general
elements at each level (fig. 2). Starting at the bottom of the model is a sequence of
major incident events starting at time T and continuing through to the end of the
incident at time T, where n can represent a range of days, weeks, or even months
depending on the length of the incident. At the top level of the representation is the
societal level, comprising three components: political and public values, statutory
law, and civil law. In the middle is the organizational level, represented by three

components: organizational culture, formal policy, and plans and strategies.
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Figure 2—Influence diagram representation of a simplified fire incident.

Social and Organizational Influences on Decision
Outcomes

The process of analyzing fire incidents based on their outcomes is generally one of
working backwards or upstream to determine the proximal causes of the outcomes.
Most generally this is done in terms of one of three general categories of causal
factors: environmental conditions (e.g., weather, fire behavior, fuels), technological
conditions (e.g., equipment), or human actions. As relatively clear causal influences
emerge, the analysis becomes bounded and the pattern of causation becomes fixed.
This approach contains key assumptions about the relationship between incident
factors and incident outcomes. First, it assumes that the diagnostic or causative
weight of an incident factor is greater the closer it is in time and space to the out-
come. Second, it assumes that a “bottom up” approach will capture the majority

of influences that are present in an incident management situation and that account
for incident outcomes. Third, it assumes that the links between incident factors and
incident outcomes is deterministic or strictly causal, rather than probabilistic.

The root influences on incident decisions and decision outcomes can come
from factors far removed in space and time from the incident itself. As has been
shown in other contexts, such as technological failure, accidents and events that
result in monetary and material losses (including loss of human life) may evolve

from “normal” operations, and the antecedents of decision outcomes can only be
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understood by examining factors that are part of the social and organizational
context within which events occur (Perrow 1984). As an example, Paté-Cornell
(1990, 1993) used a combination of influence diagramming and decision analysis
to model the failure of an offshore drilling platform (Piper Alpha) in the North Sea
oil field. She found that the original failure analysis of the drilling platform
accident was heavily driven by technical and engineering factors, which tended to
focus the inquiry in such a way as to produce technical solutions to the problem.
However, a more careful and extended analysis of the roots of engineering failure
identified a number of organizational decisions that influenced failure probabilities
in ways that were not readily identifiable by examining details of the incident
alone. As a result of the analysis, a general model was developed that decomposed
incident outcomes into a combination of social, organizational, and incident-

specific factors.

Societal Metadecisions

These are decisions made at a broad societal level and reflect general cultural views
and values. The decisions themselves are embodied in laws and statutes that govern
and guide what organizations can do. Cultural values relevant to these laws can
range from the general to the specific with respect to fire and its management. For
example, broad sociopolitical values about the appropriate role of government in
regulating organizations and the lives of individuals captures, perhaps, the broadest
sense of this concept. More specific to fire and its management, social values about
the environment, environmental protection, the role of fire in ecosystems and the
like also impact societal metadecisions. As an example, the various federal statutes
and laws that provide for protection of environmental amenities (e.g., threatened
and endangered species, air quality, water quality) are the result of scientific and
political processes that operate at the highest levels in society and that reflect a
determination that overarching goals and objectives (many of them protective) be
met as part of any actions that impact the environment (e.g., National Environmen-
tal Protection Act).

These influences can be thought of as upstream factors that exert their effects
in a number of ways. They may take the form of specific standards and guides that
organizations are required by law to abide by as part of their operations. Air quality
standards, for example, fall into this category as do water quality, species protec-
tion laws, and occupational safety standards. In some cases, these standards and

guides will be directly passed through to the organizational level, and in other cases
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they may be interpreted and incorporated into an organization’s culture. Also,
they may have an impact by sociopolitical pressures they exert on organizational
decisionmaking. For example, an imperative to reduce large-fire costs may be
reflective of a relatively nonspecific sociopolitical goal of cost reduction but with-
out a specific rule or guide to identify either the means to use to achieve cost
reduction or the specific cost-reduction end to achieve.

Another category of influence at the societal level results from broad public
views about factors relating to fire management decisionmaking. Public attitudes
about fire and fire management, including activities that have an impact on fire
management such as the use of prescribed fire for fuels management, can exert
powerful effects on how organizations frame problems and set priorities for fire
management actions. For example, the precautionary principle as applied to risk
management decisionmaking is generally reflective of a broad public attitude
that favors a conservative interpretation of risk and that corresponds to a generally
risk-averse public attitude with respect to outcomes that are perceived as severe or
catastrophic (e.g., Graham 2001, MacGregor et al. 1999, Sandin 1999, Slovic
2000). In essence, the precautionary principle is a “better safe than sorry” view
that prescribes protective action even when no harm is certain to occur. One con-
sequence of this principle is a conservative interpretation of science by organiza-
tions charged with risk management: in the absence of science confirming the
presence of harm, protective action should be taken until such time as science

confirms the opposite.

Organizational Metadecisions

Decisions at this level are reflected in a number of influences. Three general
categories include formal policies of the organization, organization culture, and
organization plans and strategies (fig. 2). Organization culture comprises many
components not shown here, such as the history of the organization and its values,
as well as the incentive structure (both explicit and implicit) that exists within the
organization and that influences individual preferences and decisions. Formal
policies include specific policies and manuals (e.g., Forest Service Manual, Inter-
agency Standards for Fire and Fire Aviation Operations) that provide the general
standards and guides that serve as the business framework for day-to-day activities
and operations. Included here as well are periodic directives that may highlight,
modify, or expand on a particular element of policy. Finally, there is a relatively
large body of organization plans and strategies (e.g., National Fire Plan, Cohesive

Strategy) that serve to provide general management direction and strategy.
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Incident-Specific Decisions

At the incident level are decisions specific to the particular fire management

action on the ground, depicted as a series of events, each of which could be further
decomposed to reveal underlying decisions specific to the event (fig. 2). The term
“event” is used in this context to refer to the components of a fire incident that
include elements of judgment and decisionmaking. To express events having multi-
dimensional or multiattribute characteristics, we use the concept of an “event
frame” (discussed below). For example, an event frame containing a WFSA (Wild-
land Fire Situation Analysis) can be decomposed into a number of specific WFSA
elements, each of which may be influenced by higher level societal and organiza-
tional metadecisions, such as air quality standards (social level, statutory law),

public values (social level), and organization culture.

Dynamic Decisionmaking Influences on Decision
Outcomes

Cue-Based Models

One approach for modeling how a human decisionmaker operates in the context

of dynamic environment is based on the notion of cues or pieces of information,
their relationship to one another in the environment, and the way in which they
are processed by the decisionmaker. A general model of expert judgment based on
multiple cues is the lens model (e.g., Cooksey 1996, Cooksey and Freebody 1985).
A schematic representation of the lens model is shown in figure 3.

The lens model draws a distinction between a decision environment that is
represented by a collection of cues, and the psychological representation of that
object in terms of a decision or judgment based on those cues. Like an optical lens,
the environment is portrayed in terms of a set of information components whose
importance is expressed in terms of ecological validity coefficients (the left side of
fig. 3). The information cues impinge on the individual, who uses them to form an
impression of the environment. The degrees to which cues are weighted or used by
the decisionmaker are expressed in terms of cue utilization coefficients (the right
side of fig. 3). The policy or process by which these cues are weighted and an im-
pression or decision is formed can be modeled in terms of a regression equation.
The equation predicts the individual’s assessment of the environment from a com-
bination of cues and cue weights, derived empirically by varying the environmental
conditions and observing the judgmental or decision response. The degree to which

the individual has achieved an accurate impression of the environment is expressed
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Figure 3—Lens model representation of cue-based decisionmaking.

by the correlation between the true value of the object and its judged value. Other
related theories also conceptualize decisionmaking in terms of the relationship
between the decisionmaker and the environment, sometimes accounting for deci-
sion performance in terms of critical cues that stimulate the recognition of situa-
tions that call for specific behaviors or actions (e.g., Klein et al. 1989).

