
United States 

Department of Correlation and Prediction

Agriculture 

Forest Service of Snow Water Equivalent
Pacific Southwest 
Research Station 

Research Paper from Snow Sensors 
PSW-RP-211 

Bruce J. McGurk David L. Azuma 



McGurk, Bruce J.; Azuma, David L. 1992. Correlation and prediction of snow water equivalent 
from snow sensors. Res. Paper PS W-RP-211. Berkeley, CA: Pacific Southwest Research Station, 
Forest Service, U.S. Department of Agriculture; 13 p. 

Since 1982, under an agreement between the California Department of Water Resources and the 
USDA Forest Service, snow sensors have been installed and operated in Forest Service-administered 
wilderness areas in the Sierra Nevada of California. The sensors are to be removed by 2005 because 
of the premise that sufficient data will have been collected to allow "correlation" and, by implication, 
prediction of wilderness snow data by nonwilderness sensors that are typically at a lower elevation. 
Because analysis of snow water equivalent (SWE) data from these wilderness sensors would not be 
possible until just before they are due to be removed, "surrogate pairs" of high- and low-elevation 
snow sensors were selected to determine whether correlation and prediction might be achieved. 
Surrogate pairs of sensors with between 5 and 15 years of concurrent data were selected, and 
correlation and regression were used to examine the statistical feasibility of SWE prediction after 
"removal" of the wilderness sensors. Of the 10 pairs analyzed, two pairs achieved a correlation 
coefficient of 0.95 or greater. Four more had a correlation of 0.94 for the accumulation period after 
the snow season was split into accumulation and melt periods. Standard errors of estimate for the 
better fits ranged from 15 to 25 percent of the mean April 1 snow water equivalent at the high-elevation 
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In Brief... 

McGurk, Bruce J.; Azuma, David L. 1992. Correlation and 
prediction of snow water equivalent from snow sensors. 
Res. Paper PSW-RP-211 Berkeley, CA: Pacific Southwest 
Research Station, Forest Service, U.S. Department of Agri­
culture; 13 p. 

Retrieval Terms: snow sensor, water supply forecasting, snow 
water equivalent prediction, snow pillow 

In 1982 the USDA Forest Service agreed to allow the 
California Department of Water Resources (DWR) to tempo­
rarily install fifteen snow sensors in some wilderness areas 
administered by the Forest Service (FS), in the Sierra Nevada. 
The intent of the temporary installation was to correlate and, by 
implication, allow development of prediction equations that 
would allow water supply forecasters to make predictions of 
snow water equivalent (SWE) at the wilderness sites on the basis 
of data collected by sensors in nonwilderness areas. Removal is 
mandated because, according to the FS, installations such as 
snow sensors do not comply with the uses of wilderness intended 
by the Wilderness Act (PL 88-572). 

This analysis assesses the feasibility of predicting the SWE 
at high-elevation snow sensors from low-elevation sensors 
using least squares regression. Because of the short record of 
most wilderness sensors, ten pairs of sensors with longer records 
were selected as surrogates for the wilderness-nonwilderness 
pairs. Of the ten pairs, only two pairs met the initial criterion of 
a correlation coefficient of at least 0.95. Six of the ten had a 
correlation coefficient of less than 0.75. Record smoothing and 
deletion of unchanging values yielded little improvement. Im­
proved results were obtained by dividing the records for the ten 

ii 

pairs into accumulation and ablation periods. April 1 was used 
as the division date. Six pairs then yielded correlation coeffi­
cients of 0.94 or better for the accumulation period, but only one 
pair reached that level during ablation. 

The selection of the ten sensor pairs was based on minimize­
ing horizontal and elevational difference and eliminating sen­
sors that had frequent technical problems or short records. 
Colocation within a drainage basin was also a goal. Elevational 
difference proved to be an important attribute for pairing, and 
distance and basin were less important. This analysis under-
scored the difficulty in a priori selection of pairs. Future 
analyses should define pairs by calculating correlation coeffi­
cients for between five and 15 sensors within 500 m elevation 
and a large distance such as 75 km. The 500-m difference in 
elevation may minimize the co-occurrence of rain at the low 
sensor and snow at the high sensor. 

The lowest standard errors (SEs) of the regressions for the 
sensor pairs ranged from 15 to 25 percent of the high-elevation 
mean April 1 SWE. Other sensor pairs yielded SEs of 30 to 55 
percent of the mean April 1 SWE. Although improved sensor 
selection and more sophisticated prediction methods would 
probably yield better pairings and lower SEs, even the best SEs 
obtained in this analysis were 10 percent of the high-elevation 
sensor's long-term April 1 mean SWE. Confidence intervals (95 
percent) around predictions based on these "best" equations 
would be at least +20 percent of the April 1 mean SWE. If this 
prediction error is acceptable to water supply forecasters, then 
data collection through 2000 or 2005 in the wilderness areas 
may produce predictive relationships that are useful after the 
wilderness sensors are removed. 

USDA Forest Service Res. Paper PSW-RP-211.1992. 



Introduction 

I n 1982 the USDA Forest Service (FS) agreed to allow the 
California Department of Water Resources (DWR) to tempo­