The importance of cue-based approaches to decision modeling is their emphasis
on discrete information elements in the decision environment and on the recogni-
tional processes that the decisionmaker uses to select and weight information in
forming a response. These processes rely heavily on the ability to focus on the most
relevant information in a dynamically changing environment, as well as to reject or
filter out irrelevant, redundant, or unreliable information. An important aspect of
cue-based decisionmaking is the ability of the decisionmaker to recognize informa-

tion that is not present in the environment but that should be.

Control Theory Models

A class of decision models that is important in dynamic environments is the control
theory model (e.g., Sheridan and Ferrell 1981, Wickens and Hollands 2000, Wiener
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1948). Control theory models conceptualize the human decisionmaker as an ele-
ment of a closed-loop system that exercises control through a set of output pro-
cesses that impact the environment. The environmental effects of the output
processes are returned to the human decisionmaker through a feedback loop where
they are compared with one or more reference points. The results of the compari-
son yields an error signal that is interpreted by the human decisionmaker in terms
of available options to effect an environmental change in the appropriate direction.

Figure 4 shows the essential elements of a control theory model of decision-
making. A key concept that derives from models of this type is that of a reference
point. Reference points are conditions that serve as a gauge by which system effects
on the environment are compared. Reference points can be established by a number
of means, including directives, policies, elements from training scenarios, cues in
the environment (e.g., fire behavior), and affective or emotional conditions of the
decisionmaker.

A second key concept is that of a comparator mechanism by which the human
decisionmaker evaluates the effect of system outputs under their control in terms of
the magnitude and meaning of differences from a reference point. How departures
from reference points are evaluated in the comparator process with respect to gains
versus losses can have dramatic impacts on decision behavior. Consider figure 5,
which shows an asymmetrical psychological response to a decision alternative that
offers economically equivalent gains or losses.

The psychological loss experienced from an economic loss is greater than the
gain experienced from an equivalent economic gain. Thus, human decisionmakers
are susceptible to “framing effects” by which the definition or framing of a deci-
sion problem in terms of gains versus losses influences how a decision alternative

will be evaluated in light of its potential outcomes.

Error Control
Reference signals Human signals 5 Controlled n System
points operator(s) process outputs

Feedback Effect on g

environment

Figure 4—Control theory model of dynamic decisionmaking.
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Figure 5—Prospect theory representation of the psychological impacts of gains vs. losses.

The implications of the asymmetry shown in figure 5 extend to how risks are
evaluated and acted upon. In the domain of gains, decisionmakers tend to be risk
averse, choosing to maintain their status quo rather than “gamble” for an additional
gain at the risk of losing. In the domain of losses, decisionmakers tend to be risk
seeking, choosing to accept (excessively) risky alternatives in the hope of recouping

previous loss or avoiding further loss.

Production Models

An important class of model that relates to control theory is the production model.
Production models represent the human decisionmaker in the context of a process
or product environment that is goal or objective oriented. The analogy to fire man-
agement is direct. Figure 6 shows a prototypical production system.

In this generic representation, inputs are shown on the left as scheduled and

expected events that serve as triggers to system processes. The various system
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Figure 6—Basic production model.

processes (e.g., procedures, plans, internal communications) result in products that
are outputs of the production system. These outputs include decisions, actions, and
communications that are intended to have an effect on the environment within
which the system operates (e.g., a fire incident). The impact of the production
system on the environment acts as a closed-loop feedback to the input of the sys-
tem, thereby controlling its actions (e.g., Powers 2005). Essentially, production
systems such as that shown in figure 6 are a form of cybernetic control system for
which output from the system serves as a basis for the evaluation of how well
system processes (e.g., fire management decisions) are meeting the goals and
objectives of the system (e.g., perimeter control).

System processes can be perturbed or altered by a number of means. One type
of alteration can occur because of human factors, such as physical or mental fatigue
and stress. More generally, system processes are influenced by on-going changes in
capabilities; changes (A) in capabilities can alter how the system responds to inputs
and how the various processes are implemented with a resulting effect on system
outputs. Changes in human resource capabilities can also influence how critical
decision cues are recognized and processed.

A second type of alteration can occur because of interruptions; these are
unanticipated events or situations external to the system that prevent the completion

of organized actions or sequences of decisions. Understanding how interruptions

13
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influence the dynamics of production systems is critical to improving their func-
tioning and making them more resilient against degradation and collapse (Rudolph
and Repenning 2002).

This can be conceptualized as a two-factor model of how interruptions and
disturbances can influence decisionmaking in a dynamic environment (fig. 7). Two
dimensions of interruptions are shown: the number of interruptions and the novelty
of interruptions. Novel interruptions are those for which human decisionmaker(s)
have less experience or that occur relatively rarely and for which training is either
incomplete or inadequate. Essentially, novel interruptions burden the system with
the need to solve a new problem for which existing protocols and procedures are
either incomplete or nonexistent.

The center of the figure constitutes a zone or envelope of normal operations.
Within this sphere are situations for which decisionmaking is relatively routine.
Interruptions to decisionmaking cycles are consistent with a normal pace or tempo
of operations. Situations in the right half of the figure constitute those for which
the number of interruptions is relatively high compared with normal operations.
Here, the system experiences a higher level of arousal and an increase in stress.
Situations in the left half of the figure are those for which interruptions are unusu-
ally low compared to normal, and here there may be problems with vigilance (lack
of), boredom, or distraction.

The vertical axis of the figure represents the novelty of interruptions. At the
high end, these can lead to distractions and confusion as individuals or teams
attempt to recognize the novelty in terms of preexisting or standard procedures
that can be applied. At the low end, lack of novelty can lead to inattention. This is
a problem sometimes encountered in supervisory control environments where most
of the activity is related to monitoring and only rarely do events occur that are out
of the ordinary. A level of fatigue can be brought on by lack of novelty, and re-
search has shown that in such situations people may change standard protocols for
action and decisionmaking simply to introduce novelty as a relief from boredom.

The upper right quadrant of the figure can be thought of as a critical zone in
that it contains situations that have a high number of interruptions that are highly
novel. These circumstances can pose excessive demands on individuals and organi-
zations, resulting in high error rates and very high levels of stress as well as disinte-
gration of team or organization functioning.

Of particular concern in dynamic decisionmaking environments is the pace or
tempo of operations. By tempo we mean the periodicity of action-decision-outcome

cycles and the expectations that individuals and teams form about how events will
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Figure 7—Effects of the interruptions on the envelope of normal operations for production models.

be sequenced in time. For example, in fire-line organizations such as 20-person fire
crews, a cycle of activity (e.g., work/rest) may exist that constitutes normal opera-
tions. If the tempo is accelerated, fatigue-related problems may result such as
lowered productivity or impaired judgment that could compromise safety. If the
tempo is decelerated, boredom and interpersonal conflicts may result.

A particular type of problem occurs when individuals or teams must quickly
increase their decision tempo in response to a changing decision environment.
These “tempo transitions” impose demands to make a shift or change to a new level
of operations or to a new strategy (MacGregor 1993).

During the tempo transition, task or decision performance may decrease while
adaptation takes place, and may remain low for some period of time before perfor-
mance resumes at a high level (fig. 8). This is an adaptation period during which

low performance may result in errors, inattention, and confusion.

Affective and Emotional Factors

Although emotional factors play a large role in decisionmaking, they have only re-
cently begun to receive much attention in formal models of decisionmaking pro-

cesses. The various models discussed above have included emotional components,
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Figure 8—Decision tempo transition effect on decision task performance.

such as stress, but as a process element, emotion has generally been regarded as a
factor that pollutes or disrupts reasoning and thought. Recent research in the
decision and cognitive sciences has identified the positive role that emotion and
affect play in the judgments and decisions people make in routine circumstances
(e.g., Schwartz and Chlore 1988). For example, reactions to risk may be based
largely on affective reactions to situations rather than on thought processes that
involve mental calculations (e.g., Lowenstein et al. 2001).