rarily install fifteen snow sensors1 in some wilderness areas 
administered by the Forest Service, in the Sierra Nevada. The 
intent of the temporary installation of sensors in wilderness was to 
allow "correlation" (defined below) between wilderness and 
nonwilderness sensors. If such a correlation could be established, 
then the FS believed that forecasters could predict future water 
supply on the basis of data collected at sensors in the nonwilderness 
areas. Under the terms of a Special-Use Permit signed by the FS 
and the California Department of Water Resources (DWR) in 
December 1982, each sensor was to be allowed a 10-year correla­
tion period. If correlation is not successfully achieved after 10 
years, a 5-year extension may be allowed. Removal is mandated 
because, according to the FS, installations such as snow sensors do 
not comply with the uses of wilderness intended by the Wilderness 
Act (PL 88-572). In that the last sensors were installed in 1990, they all 
must be removed by 2005 or sooner under the current agreement. 
The Environmental Assessment (EA) that was prepared by the 
FS recognized the need to include both wet and dry April-to-July 
runoff years (AJRO) in the correlation period by stipulating that 
AJROs from both the upper and lower deciles should be repre­
sented. Two wilderness sensors that were installed before the 1983 
season do have upper and lower decile seasons because of the wet 
1983 and the dry 1,987 seasons. In the history of the basins of 
concern, there is less than a 35 percent chance that both upper and 
lower decile AJROs will occur during a 10-year period. The 
chance increases to 60 percent during a 15-year period. 
The EA set a standard of 0.95 as a successful correlation level. 
The only reference to analytical methods to be used during this 
temporary installation and correlation exercise was stated in the 
Special-Use Permit: "Standard statistical techniques acceptable to 
the FS will be used in making this determination." However, when 
researchers at the Pacific Southwest Research Station and DWR 
began development of a statistical methodology for predicting 
snow water equivalent (SWE) with sensors in 1988 (Brandow and 
Azuma 1988), they recognized two problems in the Permit be-
tween the DWR and FS. First, achieving an "acceptable" correla­
tion of 0.95 did not necessarily mean that a low-elevation 
(nonwilderness) record could successfully predict the SWE at a 
wilderness sensor. Second, time periods covered by existing 
wilderness sensor records were too short to test whether an 
acceptable level of correlation could be achieved. 

1The snow sensor network provides water supply forecasters in California with 
current snow water equivalent information at 110 sites in California's northern 
coastal and inland mountains. The sensors supply part of the information needed 
to predict annual runoff to the state's reservoirs and rivers. Fifteen sensors are 
located in USDA Forest Service-administered wilderness areas. Each sensor 
consists of a thin stainless steel tank with a surface area of 1.8 m2 that is covered 
with a few centimeters of soil, a buried radio transmitter, and a solar panel and 
antenna mounted on a 6-m tall mast. 

USDA Forest Service Res. Paper PSW-RP-211. 1992. 

Correlation versus Prediction 

The correlation coefficient "r" is a measure of the linear 
relationship between two variables, such as SWE from snow 
sensors X and Y (Haan 1977): 

where xi and yi are the observed SWEs, x  and y  are the means of 
the observed SWEs, and n is the number of daily SWE pairs of 
observations. 

Although correlation is a measure of a linear relationship, 
regression is a more suitable technique for predicting how one 
variable changes given a change in another variable. Regression 
fits are often evaluated by R2, the coefficient of determination, 
which is a measure of the ability of the regression line to explain 
variations of the dependent variable (Haan 1977): 

where ŷi are the estimated values. 
The pertinent practical question is how accurately can a daily 

SWE at a high-elevation, wilderness sensor be predicted on the 
basis of the SWE at a low-elevation, nonwilderness sensor? 
Evaluation of the goodness of fit of the regression is typically 
based on the standard error of estimate of the regression equation 
(SE) and on the coefficient of determination, R2 (Haan 1977): 

Because of the concern for error around the prediction, this 
report will focus on SE, but will report R2 and the correlation 
coefficient, r, as well. 

Length of Record 
The second issue relates to the length of record of the 

wilderness sensors. Most of these sensors were not installed 
until after 1982, and some were not completed until 1990. By the 
time sufficient record is obtained and analyses performed, the 
10-year deadline will have passed. A solution to this problem is 
to select "surrogate sensor pairs" of high- and low-elevation 
sensors that currently have adequate records and perform the 
analysis on them (Brandow and Azuma 1988). Brandow and 
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Azuma selected nine pairs of sensors on the basis of proximity, 
elevational difference, degree of correlation of their co-located 
snow courses, and representation from the Trinity basin and the 
north, central, and south Sierra Nevada. Correlations of 0.95 
were attained with some surrogate sensor pairs, but the SEs 
ranged from 10 to 30 percent of the peak predicted SWE. The 
authors concluded that this magnitude of error would adversely 
affect the accuracy of the forecast of the current water supply, 
especially in some of the southern Sierra Nevadan basins with 
extensive wilderness (Brandow and Azuma 1988). 

It is presumed that the results from the analysis of the 
surrogate pairs apply to the wilderness-nonwilderness sensors. 
The only difference between surrogate pairs and wilderness­
nonwilderness pairs is the wilderness designation of the high-
elevation wilderness sensor. If good predictive relationships 
were obtained using surrogate pairs, good results might be 
achievable with the 10 or 15 years of data that would be available 
from the no wilderness-wilderness sensors before the wilder­
ness sensors were removed from FS-administered sites. Con­
versely, if poor predictions were obtained, it would indicate that 
the use of predicted data for the wilderness sites would not be 
appropriate. 

This paper reports on the feasibility of predicting SWE at high 
elevations from SWE obtained by sensors at low elevations in the 
Sierra Nevada using least squares regression and provides guide-
lines for selection of no wilderness-wilderness sensor pairs. 

Correlation and Regression 
Methodology and Results 

Characteristics of Data from Snow 
Sensors 

A snow sensor measures the weight and hence the SWE of 
the snowpack via the pressure in the fluid-filled tanks. A 
pressure transducer produces a voltage that is measured, con­
verted to a digital value, and transmitted to a central archiving 
site at daily or more frequent intervals. Various technical and 
physical problems contribute to errors in the data stream (see 
Brandow and Azuma 1988; McGurk 1986; and Suits 1985 for 
further discussion). The two major types of errors that affect 
SWE prediction are missing data and short-term fluctuations 
(chatter or flutter). Data maybe missing for long periods because 
of sensor leaks or major system failures, or for short periods 
because of temporary telemetry problems. In either case, the 
missing data hinder the development of a prediction equation or 
prevent prediction for varying periods. 