Emotion enters into decisionmaking in a number of ways. One is through the
experiential system by which past instances or experiences are revived and used to
guide decisions (Epstein 1994). Sometimes decisionmakers will experience this
effect in terms of intuition—a spontaneous and often unprovoked sense of the right
or appropriate thing to do in a complex, dynamic, and time-pressured decision
situation. Often decisionmakers will rely on images of previous experiences, and
research has shown that images are affectively or emotionally encoded such that
their recall provides an emotional context or reference point by which a current

situation can be evaluated (e.g., Tulving 1972). Decisionmaking in these kinds of
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situations can be thought of in terms of a set of feeling or emotional states that are
evoked by a combination of (a) cues that trigger the recall of previous image-based
experiences, and (b) the emotional conditions that are a part of those experiences.
Thus, a decision situation may “feel bad” or “feel good” because it bears an emo-
tional resemblance to previous situations or experience for which outcomes or
circumstances leading up to outcomes bear a similarity. The processes by which
these experiences and their related emotional content become available to the
decisionmaker may not require thought. Indeed, it is the automaticity of these
processes that give rise to the experience of intuition that can accompany dynamic,
real-time decisionmaking and the feeling of knowing a “correct” course of action

with relatively little deliberative or conscious effort.

Structure of an Incident Analysis

The process of structuring an incident analysis begins by constructing a series

of event-frames along an incident temporal dimension (fig. 9). The initial set of
event-frames is based on incident documentation. Large-fire incidents are generally
documented in part through the WFSA and other procedural documents (e.g.,
Delegation of Authority, Incident Command System (ICS) 209s) that provide a
convenient and authoritative basis for collecting a set of initializing information,
including the fire situation early in the incident, preliminary information about
values at risk, strategic alternatives for fire management, and other land manage-
ment issues that reflect decision priorities.

The general framework takes the form of a set of schematic event-frames
located along a temporal dimension that ranges from the beginning of an incident
(t,) to the end of an incident (t ), where t  correspond to the date and time of fire
ignition and t corresponds to the date and time the fire is determined to be con-
tained. In principle, the number of discrete event-frames is unlimited. In practice,
however, the number of event-frames is determined by the desired granularity of
the analysis and by pragmatic factors such as (a) characteristics of the incident,
with longer or more complex incidents requiring a greater number of event-frames,
and (b) availability of information.

Event-frames are of two types: environmental event-frames (shown on the top
of the figure), and management event-frames (shown in the interior of the figure).
The term “environmental” is used here in the same way it is used in cue-based de-
cision models (fig. 3) to denote events that occur in the decision environment, such

as (a) the fire ignition, and (b) weather and fire-related events (e.g., fire behavior).

17
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Figure 9—General structure of the event-frame model.

Environmental events can be thought of as events that are significant to manage-
ment and to which management can (or must) respond. Management events are
those decisions and actions that managers take in response to events in the decision
environment. Some management events can span a significant period of time, such
as an ongoing Incident Management Team (IMT) response. Other management
events can be points in time, such as the ordering of an evacuation or the prepara-
tion of incident documentation (e.g., WFESA).

Each event-frame is characterized by a set of possible event-frame elements
that can include (a) values, goals, and objectives; (b) decision alternatives; (c) ex-
pected outcomes associated with each alternative; (d) sources of uncertainty; (e)
tradeoffs; (f) sources of risk; and (g) costs. Methods for representing these elements
include multiattribute value trees and decision trees. Risks associated with each
event tree can be represented in terms of a basic risk assessment model that charac-
terizes risk in terms of (a) events or scenarios that can happen, (b) the likelihood
that each would happen, and (c) the consequences associated with their occurrence
(e.g., Haimes 1998, Kaplan and Garrick 1981). In practice, the extent to which
more sophisticated methods for analyzing each event-frame can be used are dictated
somewhat by the value of greater analytic detail and rigor and by the availability of

information.
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Information Sources: Incident Documentation

Primary information for incident analysis comes from documents that are produced
during the course of an incident. Incident documentation provides the basis for
initial construction of an event-frame model. Among the various federal wildland

fire agencies in the United States, typical documentation for large fires includes:

Fire situation analysis (FSA)

Briefing documents

Wildland fire situation analysis (WFSA)
Incident complexity analysis (ICA)
Delegation of authority

Shift plans

Transition plans

Final fire report (e.g., FS 5100-29)

For example, the WFSA is developed early in a fire incident and is continually
updated (and in some cases redone) as part of incident management. The WFSA
provides primary information about land management objectives and values at risk,
strategic alternatives for fire management, and preliminary estimates of fire sup-
pression costs and monetary losses to the resource base. Monetary cost elements
are periodically reviewed and updated, and provide the basis for a set of periodic
event-frames that directly relate incident costs to values at risk.

Information also comes from periodic plans and documents developed as part
of incident management, including shift plans and transition plans. Shift plans can
be used to structure a protocol process whereby incident decisions are reconstructed
on the basis of (a) tactical alternatives and a chosen alternative, (b) control objec-
tives for the incident, (c) critical resource concerns and values at risk, (d) resource
allocations, and (e) personnel assignments. Shift plans indicate the chosen tactical
direction, but do not indicate other tactical alternatives that may have been consid-
ered, nor do they indicate the outcomes that are expected or the basis on which
outcomes are evaluated. The decision problem structure that is (partially) implied
by the tactical direction in shift plans must be supplemented with interviews to

obtain a more complete representation of the structure.
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Information Sources: Knowledge Elicitation Using a Decision
Process Tracing Protocol

Incident documentation provides an efficient means for identifying key para-
meters of incident decisions, including the sequence of key events and how decision
problems were structured. Knowledge elicitation pertaining to how decisions are
actually made can only be gained by direct involvement with fire management
personnel. This requires the development of a structured process that can be used
to guide interviews with individuals who had key roles in incident decisionmaking.

As a knowledge elicitation tool, we have developed a decision process tracing
protocol (DPTP). Process tracing is a form of knowledge elicitation that uses a
sequenced set of questions and responses to guide an individual through a decision-
making process in which they were involved. The essence of process tracing is a
reconstruction of key incident decisionmaking as it was experienced by the
decisionmaker.

The content for the DPTP comes from concepts associated with the theories
and models of decisionmaking outlined in the previous sections. The concepts are
organized into a set of probes or questions that direct the interviewee to different
aspects of a decision. Subprobes are used for deeper levels of knowledge elicita-
tion. The overall protocol is divided into two main sections: (a) process elements,
and (b) probes and questions within each process element.

The structure and content of the DPTP is shown in table 1. Note that in the
course of applying the DPTP not all of the process elements are appropriate or
needed for every decision point. The purpose of the DPDT is to provide a road
map or guide for the knowledge elicitation process that is, of necessity, tailored to
the circumstances of the fire incident and the role of the individual fire manage-
ment expert in that incident. Without a structured process, important points could

be overlooked or probed inconsistently.

Case Studies

In this section, we apply the general framework discussed above to examining two
case studies. Our purpose in the examination is to illustrate how the concepts,
principles, and language of decision science can be applied to the analysis of
decisionmaking in the context of an actual fire incident. The objective here is to
demonstrate the operation of a knowledge elicitation theory and approach, not a
post hoc review of fire management decisionmaking on an incident. The incidents

used as case studies serve as a context only; to conduct a proper postincident review
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Table 1—Decision Process Tracing Protocol

Process element

Process content

Key decision points and
judgmental assessments

Actors

Situation assessment:
cues and cue utilization

Knowledge and
information

Where in the incident timeline were the key decision points?
* Timing

* Events

* Basic description

* Judgmental assessments

With regard to a particular decision point or event-frame:
* Who was involved in the decision?

* What role did they play in the decision?

* Was this a collaborative decision?

* How were responsibilities distributed?

What were you seeing, hearing, noticing, attending to with
regard to environmental factors?

* Fire behavior

* Fuel conditions

» Terrain or topography

* Weather factors

e Other

What were you seeing, hearing, noticing, attending to with

regard to managerial factors?

* Suppression resources: availability, timeliness,
effectiveness

¢ Incident documentation: 202s, 209s, WFSAs

» Personnel workload, fatigue, and morale

» Safety factors: firefighter safety, public safety, aviation safety

* Cost factors: cost efficiency of suppression actions, cost
apportionment, cost negotiations

 Fire camp disruptions

* Communications and collaborations: line officer

involvement, local fire staff involvement, incident command

team interactions
e Other

What conflicts did you experience with regard to cues or
information?

e Number of conflicts

* Difficulty of resolution

* Ambiguities in information

With regard to a particular decision point or event-frame:

* What key pieces of knowledge did you rely on?

* What information did you have available?

* What information did you need that was not available?

* Why was the information you needed not available?

* What could have been done to improve its availability
or timeliness?
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Table 1—Decision Process Tracing Protocol (continued)

Process element Process content

Goals and objectives What were the specific goals and objectives you were working
toward at this point in the incident timeline?
e Short term (near term)
e Mid-term (next burning period)
* Long-term (beyond next burning period, demobilization,
beyond containment/control)

Alternatives and options What decision alternatives or options did you have at this
(“decision space”) point and what influenced the alternative set (decision space)?
* Number
* Range

* Constraints on options

* Difficulty generating options

* Organization rules and directives

* Organizational biases and orthodoxies
 Structure and content of social interactions
* Rules of engagement

* Resource constraints

* Feasibility

Sources of uncertainty What were the sources of uncertainty in the decision?
* Objectives/goals
* Information
* Environmental factors (e.g., fire behavior)
* Situation assessment

Time pressure How would you characterize the time pressures and their
effects on decisionmaking?
* Influences on decisions
* Normal tempo of action-decision-outcome cycles
* Changes in decision tempo
* Adaptation strategies
* Changes in decision performance during the adaptation
period

Reference points What reference points were guiding your decision?
* Gains vs. losses
* Decision frames
» Perceptual references
* Emotional reference points

Tradeoffs What tradeoffs were involved in the decision?
* Objective tradeoffs
¢ Risks vs. benefits
¢ Risk vs. risk
¢ Cost vs. benefits
e Cost vs. risk
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Table 1—Decision Process Tracing Protocol (continued)

Process element

Process content

Images

Interruptions and
disruptions

Communication patterns

Collaborations

Hypotheticals

Managerial discontinuities

Actions

Outcomes and effects

Decision complexity

Risk factors

What images or recollections were you using to guide your
decisions?

* Information or experiences from past fire incidents

¢ Incident familiarity

What interruptions or disruptions occurred in the “normal” way
that decisions were made?

e Unusually high number of interruptions

 Effect(s) of the interruptions/disruptions

* Novel interruptions

* Characterization

How did communication take place as part of the decision
process?

e Critical issues in communication

* Timing

* Constraints or bandwidth problems

How did people interact as part of the decisionmaking process?
 Patterns of collaboration and cooperation

* Negotiation and resolution

* Reconciling conflicts of interest

What would have changed your decision(s)?
» Key feature of the situation

* Different information

* Change in uncertainties

* Change in resource constraints

What discontinuities were present that influenced your
decision(s)?

e Communication disruptions

* Transition discontinuities

* Process discontinuities (e.g., WFSA)

What action(s) did you take as the result of the decision?

What were the outcomes and effects of your decisions?
* On the environment (e.g., fire behavior)
* On managerial factors (e.g., safety, cost)
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would require time and resources beyond that available for this project. Our
ultimate goal is to demonstrate and illustrate an approach that, with continued
development and refinement, could lead to improvements in how fire reviews are
done and how the information obtained from them could potentially be applied to,
for example, revising policies and directives or upgrading training and certification
procedures.

As those who manage large fires will attest, no two fires are alike. In the world
of large-fire management there is no normal or routine incident. To say that the
two incidents we have chosen for case studies are in some way typical of large fires
is to say little more than that they covered a large number of acres, spanned mul-
tiple burning periods, involved multiple management jurisdictions, resulted in the
significant loss of natural resources, and cost multimillions of dollars to manage.
At such a molar level, all larges fires that enter Class G (5,000+ acres) appear the
same-—a perspective that belies the unique management challenges that each one
creates and that fire management personnel experience.

We have chosen incidents that occurred over 8 years apart: the Fork Fire on the
Mendocino National Forest (NF) in 1996, and the Old Fire on the San Bernardino
NF in 2003. A significant factor in choosing these incidents was the ready availabil-
ity of incident documentation and convenient access to agency personnel who were
involved. No attempt was made in selecting incidents to define a sample space or to
obtain a representative set of incidents based on a set of selection criteria. Certainly,
this could be done and should be done in future research along the lines of the
research initiated here. The Fork Fire provides an opportunity to illustrate decision
modeling on an incident that burned over a large number of acres and spanned
more than 2 weeks. The Old Fire, on the other hand, occurred very quickly as part
of a complex of catastrophic fires that burned in southern California in October and
November of 2003, destroying many homes and private resources just in a few

days.

Case Study: Fork Fire
Incident Synopsis

The Fork Incident occurred on the Mendocino NF in August 1996 in northern
California (USDA Forest Service Region 5). The incident was first reported on the
evening of August 11, 1996, at 2130 hrs (9:30 p.m. PDT) on the southern portion
of the forest on the Upper Lake Ranger District. Owing to rugged terrain and

accessibility problems, initial attack personnel did not reach the fire location for



Decision Modeling for Analyzing Fire Action Outcomes

over an hour after the initial incident report, at 2245 hrs. (10:45 p.m.). By that
time, the fire was approximately 2 acres. Within a half hour, at 2315 hrs, the fire
had grown to 3 to 5 acres. The fire continued to grow, moving up an adjacent slope
to the ridgetop. By 0100 hrs on the following day (August 12), the fire had reached
approximately 20 acres with spotting up to 200 feet. At 0300 hrs a type II incident
management team was ordered. A cumulus cell weather event at approximately
0400 hrs dramatically increased the fire to over 100 acres, moving in a direction
toward the community of Upper Lake. At 0507 hrs, a type I IMT was ordered and
a unified command established. By now, the fire was moving rapidly to the south,
toward private structures, and people in the fire’s path were notified of the threat.
The type I IMT arrived at approximately 1700 hrs on August 12. A map of the
incident shows the major changes in the fire perimeter from ignition to the final
fire size of 82,980 acres (fig. 10).

By midnight (2400 hrs) of the second day (August 13), the fire had grown to
1,500 acres, with a rapid expansion to 7,000 acres by 1300 hrs of the following
afternoon. The fire would make two additional rapid expansions, going to 21,000
acres by the afternoon of August 16, and then to 69,000 acres by the evening of
August 18. The fire would continue for several more burning periods before being
contained at over 82,000 acres on August 28. Ultimately it was determined that the
fire was human caused; most likely a hunter or hiker who stopped by a stream near

the Middle Creek Campground and failed to extinguish a discarded cigarette.

Event-Frame Representation

We begin the analysis and reconstruction process by developing an event-frame
description of the incident. The event-frame description decomposes the incident
into a sequence of occurrences that describe the major parts of the incident. Figure
11 shows an overview of the major aspects of the incident.

The event-frame model draws a distinction between environmental events that
are related to aspects of the fire, including ignition, fire behavior, and weather
events, and management events that are related to management decisions, actions,
and outcomes. The use of the term environmental in this context reflects the
conceptual relationship discussed earlier with regard to cue-based models such as
the Lens Model that distinguishes the human decisionmaker from the decision
environment.

In the figure, three major management events are represented: initial and

extended attack, type I IMT operations, and IMT management in two zones. These
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Figure 10—Incident map of the Fork Fire (Mendocmo National Forest, August 1996).
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are plotted against a timeline running from ignition to the end of delegated opera-

tions, at which time the incident was returned to local management authority. The

IA/EA extended from shortly after ignition for a period of approximately 6 hours,
at which time a type II IMT was ordered. Within approximately 2 hours, the order
for a type II IMT was canceled and a type I IMT was ordered.

Two transition events are shown in the model: a transition from local manage-
ment to the type I IMT and a transition from management by a single type I IMT
to two management zones with the addition of a second type I IMT.