Chatter refers to the approximately 1- to 5-cm variations in 
SWE that occur between daily readings and that cannot be 

attributed to either precipitation or melt. An example of chatter 
can be seen on April 17 for the 1986 plot at the Central Sierra 
Snow Laboratory (CSSL) (fig. 1). The 5-cm spike in the sensor 
trace is not echoed by an independent measurement from an 
isotopic profiling snow gauge (Kattelmann and others 1983), 
and less than 1 cm of precipitation was recorded at CSSL during 
that time. Smoothing algorithms can dampen these oscillations, 
but chatter nevertheless adds noise to the data. Inherent accuracy 
of the transducers is in the same range as the chatter and varies 
on the basis of transducer manufacturer and the range measured 
by the transducer. 

The typical seasonal plot of SWE vs. time from a snow sensor 
in the mid-to-high elevation zone of the Sierra Nevada has an 
accumulation period, a peak SWE around 1 April, and an 
ablation (melt) period that ends when the snow is gone (fig.  1). 
The steep portions are storm (rising SWE) or melt (falling SWE) 
events, and the horizontal intervals are clear weather periods 
with little melt. The sensor's advantages include its ability to 
respond to new snow or melt within hours and to report these 
data at regular intervals or upon demand. Midwinter rains on the 
snowpack are not generally detectable except at nonwilderness 
sites that also have storage precipitation gauges. The disadvan­
tages of sensors are their complexity, their need for seasonal 
maintenance, their inaccessibility (both geographic and position 
under several meters of snow), and the data reduction and 
archiving requirements of the telemetered SWEs. Sensors are, in 
general, reasonably accurate, efficient tools to repeatedly mea­
sure SWE nondestructively in remote locations (Kattelmann 
and others 1983; McGurk 1986). The profiling snow gauge 
SWEs in figure 1, in contrast, are probably accurate to within ± 
0.5 cm but require a nuclear source and detector, plus line power 
and an operator (Kattelmann and others 1983). 

Selection of Surrogate Sensor Pairs 
The surrogate sensor pair technique used by Brandow and 

Azuma (1988) was also used in this analysis. Length of record, 
geographic proximity, and difference in elevation between 
members of the pair were the basis of the pairings. A list of 32 
sensors that were deemed to be the most reliable and accurate 
with respect to on-site SWE sampling was supplied by DWR 
(Hart 1989). Length of record was a primary criterion, and then 
proximity and elevational difference were considered, resulting 
in a selection of seventeen sensors that were sorted into a list of 
ten pairs (table 1). All but three of the sensors were in operation 
by 1971, so most of the pairs had a potential 15 years of record. 
Most of the pairs are in the same river basin and are less than 30 
km apart (fig. 2). The mean elevational difference between the 
chosen sensor pairs is 586 m, but ranges from 215 m to 1,460 m. 
Seven of the ten pairs are between 300 m and 675 m apart in 
elevation. The ten pairs ranged from 8 to 34 km apart, and had 
a mean proximity of 24.3 km. 

2 USDA Forest Service Res. Paper PSW-RP-211. 1992. 



Figure 1-Snow water equivalent in water year 1986 from a snow sensor and an isotopic profiling snow gauge at the Central Sierra Snow Laboratory 
near Soda Springs, California. 

Table 1-Elevation differences, geographic proximity, and number of years with at least thirty data values 
for the ten snow sensor pairs used in a surrogate pair analysis 

Sensor name  Elevation Years name Elevation Years Elev. 

difference 

Proximity 

m                 no. m no.  m

Blue Canyon 1615 12 Central Sierra 
Snow Laboratory 

2100 485 23 

Robbs Saddle 1800 14 Schneiders 2665 865 34 

Bloods Creek 2195 8 Mud Lake 2410 15 215 18 

Poison Ridge 2100 7 Green Mountain 2410 15 310 25 

Graveyard 5 Green Mountain 2410 310 8 

Poison Ridge 2100 7 Kaiser Pass 2775 16 675 31 

Green Mountain 2410 15 Mammoth Pass 2895 12 485 20 

West Woodchuck 2680 17 State Lakes 3140 26 460 29 

Giant Forest 2030 16 Upper Tyndall 3490 18 1460 32 

Quaking Aspen 2195 6 Pascoes 15 595 22 

Sensor 

km

10 

15 

2100 15 

2790 
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Figure 2-Location of surrogate sensor pairs in California's Sierra Nevada. 

Processing of Sensor Records 
Sensor data were supplied by DWR on magnetic tape. 

Records of instantaneous daily SWE depth started within a year 
of the sensor's construction (table 1) and concluded with the 
1986 water year. Some of the records have days, weeks, or entire 
years missing because of equipment malfunctions. Each record 
was screened for anomalies by automatic search routines and by 
eye. Daily values that were negative, extremely large, or showed 
large deviations from prior and post values were coded as 
missing values. The resultant data file was termed the "com­
plete" or "all-data" file. Simple linear regression was performed 
on the daily SWE depths of each pair of sensors (Minitab 1985). 
The high- and low-elevation sensors were the dependent and 
independent variables, respectively, and the number of match­
ing dates (sample size) was recorded, as well as the SE and the 
R2 (table 2). 

Record Reduction 
The typical snow sensor record has frequent non-storm 

periods during which the SWEs remain largely unchanged. 

4 

Because there are so many unchanging values, the regression 
may weight those values more than the changing values. To 
overcome this problem, a reduction process was used to delete 
consecutive points with identical values. This data reduction 
also would reduce the serial correlation that is typical of time 
series data; this type of day-to-day "persistence" violates the 
independence assumption typically made with regression. As a 
result, the sample sizes decreased by a mean value of 18 percent 
with a range between 9 and 46 percent. Regression was then 
performed with the "reduced data set" file (table 2). The proce­
dure reduced the R2 insignificantly and increased the standard 
errors between 0.9 and 2.3 cm. 

Record Smoothing 
A three-value moving average algorithm was applied to the 
all-data file to reduce the magnitude of the chatter (table 3). This 
type of smoothing is usually chosen for its simplicity. A longer 
moving average was not used because of the desire to retain the 
timing of small (5-10 cm) changes associated with storms of a 
day's duration or less. The smoothed daily SWE for day "i", k'i, 
was the average of ki-1, ki, and ki+1 (Bloomfield 1976). The 

USDA Forest Service Res. Paper PSW-RP-211. 1992 



Table %Regression results of daily snow water equivalent (SWE) values for the surrogate snow 
sensor pairs for the complete and reduced data sets 

Sensor pair and 
data set 

Blue CanyonÃ‘Sno Lab 
- all data 
- reduced data 
- reduced accum. 
- reduced ablation 

Robbs Saddle-Schneiders 
- all data 
- reduced data 
- reduced accum. 
- reduced ablation 

Bloods Creek-Mud Lake 
- all data 
- reduced data 
- reduced accum. 
- reduced ablation 

Poison Ridge-Green Mountain 
- all data 
- reduced data 
- reduced accum. 
- reduced ablation 

Graveyard-Green Mountain 
- all data 
- reduced data 
- reduced accum. 
- reduced ablation 

Poison Ridge-Kaiser Pass 
- all data 
- reduced data 
- reduced accum. 
- reduced ablation 

Green Mountain-Mammoth Pass 
- all data 
- reduced data 
- reduced accum. 
- reduced ablation 

West Woodchuck-State Lakes 
- all data 
- reduced data 
- reduced accum. 
- reduced ablation 

Giant Forest-Upper Tyndall 
- all data 
- reduced data 
- reduced accum. 
- reduced ablation 

Quaking Aspen-Pascoes 
- all data 
- reduced data 
- reduced accum. 
- reduced ablation 

Sample 1 Standard I Percent of I Coefficient of 
size 

624 
620 
519 
103 

2146 
1959 
1285 
579 

1133 
1031 
628 
372 

508 
47 1 
26 1 
212 

334 
284 
158 
127 

635 
608 
324 
275 

972 
838 
534 
306 

3216 
1734 
995 
682 

2857 
1499 
922 
536 

772 
565 
343 
195 

1 error 

cm 

23.2 
23.3 
21.8 
16.3 

34.4 
35.3 
19.1 
46.0 

25.0 
25.5 
10.4 
22.3 

43.8 
44.9 
15.8 
58.7 

43.4 
44.3 
16.4 
54.6 

36.1 
36.0 
13.0 
39.6 

40.0 
41.1 
28.5 
35.3 

11.1 
13.3 
5.8 

18.2 

28.5 
31.3 
22.2 
33.7 

13.6 
15.0 
6.3 

20.0 

1 April 1 SWE1 1 determination (R2) 
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Table 3–Regression results of daily snow water equivalent (SWE) values for the surrogate snow 
sensor pairs for the smoothed and reduced data 

Sensor pair and 
data set 

Sample 
size 

Standard 
error 

Percent 
April 

of 
I SWE' 

Coefficient of 
determination (R2) 

cm pct 

Blue Canyon-Snow Lab 
-all smooth 623 23.2 27 50 
-reduced smooth 620 23.1 27 50 
-red. smooth accum. 518 21.7 25 52 
-red. smooth ablation 104 16.2 19 62 

Robbs Saddle-Schneiders 
-all smooth 2145 34.3 39 58 
-reduced smooth 1960 35.3 40 57 
-red. smooth accum. 1379 18.6 21 82 
-red. smooth ablation 590 45.8 52 40 

Bloods Creek-Mud Lake 
-all smooth 1131 24.9 22 83 
-reduced smooth 1040 25.4 22 82 
-red. smooth accum. 665 10.1 9 97 
-red. smooth ablation 381 22.3 20 81 

Poison Ridge-Green Mountain 
-all smooth 507 43.7 56 51 
-reduced smooth 484 44.4 57 49 
-red. smooth accum. 267 15.7 20 88 
-red. smooth ablation 220 58.0 74 40 

Graveyard-Green Mountain 
-all smooth 333 43.4 55 54 
-reduced smooth 297 43.8 56 50 
-red. smooth accum. 165 16.1 21 88 
-red. smooth ablation 133 54.1 69 38 

Poison Ridge-Kaiser Pass 
-all smooth 634 36.1 45 60 
-reduced smooth 617 36.0 45 60 
-red. smooth accum. 342 12.6 16 94 
-red. smooth ablation 277 39.2 49 57 

Green Mountain-Mammoth Pass 
-all smooth 971 40.0 37 41 
-reduced smooth 873 40.7 38 38 
-red. smooth accum. 568 28.0 26 64 
-red. smooth ablation 309 34.7 32 27 

West Woodchuck-State Lakes 
-all smooth 3215 11.0 15 91 
-reduced smooth 2314 12.6 17 89 
-red. smooth accum. 1546 5.2 7 97 
-red. smooth ablation 778 18.5 25 81 

Giant Forest-Upper Tyndall 
-all smooth 2855 28.5 41 46 
-reduced smooth 2125 30.0 43 42 
-red. smooth accum. 1466 20.9 30 59 
-red. smooth ablation 672 34.5 49 35 

Quaking Aspen-Pascoes 
-all smooth 770 13.6 21 91 
-reduced smooth 618 14.5 23 90 
-red. smooth accum. 416 5.8 9 98 
-red. smooth ablation 206 19.6 31 89 

1Percentage is the SE (equation 3) divided by the long-term mean of the April 1 SWE of the 
high-elevation sensor, multiplied by 100. 
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subsequent calculation for k i+1 used ki, not k’i, in the calculation. 
When missing values were encountered as the ki-1, or ki+1, value, 
the ki value was retained. When ki was missing, the missing 
value code was retained in the smoothed file. 

Reduction was also applied to the smoothed files, but smooth­
ing decreased the efficiency of the reduction process by spread­
ing out chatter to surrounding values. Reduction of the smoothed 
files reduced the size of the all-data file by an average of 12 
percent and ranged from less than 1 to 28 percent. Smoothing 
increased the standard errors from 0 to 1.6 cm, and by 0.7 cm on 
the average. The greatest increases in standard error were 
matched with the largest decrease in sample size. Although the 
sums of squared differences decreased after smoothing and 
reduction, the sample size decreased more. Larger standard 
errors reflect the position of the sample size as a divisor in the 
calculation of SE (equation 3), and indicate that regression 
yielded a poorer fit after reduction and smoothing. 