The incident was managed under four escaped fire situation analyses (EFSAs).’
The complete structure of the ICS documentation for the incident is shown in
appendix A. During the IMT portion of the incident (from initial transition to an
IMT and for several burning periods after the transition to zone management), both
daylight and night operations were conducted, resulting in two incident action plans
(IAP) per 24-hour period. Again, the ICS documentation timeline in appendix A
shows the complete structure of this aspect of the incident.

From the standpoint of environmental events, two key events had a dramatic
influence on the incident. The first was the loss of significant fireline early in the
incident that had the potential to keep the fire relatively small at about 3,000 to
5,000 acres. The second was a major wind event that resulted in extreme fire
behavior and spread, and that expanded the size of the fire from approximately
21,000 acres to over 60,000 acres in a matter of a few hours. Each of these events
necessitated management actions that included establishment of new strategic and
tactical objectives

In the next section, we expand upon two elements of the above model, the IA/
EA event and the IMT operations event, to show in greater detail the decision

processes associated with these two key aspects of the incident.

Reconstruction and Representation of Key Incident Decision
Processes

A large fire such as the Fork incident involves many decisions, judgments, and
assessments. Some of them are small and of relatively little consequence in light
of the scope of the incident. Others are critical, not only because they are associ-
ated with significant outcomes, such as risks to life and property, but also because

they define the nature and character of the event itself. Exploring the details of

" At the time of the incident, the agency was changing over from the escaped fire situation
analysis to the wildland fire situation analysis terminology that is currently in use.
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such decisions reveals the processes by which they are made and provides insight
into the dynamic relationship between events in the environment and the processes
that human decisionmakers use to interpret and respond to these events. The two
key events we explore in this section are (a) the decisionmaking associated with
initial and extended attack, and (b) the decisionmaking associated with ongoing
IMT operations.

Initial and Extended Attack

Two fundamental processes characterize the decisionmaking in IA/EA: an assess-
ment of the fire situation (FSA), an assessment of the resources required to manage
the situation (RRA) and an assessment of the capabilities of local fire management
resources that are available. These three assessments are combined to form an
overall assessment of the situation in terms of a plan of action. Figure 12 shows

in graphic form a very general model of how this process might operate.

Note that these assessments are not formal and they do not have any associated
documentation, at least of the kind that is present in longer term operations on
large fires where the wildland fire situation analysis (WFSA) and IAP processes are
in place. Indeed, in IA and EA there is virtually no direct documentation, and a
modeling of the decision processes associated with these events is modeled based on
a combination of dispatch reports and interviews with key incident personnel using
the DPTP discussed above.

Effect on environment

Fire situation
assessment

Legacy R o tica)
and pre-incident ——Jp e§0umet actica

influences requiremens operations
assessment plan

Capabilities
assessment

Figure 12—Influence diagram of basic decision elements in initial and extended attack.
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We begin by developing an event-frame model for the IA/EA phase of the
incident. The complete event-frame model is shown in appendix A. This model
decomposes the IA/EA event into a set of discrete subevents each with a time
signature, an event code, an event name, fire size, fire behavior, knowledge and
cues, goals and objectives, and decision-related actions. The sequence and content

of the events are used to reconstruct a decision-process model.

Initial Fire Situation Assessment

An influence diagram representation of the initial FSA is shown in figure 13. In
keeping with the general model of incident decomposition discussed in previous
sections, the initial FSA is driven by three categories of influences: (a) legacy
influences that have their source well in advance of the incident, (b) pre-incident
influences that occur closer in time to the incident, and (c) incident-specific influ-
ences that are immediately present after ignition occurs.

The initial FSA itself is dependent, in this model, on four precursor assess-
ments that deal with threat, the fire pattern, estimated fire growth rate, and accessi-
bility. Accessibility was particularly critical in this incident because the location
was such that it was difficult for suppression personnel to reach the fire perimeter
and to work in the area. In addition, there was considerable uncertainty about the
fire’s growth rate, and therefore the safety of personnel. Fire pattern and rate of
growth are both influenced by pre-incident factors relating to terrain knowledge
and ignition location. Rate of growth was additionally influenced by fuel condi-
tions and weather conditions. Fire pattern was additionally influenced by existing
fuel breaks and preexisting fire line. The legacy influence of the local fuels pro-
gram influenced both fuel conditions and existing fuels breaks. The legacy influ-
ence of fire history influenced both existing fuel breaks and preexisting fire line.
The threat assessment component of the initial FSA was largely associated with
threats to private structure and to public safety. This was driven by property at risk,
which was driven by a legacy of land use decisions.

Several features characterize this model. First, a great deal of local knowledge
is embedded in the precursor influences and their linkages that contribute to the
initial FSA. This knowledge is drawn from a number of sources, including the
(a) local fuels program and its geographic-specific outcomes, and (b) fire history
knowledge that provides background on fuel conditions resulting from prior inci-
dents, the existence and condition of preexisting fire lines, and the nature of fire

behavior in the local area of the incident.
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Figure 13—Influence diagram for initial fire situation assessment.
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Second, some of the elements that contribute to the initial FSA are related to
(or are components of) the National Fire Danger Rating System (NFDRS) for
which fire management personnel are trained. A key intermediate influence on the
initial FSA is an assessment of the expected fire pattern, which is a spatial repre-
sentation of the fire and is influenced by other geospatial parameters associated
with local fire and fuels history, terrain, and location-specific weather factors. It
appears that the initial FSA is driven by a combination of generalized knowledge
about fire and its related elements, modified and enhanced by local knowledge of
geographic, weather, terrain, and fuels factors that can significantly alter general-

ized fire knowledge.
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Initial Capabilities Assessment

An influence diagram representation of the initial capability assessment (initial
CA) is shown in figure 14. In this model, the initial CA is driven by two primary,
incident-specific influences: an extended attack CA (EA-CA) and an initial attack
CA (IA-CA). The former considers the ability of the local organization to be
successful in a period beyond the next 24 hours. The IA-CA considers capability
for a period less than 24 hours. Both assessments are driven by an assessment of
local production capability. Additionally, the EA-CA is driven by the assessment
of local logistical capability. Both local logistical capability and local production
capability are influenced by fire duty participation, which is in turn subject to the
legacy influence of unit staffing. Local production capability is influenced by pre-
incident drawdown, which is influenced by the national fire situation and the
geographic area situation.

On the Fork incident, extended attack was very limited and it appears that a
type III response was never fielded. We use the concept of extended attack to
reflect a larger scope of consideration than the initial CA, and the model represents
how the initial CA would come about were the IA/EA event of longer duration
(fig. 14).

Overall, this is a less complex model than that for the FSA, but the small
number of influences is counteracted by their strength. Legacy influences appear

to exert a large effect on the initial CA. The lack of logistical capability is a strong
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Figure 14—Influence diagram for initial capabilities assessment (CA).
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influence on the initial CA, and the absence of local capability (logistical and sup-
pression action) quickly diminish the capability assessed. We hypothesize that the
process of capability assessment evolves continuously within fire management
organizations and that relatively few incident-specific influences can modify or
change the impression of an organization’s capabilities that is already formed prior

to an incident.

Initial Attack and Extended Attack Dynamic Decisionmaking

Up to now we have been examining decisionmaking in terms of a set of influences
that interact as part of an initial assessment process that contributes to IA and EA
decisionmaking. We view these two initial assessments as primary initiators of a
dynamic decisionmaking process that is ongoing during IA and EA. The dynamic
process is modeled on control theory principles and ultimately leads to one of two
outcomes: either the incident is effectively controlled and contained by the process,
or the process leads to a decision to transition to a higher level of incident manage-
ment (e.g., type II or type I). The model is shown in figure 15.

The model comprises a dynamic feedback loop that involves a comparator (X).
The comparator is embedded inside a larger tactical situation assessment (TSA) that
includes an RRA and a CA. These two assessments take their starting conditions
from the initial FSA and initial CA discussed in the previous section.

The RRA serves as a reference point input to a comparator against which the
CA is evaluated. The comparator is affective in character and produces a general-
ized impression of the tactical situation. The emotional valence of the comparison
(positive or negative) is evaluated; a positive evaluation results in continued imple-
mentation of the current tactical plan and, with an appropriate time lag, produces
an effect on the fire environment. This effect acts as in input to the FSA and then
to the RRA, closing the loop.