Record Division-Accumulation and Ablation 
When SWEs for high- and low-elevation sensors are plotted, 

an hysteresis curve results: the accumulation curve has a differ­
ent path than the ablation curve (fig. 3). The maximum SWE at 
the Quaking Aspen and Pascoes sensors occurred close to April 
1 in 1981, which supports a common assumption made by snow 
hydrologists in California. There was a rapid loss of SWE at the 
lower elevation site in April and early May. The curve becomes 
essentially vertical when the lower site reaches 0 cm SWE and 
the high-elevation site is still snow covered. 

The ablation curve differs from the accumulation curve 
because of an elevation-influenced melt process. Although 
higher elevations receive slightly more intense solar radiation, 
the air temperatures are low enough to retard melting. This 
process results in the snow at lower sites melting out before that 
at the higher sites, even in cases in which the two sites get nearly 
an equivalent amount of seasonal precipitation (fig. 3). 

Figure 3-Hysteresis curve for snow water equivalent (SWE) at Quaking Aspen vs. Pascoes for water year 1981. 

USDA Forest Service Res. Paper PSW-RP-211. 1992. 7 



Although each year has a different time of peak SWE, April 
1 was used as the division date for all years and sites. To 
incorporate the hysteresis effect, the multi-year records for each 
site were split into accumulation and ablation files, and regres­
sion equations were fit to the split files. The split typically 
yielded a noticeable improvement in the SE and R2 for the 
accumulation season (tables 2 and 3). Except for one case, there 
was a corresponding minor worsening in the SE and R2 for the 
ablation period. Before splitting the files, only three of the 10 
sensor pairs had R2 in excess of 80 percent (correlation of 0.89). 
After splitting, seven of the ten pairs had an accumulation R2 in 
excess of 80 percent. Two of the three remaining sensor pairs 
could be corrected to achieve a better-than-85-percent R2 by 
eliminating questionable data and very low snowfall years with 
little or no snow at the lower sensor. 

Meltout at Low-Elevation Sensors 
A regression equation for prediction of high-elevation SWE 

is useful only when there is snow at the low-elevation site. When 

the low-elevation SWE is zero, the predicted high-elevation 
SWE is the y-intercept of a linear regression equation. In that the 
y-intercept is a constant, it is poorly suited to predict a varying 
high-elevation SWE as snow disappears at the low-elevation 
site. The time of meltout at low-elevation sensors varies from 
early May to early June, and the SWE at Kaiser Pass varied from 
30 to nearly 160 cm over a 5-year period (fig. 4). The rate at 
which snow at Kaiser Pass melted was relatively linear, and the 
slope was relatively consistent from year to year. A plot of a 5-
year period revealed that the high-elevation SWE at the time of 
meltout of the snow at the low-elevation sensors might be 
refined by adjusting it on the basis of classification of the water 
year SWE into low, normal, or high years (fig. 4). A constant-
value decay rate might then be applied to predict meltout at high-
elevation sensors. 

A multiple regression equation was developed with the all-
data file using the SWE value of the high-elevation sensor when 
the low-elevation sensor melted out as the dependent variable. 
Independent variables included the SWE of the low-elevation 

Figure 4-Ablation at Kaiser Pass after meltout at Poison Ridge for water years 1982-1986. 
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sensor on April 1, the number of days from April 1 to meltout 
(lag) at the low-elevation site, and dummy variables represent­
ing the water year magnitude: 

SWEHigh = A +B(SWELow, April1) + C (Meltout lagLow) 
+D(High/Med. Peak SWE) + E (Low Peak SWE) +error 

(4) 

where high and low refer to the high- and low-elevation sensors, 
respectively, and A through E are least-squares coefficients. A 
low-SWE class had an April I SWE of less than 80 percent of the 
long-term April 1 mean SWE. A medium-SWE class had an 
April 1 SWE of 80-120 percent of the long-term April 1 mean 
SWE, and a high-SWE class had an April 1 SWE greater 
than 120 percent of the long-term April 1 mean SWE. Three pairs 
of sensors were used to evaluate this technique: Robbs Saddle -
Schneiders, West Woodchuck - State Lakes, and Giant Forest -
Upper Tyndall. Of the three equations, the best had an adjusted 
R2 of 36 percent, and an SE of 23.9 cm, indicating a weak 
relationship between high-elevation SWE and the independent 
variables. 

Another potential way of incorporating water year magni­
tude would be to include a second variable in the regression 
equation that would represent the year effect. Although this 
might have improved the least squares fit in the historical data 
set, no information would exist for this variable when the 
equation was being used in real time as a year progressed and 
water supply forecasts were being made. 

Multiple Regression 
Although it is overly simplistic to assume that the high-

elevation SWE is solely a function of low-elevation SWE, 
reliable information exists only for the low-elevation SWE. 
High-elevation SWE also varies in response to the magnitude of 
the water year, the number of events with rain-snow elevations 
between the two sensors, and other less quantifiable factors. 
Two cases were evaluated by multiple regression to determine 
whether a pair of low-elevation sensors would produce a better 
predictive relationship than a single sensor. The "all-data" files 
for Green Mountain and Poison Ridge were used to predict SWE 
at Kaiser Pass, and Robbs Saddle and Mud Lake were used to 
predict SWE at Schneiders. In both cases, the multiple regres­
sion had higher R2 and lower SE than the simple regression. 
However, analysis of the sums of squares showed that most of 
the improvement was due to selection of a low-elevation site that 
was a better predictor of the high-elevation site than the sensor 
that was originally selected. 
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Discussion 

Although the theme of this paper is prediction of SWE for a 
high-elevation sensor that has been "removed," no prediction 
can completely compensate for the discontinuation of a sensor's 
data. When a sensor is discontinued, one sample of a time series 
of interest is gone. The variation and potential extremes are 
thereafter lost from the record. This loss may or may not be 
important to the process of predicting the seasonal water supply 
or flood probability. 