If the emotional valence of the comparator output is negative, but not greater
than a triggering threshold, o, capabilities are increased, the tactical plan revised,
and then implemented with the results fed back to the beginning of the loop. The
triggering threshold, «, is a control variable that is associated with the level of
confidence a decisionmaker has in the ability of the current state of the fire man-
agement process to continue to be effective. Levels of aewill vary from one
decisionmaker to another, and with a single decisionmaker from one time to
another, depending on factors such as experience, familiarity with the situation,

and fatigue. When the negative valence of the comparator output exceeds the level
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Figure 15—Control theory representation of initial and extended attack dynamic decisionmaking.

of o, a decision is made to transition to a higher level of incident management
capability. Below o, operations continue, although they may be near to exceeding
the threshold for some time.

The model includes a number of points where time lags or delays occur that
influence the tempo of the model and the values that the model components take
on. Notice that increasing capabilities (e.g., through resource ordering procedures)
is followed by a time lag because, for example, requesting additional resources is
not equivalent to having them available, and significant time may pass before re-
quested resources can appropriately be included in a CA and a revised tactical plan.

The model requires significant attention capabilities to operate effectively.
That is, decisionmakers must be capable of highly focused attention under time
pressures and under fatigue. Instabilities in the model may result from excessive
levels of stress that can influence the comparator process. Ideally this process
would rely mainly on cognitive resources and would reflect a deliberative or rea-
soned response to resource requirements (RAA) and capabilities (CA). However, it
is more reasonable to hypothesize that in rapid-tempo, high-stress environments, a
quick impression is formed that yields an emotional response either positive or
negative in valence, and it is the sign of the valence that affects decision behavior.

From a performance perspective, the human decisionmaker may or may not
execute the various operations shown in the model in the exact sequence depicted in
the figure. What is critical is that the decisionmaker adopt a dynamic perspective on

the various subprocesses and systematically shift the focus of attention from one
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element to another such that all aspects of the model are attended to and no element
is overweighted by placing undue attention on it at the expense of others. This can
be a problem in high time-pressure environments where the tendency is to focus
strongly on a primary task resulting in a reduction in the quality of performance on
secondary tasks. A tendency toward task-shedding and information filtering that
often accompanies time-pressured decisionmaking can also lead to decrements in
decision performance in this model.

To achieve optimal performance, the human decisionmaker is encouraged
to learn to develop a scanning strategy, similar to that of aircraft pilots who system-
atically review all aspects of aircraft performance, attitude, and instrumentation
while in flight. Ideally, these scanning techniques are imparted in the form of a
visual metaphor that portrays that specific sequence in which task elements are
attended to.

Incident Management Team Operations

The second major event-frame that we discuss is that associated with IMT opera-
tions. This event-frame has some of the same characteristics as the IA/EA frame,
in that a dynamic model can be applied, based on the production model concept
discussed previously. However, there are some significant and important differ-
ences. These have to do largely with the lower level of time pressures as well as a
more deliberative and reasoned approach to planning and execution. At this junc-
tion in the incident, a transition has been made from local incident management to
an outside IMT. The fire has grown to over 1,000 acres and has gone beyond local
logistical and line-producing capabilities. A second difference is the increasing
reliance on documentation processes that serve as both a basis for management
(e.g., EFSA/WFSA) or as a communication method for management (e.g., IAP).

Although many decisions that go into establishing the operational basis for an
IMT (e.g., location of command post, interjurisdictional communications), the
IMT organization, once established, can be conceptualized as a decisionmaking
body that implements a core management process, the central goal of which is to
produce fire line in sufficient quantity and at a sufficient rate to complete a perim-
eter around the fire, thus containing it. As such, a production model approach is an
appropriate set of modeling principles on which to represent its processes.

A reconstruction of ongoing IMT management processes is shown in figure 16.
Embedded in the model are a subset of key processes that respond to changes in the
operational environment, particularly production results, expected fire behavior,

and the presence of disturbance events (e.g., significant weather events). The model
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Figure 16—Production system modeling of ongoing incident management team operations.

is initiated by a problem-framing process that is influenced by two principal fac-

tors: a small-fire preference model that gives a strongly favorable weight to a

small-fire outcome, and an imaging process that represents the situation in terms

of an image of the incident progress and outcome.

The small-fire preference process is influenced by a number of legacy influ-

ences, particularly public and sociopolitical influences, the legacy effects of agency
policies (e.g., 10 a.m. policy) and incentives such as perceptions of what constitutes
a “job well done” in agency terms. The incident image process is influenced by
prior experiences of key management personnel, local knowledge and experience
with fires on the unit, and a familiarity influence that is established from a cue-
based relationship between the current incident and other known incidents. These
factors combine to yield an impression that may have visual properties and that
categorize the incident in terms of a personalized typology; in essence, what kind
of an incident this is.

The problem-framing process is essentially an editing stage in which the
image of the incident and preferences for particular outcomes combine to define
a problem frame and set of reference points by which the process of managing the

incident can be gauged or measured. In the editing process, probability editing may
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occur such that very unlikely events are recoded as having no chance of occurrence,
and highly likely events are recorded as occurring with certainty. In addition, a
psychological loss function is applied according to the general principles of pros-
pect theory.

The result of the problem-framing process is then used to support a model of
situation definition and expectations. In this stage, concrete reference points are
defined in terms of management constructs such as amount of line to construct,
days to contain/control, segmentation of the fire perimeter, and resources required.
These substantive variables are direct inputs to the core management process and
lead to the development of a tactical operations plan (TOP). The TOP is evaluated
in terms of its production goals and its effect on expected fire behavior. A favorable
evaluation recycles the process for another operational period. Provided that
expectancies are met, production continues until the incident is contained.

If fire behavior expectations are not met and no other significant disturbance
events have occurred, the process revisits the situation definition and expectations.
Depending upon the form that unmet expectations take, the values of management
reference points may be reestablished (e.g., a larger amount of line). On the other
hand, if a significant disturbance event occurs, such as a major weather event, the
problem frame aspect of the process may be reengaged. In the case of the Fork
Incident, the weather event of August 16 was such an occurrence, leading to a
redefinition of the problem frame and recognition that the fire had a much larger
potential size than was previously believed.

In our discussion up to now we have not considered the role of incident docu-
mentation on this process. Incident documentation in this model is part of a concur-
rent documentation process. That is, the documentation is generated as part of the
incident progress, but does not directly drive the incident. It is concurrent in that it
is produced as part of ongoing management activity and coherence is maintained
between the content of the documentation and the management model. Incident
documentation does play a role in problem framing by the manner in which it
structures or represents key framing elements. Thus, the WESA (EFSA in the case
of the Fork Incident) provides a specific structure for representing the strategic
management of the incident. This structure includes values at risk, potential losses,
strategic alternatives, uncertainty assessments and expected economic and noneco-
nomic outcomes. Codifying the incident in these terms has a framing effect that can
influence management definitions of the incident through the problem-framing
processes. Again, the relationship between management process and incident

documentation is one of coherence, which tends to force a correspondence between
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the way an incident is concretely framed in the documentation and the way it is

framed psychologically in terms of decision processes.

Lessons Learned

Local knowledge is a critical element in IA/EA decisionmaking as well as in
ongoing IMT operations. Our modeling approach identified a number of places
where local knowledge of fuel conditions, weather, and terrain were critical factors
in adjusting the management approach to the incident conditions.

Ideally, continuity should exist between the various decision processes that
surround an incident, both at the level of legacy decisions (e.g., land use planning),
pre-incident decisions (e.g., preparedness planning), and incident-specific decisions
(e.g., IA/EA, ongoing IMT operations). The models of decisionmaking we have
examined here suggest that significant discontinuities can exist between these
decision stages for various reasons. First, discontinuities may come about because
of fundamental differences in the processes applied to different stages of an inci-
dent. For example, the focal decision during IA/EA can be on continuing engage-
ment (e.g., direct attack) vs. a holding action, whereas ongoing IMT operations
may focus more heavily on line production factors (e.g., efficiency). These shifts in
focus represent changes in the reference points by which decisions are structured,
evaluated, and made.

Second, discontinuities can come about owing to differences in the tempo or
pace of decisionmaking. Altering the tempo of a decision process influences the
amount of time for deliberation and conscious recognition of decision alternatives.
In fast-paced operations, attentional resources may be limited and stress effects may
be high.

Third, discontinuities can arise from differences in the structure of the influ-
ences that combine to effect decision processes. In the case of IA/EA, an incident
may not have established itself sufficiently for a determination of the best longer
term strategic approach to its management. Once the opportunity for strategic con-
sideration of the incident is available, decision processes may shift to concerns that
derive from broader organizational goals and objectives (e.g., cost containment).

Finally, discontinuities can exist because the shift from one management stage
(e.g., IA/EA) to another (e.g., outside IMT) involves not only a shift in process but
also a shift of individuals. If local individuals are also the carriers of local knowl-
edge, the way that they interact with incoming management personnel will influ-
ence how (and how well) local knowledge becomes part of a larger, ongoing IMT

management response to the incident.

37



RESEARCH PAPER PSW-RP-258

We note that, at least for this case study, formalized local land management

planning appeared to have little direct influence on incident decisionmaking except

(perhaps) as an indirect influence through fuels management activities.

Case Study: Old Fire
Incident Synopsis

The incident began on a Saturday morning, October 25, 2003, at approximately

9:00 a.m. in Waterman Canyon, above the city of San Bernardino. The fire quickly

spread down-canyon threatening private resources near the southern boundary of

the San Bernardino NF. Gusting winds spread the fire into the neighborhoods east
and west of Waterman Canyon (Highway 18), consuming some residences (fig. 17).
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Figure 17—Incident map of the Old Fire (San Bernardino National Forest, Oct/Nov 2003). Old Fire is shown in color and labeled

with dates.
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The Old Fire was almost immediately adjacent to the Grand Prix Fire, and co-
occurred along with a number of other major incidents in southern California.
Weather conditions were a combination of high temperatures, low relative humid-
ity, and Santa Ana winds coming off of the desert interior. These extreme weather
conditions caused the fire to spread quickly up both sides of Waterman Canyon
and toward the mountainous areas of the forest to the north and toward numerous
mountain communities and residential areas. Ultimately, 940 residences were
destroyed along with 30 commercial properties. Six individuals lost their lives, two
in the first few hours of the incident. The cause of the fire was determined to be
arson. A number of arson-caused incidents had already occurred in other forested
areas in southern California.

The Old Fire along with the numerous other catastrophic fire incidents that
occurred in southern California in the fall of 2003, drew extensive national atten-
tion not only for the obvious conflagration that viewers across the Nation witnessed
on their television screens, but also for the disruptions that it caused to local
communities and cities as well as to airline services and interstate highways, and
the dangers other parts of the country faced from wildland fire because of the

extreme drawdown on national-level fire suppression resources.

Event-Frame Representation

An event-frame representation of the Old Fire is shown in figure 18. The event-
frame model shows three management phases: I/A/EA event, a type II management
event, and a type I management event. However, management of the incident
escalated almost immediately to a type II and then a type I response. The sequenc-
ing of the type II and type I management events on the timeline reflects the time
required for these management resources to be in place on the incident and readi-
ness to accept transition to their authority. Structure losses began to occur quickly,
with additional structures lost on a daily basis through October 29. Community
evacuations began within a matter of hours of the start of the incident. These
evacuations were a major management event and were influenced a great deal by
pre-incident preparations.

As can be seen in the sequence of events near the beginning of the incident, the
response to the Old Fire was immediate and extreme from a management perspec-
tive. Very little time passed before national-level management was ordered and
community evacuations begun. This was largely due to two factors: (a) pre-incident

planning that anticipated the need for a quick management response under the kinds
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Figure 18—Event-frame representation of major events on the Old Fire. WFSA = wildland fire situation analysis.

of weather and fuel conditions present on the forest, and (b) a worst-case scenario
that reflected the diversity or variance in fuel conditions and fire history. This
diversity created a high-risk scenario with extreme variability in outcomes and,
therefore, a very large worst-case scenario from the perspective of (a) the potential
size of the area burned, and (b) the potential length of time the incident could

continue.
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Reconstruction and Representation of Key Incident Decisions

As with most large, complex incidents, there are many decisions on which focus
can be placed. A feature that distinguishes the Old Fire is the nature and timing

of what we call here the “initial management response” (fig. 19). By this, we mean
the events shown on the event-frame timeline between the initial incident report
and a period approximately 3 hours into the incident. Within this period, four key
management events occurred: (a) IA, (b) type I IMT ordered, (c) type I IMT
ordered, and (d) community evacuations initiated. This sequence of decisions was
initiated or “triggered” by the incident but reflected other decision factors that
occurred prior to the incident, some of them months or years before the incident
took place.

In this representation, the incident management response is a combination of
three categories of factors: (a) the specific conditions present at the time of incident
ignition, (b) a worst-case analysis, and (c) multijurisdictional planning and coordi-
nation. In the Old Incident, the worst-case analysis appears to have been one of the
major drivers of the initial management response. The worst-case scenario was
influenced largely by the diversity of fire history and fuel conditions. This diversity
was expressed as high uncertainty about the geographic size and temporal duration
of the incident. The worst-case model, therefore, had extremely large upper bounds
on the possible extensiveness of the incident, prompting a rapid escalation of the
incident management.

The uncertainties inherent in the worst-case analysis were due largely to the
range of fire history experienced in the local region as well as a high level of
uncertainty about how to gauge a fire-return interval for a forest in which stand
conditions and proper development interacted to produce the potential for a fire
situation that had no historical referent. In addition, some parts of the forest had
experienced recent fire activity that made it relatively low risk with regard to a new
incident, whereas other parts of the forest had not experienced fire in almost 80
years. A high rate of tree mortality owing to insect and disease had produced very
adverse fuel conditions in some areas, and fuel treatments produced the opposite
effect in others. Given the weather conditions and the potential for the fire to
spread in numerous directions, high uncertainty existed about the potential pattern
of the fire, thereby creating a very large worst-case potential. The size of the worst-
case outcome prompted a management decision on October 27 to initiate structure
protection in the Big Bear area, well east of the fire perimeter at that time, but well

within the worst-case boundary.
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Figure 19—Influence diagram representation of initial management response.

The initial management response was influenced strongly by pre-incident
planning and coordination that reflected risks relating to fire, flood, and snow that
were the result of the high rate of tree mortality caused by insects and disease.
These risk influences combined to yield a multijurisdictional task force response
(Mountain Area Safety Task Force) that provided coordination as well as evacua-
tion planning to cover a range of risk-related events, some associated with fire but
others owing to dangerous trees, snow, and floods. Historical forest development
patterns combined with the location of mountaintop structures had in the past
prompted local evacuations on a 3- to 4-year interval. These trends influenced as
well the need for evacuation planning. As a result, a management decision to
evacuate residents very near the beginning of the incident was a response well

within the envelope of decisions for which preparations had already been made.

Lessons Learned

The Old Fire is an example of an incident for which the major decisions that

influenced incident outcomes occurred well in advance of the incident itself. In a
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real sense, the particular incident that came to be called the Old Fire could have
been any one of a number of possible incidents occurring near that location. The
specifics of the incident were essentially embodied in a set of decisions concerning
preparedness and multijurisdictional coordination. The outcomes of the incident
with respect to property losses and forested acres burned were in large part the
result of weather and fuel conditions present at the time of ignition. The extremely
small loss of life given the catastrophic nature of the event on other dimensions
appears to be the result of an early determination of the potential magnitude of the
outcomes and a management response that gave considerable weight to the worst-
case outcome.

A telling feature of this incident is the strong influence that pre-incident and
legacy factors have on the nature of the initial management response. This is
evident in the Old Fire when we look at the role that the worst-case analysis played
in prompting not only a rapid escalation to a type II and type I IMT response, but
also in the decision to go well beyond the current fire perimeter to begin structure

protection in areas nearer the boundary of the worst-case scenario.