Current and Future Uses 
The primary current use of the snow sensors is as an input to 

updates of the monthly water supply forecasts for California's 
water users. DWR's Cooperative Snow Surveys pool the data 
from both the sensors (for the updates) and the snow courses for 
the monthly forecasts) to obtain basin indices. The indices are 
then used in a multiple regression model that was derived with 
the full complement of courses. The regression model also 
contains variables for expected future seasonal precipitation, the 
prior season's water year magnitude, and other terms. If a basin 
snow index is based on ten or more courses or sensors, dropping 
a single sensor would have a small but relatively unimportant 
effect on the forecast of the AJRO. If a whole group of high-
elevation sensors was excluded, however, a rather serious bias 
could result. Because higher elevations typically receive more 
snowfall, the bias would likely result in an underprediction of the 
AJRO. The bias could be compensated for by recalculating the 
forecasting equations, but the loss in information from the high-
elevation areas of the basin would weaken the predictive 
relationship. 

California's water management agencies and irrigation dis­
tricts base their water allocation and purchasing plans on the 
water supply forecasts. The economic consequences of the 
forecasts are extensive: irrigated acreages, crop selections, and 
million-dollar purchases of supplementary water are based on 
the water supply forecasts. Pacific Gas & Electric and Southern 
California Edison use the data to optimize hydroelectric produc­
tion and meet water quality and flow requirements. The sites for 
the recently-installed sensors were chosen because of the 
perceived need to have data for areas that are currently 
underrepresented by sensors. The trend of discontinuing mea­
surements at selected snow courses will leave some basins with 
few sample sites. Sensors, once installed, provide a cost-effec­
tive and safe alternative to monthly visits to snow courses by 
snow surveyors. 

Although the current forecasting system pools the data from 
many sensors to yield a basin index, it is likely that future 
techniques will use more modern, distributed models. The 
current lumped-basin regression technique was developed be-
fore current computer and telemetry capabilities. As demands 
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for more frequent and more accurate forecasts increase, DWR 
will likely shift to more sophisticated tools. These improved 
models will require better data than simple monthly snow course 
basin indices. The daily temperature and SWE values from each 
of the sensors in a basin will be crucial components for the new 
models. The elimination of a group of sensors at the top of a 
number of California's basins may limit the implementation of 
the next generation of prediction techniques. 

Regression Problems 
Regression is the obvious tool for predicting a high-elevation 

SWE from a low-elevation sensor's SWE, but some of the 
technique's rules are violated in this situation. An assumption of 
regression is that the independent variable (low-elevation SWE) 
has no or very low error compared to the dependent variable. In 
this case, both sensors' SWEs have approximately the same 
error magnitude. This violation of theory may result in a weaker 
relationship and larger error bands (standard error) around the 
predicted values. 

Another theoretical problem with the independent variable is 
termed independence or serial correlation. A wide range of the 
independent variable's values should be possible in successive 
samples. In this application, however, an SWE from today is 
probably not more than a few centimeters different than one 
from yesterday or tomorrow. In spite of the violation of regres­
sion theory due to serial correlation, the regression coefficients 
are almost unbiased. The SE, however, is almost certain to be 
underestimated, so actual SEs may be even larger than those 
listed in this study. 

Correlation versus Regression 
The Environmental Assessment signed by the Forest Service 

defined 0.95 as a successful correlation between two sensors. 
This is equivalent to an R2 of 90 percent, but neither statistic is 
the best measure of how good the relationship will be for water 
supply forecasting. The SE is a more appropriate measure of 
accuracy in terms of forecasting in that it provides a method for 
estimation of how the predicted SWE may vary from the actual 
SWE. If the SE is relatively large compared to the long-term 
April 1 SWE, the uncertainty of the prediction may be too great 
for it to be useful. In general, SE decreases as R2 increases, so the 
two measures of the relationship are inversely related (tables 2 
and 3). For these data, an SE of 17-21 cm generally corresponds 
to an R2 of between 80 and 90 percent, and is generally between 
19 and 25 percent of the April 1 SWE for a site. 

The typical SE in this study is much greater than the 2-3 
percent transducer error. The SE is also frequently greater than 
the difference between the high- and low-elevation sensors (fig. 
3). For Quaking Aspen and Pascoes, the SE for the accumulation 
period is 6.3 cm, and the SE for the ablation period is 20.0 cm 
(table 2). In 1981, the accumulation portion of the curve is less 
than 5 cm from the 1:1 line (fig. 3). For the ablation portion of 
the curve, the difference between the two sensors is less than 15 
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cm in all cases. The regression results are based on 5 years of 
data, however, and other years show a more complicated pattern 
(fig. 5). The example from water year 1984 is illustrative of why 
the SE is large for the regression equation: the 30 cm depth at 
Quaking Aspen has four different depths at Pascoes at various 
times, ranging from a SWE of 25 to 50 cm. During January, the 
SWE at Quaking Aspen declined by more than 12 cm while the 
Pascoes SWE remained fairly constant. This period produced an 
"offset," which was due to the reasonably common midwinter 
dry spell, during which warmer temperatures at the lower site 
allowed melting. Little melt occurred at the higher site. This 
pattern was repeated near the peak SWE, and there are indica­
tions that an event with a rain-snow line between the two sensors 
may have occurred. 

Confidence Intervals 
SEs are also used in the calculation of confidence intervals. 

A 95 percent confidence interval around a new predicted high-
elevation SWE near the mean of the low-elevation sensor is the 
SWE plus or minus approximately twice the value of the SE. For 
example, the Poison Ridge - Kaiser Pass pair has an SE of 36.1 
cm and a mean low-elevation SWE of 22.4 cm. If a confidence 
interval for that mean value were predicted for a following year, 
the high-elevation SWE would be 72.9 cm ± 72.2 cm. This wide 
interval results when the SE is over 45 percent of the long-term 
April 1 SWE, illustrating the seriousness of large SEs. The 
interval would become even wider as SWE values diverged from 
the mean SWE. A range of that width is no better than a random 
selection of a value limited only by the April 1 mean SWE, 
indicating that the prediction equation was essentially useless. 

In contrast to the near "worst case" example shown above, 
the West Woodchuck - State Lakes pair has an SE of 11.1 cm and 
a mean low-elevation SWE of 39.9 cm. The SE is 15 percent of 
the high-elevation sensor April l mean SWE, and the 95 percent 
confidence interval for a value near the mean is 36.8 cm ± 22.2 
cm. By splitting the data into accumulation and ablation files or 
by better pairings, SEs might be reduced to 10 percent of the 
April l mean SWE. This could result in confidence intervals that 
were plus and minus 25 percent of the predicted value. 

Record Reduction and Smoothing 
The reduction algorithm had between a one and 46 percent 

effect on sensor record size and a negligible effect on SE and R2. 
If a sensor produced a record with little chatter, then a larger 
number of points were dropped (e.g., West Woodchuck - State 
Lakes, table 2). Although this procedure was, in part, designed 
to reduce serial correlation problems, its application did not 
result in marked changes in SE or R2. A more dramatic effect 
might have occurred if the criteria had been set differently. 
Instead of dropping a value if it was identical to a prior value, a 
wider filter such as "SWE plus-or-minus 0.5 cm" might have 
been used. A band filter might have better accomplished the goal 
of removing points of unchanging SWE during non-storm, non-
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Figure 5-Hysteresis curve for snow water equivalents (SWE) at Quaking Aspen and Pascoes snow sensors for water year 1984. 

melt periods such as occurred during much of December 1984 
(fig. 1). 

The smoothing process was devised to treat the minor 
deviations that result from transducer chatter and other errors of 
electronic or temperature-related origin. These errors typically 
cause small spikes in one record without accompanying spikes 
in the paired sensor record. More complex smoothing or wider 
moving averages would delay sensor response to real storm 
events. The smoothing algorithm reduced the magnitude of the 
spikes, but it transformed a single spike into a three-value blip. 
Smoothing had a negligible effect on the SE and R2 (tables 2 and 
3). 

Smoothing reduced the efficiency of the reduction process. 
For the West Woodchuck - State Lakes pair, the reduced file had 
1734 points as compared to 2314 points for the smoothed and 
reduced file. The smoothing process spread the spike to neigh-
boring points, which then escaped deletion by the reduction 
algorithm. The optimal combination would probably be a band 
filter reduction scheme followed by a smoothing algorithm. 
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Accumulation and Ablation Division 
In almost all cases, splitting the record at April 1 improved 

the regression fit for the accumulation phase of the reduced 
record (tables 2 and 3). The ablation phase then showed a poorer 
linear regression fit, typified by larger SEs and lower R2. Six of 
the ten pairs had an R2 of 88 percent or higher for the accumu­
lation period, and the mean SE as a percent of the April 1 SWE 
was 14 percent. 

It is not surprising that a linear relationship works less well 
during ablation than during accumulation in light of figures 3 
and 5. A severe problem with fitting a linear equation is caused 
by the string of declining SWEs at the high-elevation sensor 
while the low-elevation sensor has already reached an SWE of 
zero. An approach to the problem would have been to subdivide 
the ablation phase into a before-and-after meltout of snow at the 
low-elevation sensor. A linear equation might have been used 
for the pre-meltout portion, and a temperature index melt equa­
tion might have been applied to the high-elevation sensor's SWE 
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for the post-meltout period. The prediction of high-elevation 
SWE proved problematic, however, in that the prediction at-
tempt described (equation 4) performed poorly at the three sites 
that were evaluated. The time of meltout is affected by factors 
other than water year class and time of meltout at the low-
elevation sensor. For example, water years 1982 and 1986 had 
similar peak SWEs at both sites, but Poison Ridge melted out 
more than two weeks later in 1986 than in 1982 (fig. 4). Inclusion 
of historical data such as average daily temperatures might 
improve the predictive relationship, but these data were not used 
because of their unavailability during real-time prediction. 

Multiple Regression 
For the two cases examined, the addition of a second low-

elevation sensor produced a better relationship than when only 
the original low-elevation sensor was used to predict the high-
elevation SWE. In the Kaiser Pass case, Poison Ridge is clearly 
a poor predictor in that the SE is 36.1 cm (table 4). The inclusion 
of Green Mountain halved the sample size, decreased the SE by 
7.3 cm, and increased the R2 from 60 to 74 percent. The results 
were nearly as good, however, with Green Mountain as the only 
independent variable. The improvements were even more dra­
matic for the Schneiders cases in that the SE dropped from 34.4 
cm (paired with Robbs Saddle) to 12.3 cm (paired with Robbs 
Saddle and Mud Lake). Robbs Saddle was paired with Schneiders 
because of its westerly position in the American River basin, but 
the sensors are elevationally and horizontally distant (865 m and 
34 km), resulting in a weak relationship. Mud Lake is 255 m 
lower than Schneiders and 12.3 km away, so even though it is in 
the Mokelumne rather than the Cosumnes basin, it is a better 
predictor of Schneiders than Robbs Saddle. The SE and R2 for 
the Mud Lake - Schneiders pairing are 12.6 cm and 94 percent, 
as opposed to 34.4 cm and 58 percent for the Robbs Saddle -
Schneiders pairing (table 4). 

The inclusion of a second sensor adds another type of 
theoretical regression violation called multicollinearity. Inde­
pendent variables should be measures of different processes that 

Table 4-Comparison of regression results from simple and multiple 
regressions for two high-elevation sensors 
Sensor pairs Sample 

size 
Standard 

error 
  Coefficient of 
determination (R2) 

cm pct 

Kaiser from Poison Ridge 635 36.1 60 

Kaiser from Green Mountain 966 29.5 

Kaiser from Poison Ridge 
and Green Mountain 382 8 74 

Schneiders from Robbs Saddle 2146 34.4 58 

Schneiders from Mud Lake 2997 12.6 94 

Schneiders from Robbs Saddle 2105 12.3 95 

74 

28.

are related to the variable of interest. The SWEs at two sensors 
are likely to vary in a parallel manner, and much of the informa­
tion in one record is contained in the other. If the addition of a 
second sensor improves the prediction capability, such as with 
both Kaiser and Schneiders, it may mean that the initial pairing 
should be dropped in favor of the new pairing. 