Conclusions

The objective of this project was to develop a basis for using the concepts, models,
and language of decisionmaking to characterize the decision processes on large
fires. In pursuit of this objective, we have described a range of decision concepts
and models and applied their associated modeling languages to decisions made on
two case studies that serve as examples for how we can better represent the basis on
which fire management personnel make the decisions that they do.

There is, perhaps, a tendency when we think of decisionmaking to conceptual-
ize the process as one of evaluating alternatives represented in terms of a decision
tree. Indeed, the decision tree is a convenient metaphor for how decisions can be
structured, but as this report has shown, there are other models and languages that
describe perhaps in more detail and with more fidelity the realism of dynamic,
time-pressured decisionmaking where multiple influences interact to form an
impression on the decisionmaker that guides their actions.

As we have explored the application of decision modeling to different aspects
of decisionmaking on large fires, we have seen that decision processes differ
according to the incident and its events. As the reconstruction of the Old Fire has
shown, some incident decisions are actually legacy decisions, and the incident itself
is an event for which decisionmaking has already occurred but the actions have not

been yet executed. These are anticipated incidents—ones for which even extreme
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occurrences have been envisioned and action contingencies established. Although
no large fire can be thought of as a normal occurrence, it is within reason to think
of events like the Old Fire as “normal catastrophes,” to paraphrase Perrow’s de-
scription of some major technological failures as “normal accidents” (Perrow
1984). Given the precursor combination of forest conditions, weather and climate,
and private inholdings, the trigger conditions necessary to produce highly impactful
events may be just a matter of time. And, like technological failures, decision-
making about their management is part of a larger cycle that involves preparation
and analysis well in advance of their occurrence.

Even within ongoing incidents, decision processes can differ considerably
depending on the stage of the incident and on how management processes are
structured and executed. From our analysis of the Fork Fire, we observed funda-
mental differences in decision processes between IA/EA and ongoing IMT man-
agement. That analysis revealed that local knowledge plays a key role in early
management stages as well as in management decisionmaking several days into an
incident. We note as well that fundamental and important discontinuities may exist
in these different management decisionmaking stages. Our analysis reaffirms that
although fire is a continuous, exponential process that changes seamlessly although
abruptly at times, management is a discrete process that changes linearly and in
sometimes discontinuous stages. This fundamental incompatibility means that
discontinuities in management processes may have the effect of retarding manage-
ment performance. As fire management professionals sometimes note, it is impor-
tant to get out in front of the fire, and to avoid getting behind the “power curve.”
One definition and operationalization of these concepts maybe found in decision
process discontinuities. A better understanding of how mismatches occur between
decision processes at different management stages of fire incidents may help

identify how decision processes and fire management training can be improved.

Directions for Future Research
Apply Methods to a Larger Base of Incident Cases

The results of this project provide some potentially powerful insights into how
decision processes can be revealed through the application of decision science
theories and concepts to fire incidents. As a step toward further validation of this
approach to understanding large-fire decisionmaking, additional cases need to be
examined. This examination would take advantage of the methods and tools devel-

oped by this project, and efficiency could be obtained by extending the results
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demonstrated here to a large set of cases. A sampling frame should be developed
to identify the structural dimensions that define how additional cases should be

selected.

Identify Approaches for Incorporating Decision Modeling Into
Fire Reviews and Accident Analysis

The goal of this project was to use the concepts, models, and language of decision
science to characterize and represent the decision processes on large fires. One
application would be a set of procedures and guidelines for using the DPTP ap-
proach in the context of field reviews, such as fire reviews and accident investiga-
tions. Field-related research should be done to identify how the methods developed
in this project could be incorporated into management review activities. Possible
methods include workshops and seminars on the approaches in the present study
and how they can be directly applied in the field. Another possible method is the
development of a set of indepth protocols directed toward understanding key

decision stages of fire incidents, such as IA/EA and management transitions.

Improving the Worst-Case Analysis and Scenario-Generation
Process

Our research here has shown the dramatic effects a worst-case analysis can have on
downstream decision processes associated with large-fire management (Old Fire).
By implication, the lack of a carefully constructed worst-case analysis can lead to
an excessive small-fire bias that influences the development and implementation

of tactical plans such that they may be overly optimistic about what is achievable
given local conditions. At present, the process for constructing a worst-case analysis
or scenario is not standardized within the fire management community. Although it
is integrated as a concept into the wildland fire situation analysis process, the
process that should be used to construct such a scenario is left up to the background
and experience of the individual analyst or fire management professional. Given the
importance of a worst-case analysis in developing an appropriate basis for compar-
ing strategic alternatives and for communicating to line management the potential
scope and impact of an emerging incident, better standards and procedures could be
developed and communicated concerning how a worst-case scenario is constructed
and represented. Methods currently exist in the decision and risk sciences that offer
guidance for worst-case analyses. These methods could be translated and applied in

the context of fire management decisionmaking.
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Improving Accessibility and Usability of Local Fire Management
Knowledge

Local knowledge was shown to be of significant importance in the decision pro-
cesses associated with IA/EA as well as ongoing IMT management. We speculate
that some of the difficulties incorporating local knowledge into ongoing fire
management decision processes may stem from differences in how local units are
staffed and managed. These differences in management style may leave the process
of bringing local knowledge into the management picture subject to variability. A
systematic study of how local knowledge is accessed, communicated, and used as
part of the transition from [A/EA (local management) to incoming IMT manage-
ment would help reveal where and how the process could be improved and (per-
haps) standardized. Although line officer briefings are intended to serve this
purpose (in part), it may also be the case that ongoing IA/EA operations may leave
those who have the best local knowledge (e.g., fire management officers) not
available at the time and place they are needed. Some form of decision support
may be required to insure that key local knowledge is not overlooked during the
transition from local incident management to IMT management. Alternatively,
local knowledge could be structured and encoded in a form that is relevant for use
by incoming IMTs and that is retrievable through automated or semiautomated
means. The current process of insuring knowledge continuity across incident
management levels relies heavily on the availability of local unit personnel who
may be involved in incident activities and not (fully) available to interact closely

with incoming IMT members.

Effects of Individual Differences in Initial and Extended Attack
Decisionmaking

Our application of control theory to the decision processes associated with IA/EA
identified a set of trigger conditions that determine when and how the decision to
transition to a higher level of incident management occurs. These trigger conditions
relied on an affective assessment of the relationship between current capabilities,
resources required, and the fire situation. Research in contexts other than wildland
fire suggests that this assessment can be expressed as a risk assessment, in which
case the thresholds that fire management personnel use will be a matter of indi-
vidual differences in risk attitudes. Ideally, these thresholds and the trigger condi-
tions that produce them would be known in advance, thereby lending reliability and

consistency to how an incident situation (e.g., fire situation, capabilities, resources)



Decision Modeling for Analyzing Fire Action Outcomes

would relate to the decision to call for an outside IMT. Effort should be directed to
identifying methods for understanding how individuals differ with respect to risk
assessment in ongoing IA/EA operations, and how they differ with respect to the
conditions under which they decide that an upward transition is needed. The results
of such an investigation would help identify inconsistencies in training and experi-
ence that could be remediated, thereby improving the process by which personnel

gain qualification.

Characterizing Discontinuities in Fire Management Decision
Processes

Virtually all land management involves shifts from one mode of management to
another. For example, in the case of fire management, the increasing severity of

an incident may signal a shift to move from local management to an outside man-
agement team. This project identified a number of potential discontinuities in
decision process that arise from management events and activities on large fires.
These discontinuities pose potential challenges to effective and continuous decision-
making. Research could further examine decision process discontinuities and how
they can influence incident decision processes and outcomes. Along these lines, it
maybe valuable to explore merging the important elements from the models
presented in this paper into a single model that is unique to the context of real-time

fire management.
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Metric Equivalents

1 foot = 0.305 meters
1 acre = .405 hectares

1 mile per hour = 1.609 kilometers per hour
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Appendix B: Summary of Incident Documentation

Old Fire
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Decision Modeling for Analyzing Fire Action Outcomes
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