Rain-Snow Line 
Storm-to-storm variation of the rain-snow elevation is a 

characteristic of the Sierra Nevada. Much of a season's snow is 
deposited on both the upper and lower sensors by large, frontal 
storms that move west-to-east across the Sierra Nevada. Each 
storm has a different elevational boundary between rain and 
snow, and occasionally the lower-elevation sensor may receive 
rain while the higher-elevation sensor receives snow. This 
phenomenon complicates the prediction of SWE at high-eleva­
tion sensors, but no easy solutions are available. The obvious 
recourse is to pick as an independent variable a sensor that is 
close to the sensor of interest in elevation and geographic 
proximity. However, this solution is unrealistic because all of 
the California snow zone has only 110 sensors, so finding 
reliable, nearby sensors is very difficult. Indeed, because of the 
high cost of installation and operation, most sensors are sepa­
rated by several hundred meters elevation and 20-30 km. At 
these distances and elevational differences, it is very likely that 
the rain-snow line will fall between any sensor pair for several 
storms during a season. Five of the ten pairs analyzed here are 
485 m or more apart in elevation, and these five have R2 values 
of 60 percent or less. The three pairs with an R2 in excess of 0.80 
averaged 425 m in elevational difference. A maximum differ­
ence of 500 m might be a good general cutoff value for sensor 
pairs. 

It might be expected that nearby sensors would be likely to 
receive concurrent precipitation and of a similar type. However, 
these ten pairs did not show a good relationship between dis­
tance and R2 or SE (tables 1 and 2). The ten pairs analyzed herein 
ranged from 8 to 34 km apart, and averaged 24.3 km in distance. 
Some distant pairs (West Woodchuck and State Lakes, 29 km) 
had a good predictive relationship, while adjacent pairs (Grave-
yard and Green Mountain, 8 km) had a poor predictive relation-
ship. 

The distance relationship is obviously confounded by 
elevational and siting influences. Sensors that are 20 km apart 
but at a similar elevation (Bloods Creek and Mud Lake) may be 
more likely to form a good pair than sensors that are 10 km apart 
but at very different elevations. Sensors that are low enough to 
fall in the transient snow zone (Blue Canyon) are also unlikely 
to provide a good match to a higher sensor in the continuous 
snow zone (Central Sierra Snow Laboratory) in spite of a 
moderate elevational difference and reasonable proximity. No 
clear "cutoff" distance can be recommended on the basis of this 
analysis. 
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Conclusions 

The goal of this analysis was to assess the feasibility of 
predicting the SWE at high-elevation snow sensors from low-
elevation sensors using least squares regression. The need for 
the prediction arises from the USDA Forest Service policy that 
calls for removal of sensors sited in wilderness after a correlation 
period. The initial criterion for an acceptable correlation was a 
correlation coefficient of 0.95. Because of the short record of 
most wilderness sensors, this analysis selected ten pairs of 
sensors with longer records as surrogates for the wilderness 
pairs. 

Of the ten pairs, only two pairs met the initial criterion. Six 
of the ten had a correlation coefficient of less than 0.75. Record 
smoothing and deletion of unchanging values were done but 
with no improvement in results. 

Improved results were obtained by dividing the records for 
the ten pairs into accumulation and ablation periods. April 1 was 
used as the division date. Six pairs then yielded correlation 
coefficients of 0.94 for the accumulation period, but only one 
pair reached that level in the ablation phase. Attempts to improve 
the SE and R2 of the ablation relationship by including a 
classification of water year magnitude and time of meltout at low 
sites failed. 

Although the original criterion used correlation as a measure 
of acceptability, the standard error of estimate of the regression 
equation is a better measure. The lowest SEs of the regressions 
for the sensor pairs ranged from 15 to 25 percent of the high-
elevation mean April 1 SWE. Other sensor pairs yielded SEs of 
30 to 55 percent of the mean April 1 SWE. This error is 10-20 
times larger than the sensor transducer error, and could have an 
adverse effect when used as an input to the water supply forecast 
models. 

The selection of the ten sensor pairs was based on minimize­
ing horizontal and elevational difference. The pool of potential 
sensors was additionally constrained by eliminating sensors that 
had frequent technical problems or short records. Colocation 
within a drainage basin was also a goal. The analysis suggested 
that elevational difference is an important attribute for pairing, 
but distance and basin were less important. Future analyses 
could define pairs by calculating correlation coefficients for all 
sensors within 500 m elevation and a large distance such as 75 
km. The 500-m difference in elevation may minimize the co­
occurrence of rain at the low sensor and snow at the high sensor. 

 Adding a second low-elevation SWE and performing mul     ­
tiple regression improved the prediction capability in both cases 
examined. In one case the SE decreased by 20 percent but was 
still 25 percent of the site's April l mean SWE. The second case 
provided dramatic improvement in SE, but the attempt revealed 
that the initial pairing was actually a poor one. In both cases 
simple regression with the new sensor yielded results almost as 
good as with the multiple equation. This result underscored the 
difficulty in a priori selection of pairs. Greatly improved results 
might have been obtained for each of the ten high-elevation 
sensors considered in this analysis if between five and 15 low-
elevation sensors had been screened by a correlation matrix 
process. 

Although improved sensor selection and alternative predic­
tion methods may yield better pairings and lower SEs, even the 
best SEs obtained in this analysis were 10 percent of the high-
elevation sensor's long-term April 1 mean SWE. Confidence 
intervals (95 percent) around predictions based on these "best" 
equations would be at least ±20 percent of the April 1 mean 
SWE. If this prediction error is acceptable to water supply 
forecasters, then data collection through 2000 or 2005 in the 
wilderness areas and determination of the best wilderness­
nonwilderness pairs may produce predictive relationships that 
are useful after the wilderness sensors are removed. 
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