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FOREWORD

The Canada/U.S. Spruce Budworms Program in

coaperation with the Center for Blological Control
of Northeastern Forest Insects and Discases of the
Northeastern Forest FExperiment Station co-sponsored

this Forest Defoliator-Host Interaction Werkshop.
This invitational workshop was limited to
investigators of the spruce budworms and gypsy
math in the Forest Service, Canadian Forestry
Service, and the University sector. The primary
purpase of this workshop was to foster
communication between rescarchers having a mutual
interest and active research projects designed to
understand the relationships between the host
plant and forest defoliator feeding behavior,
growth, and reproduction,

This Workshop was a follow-up to two
previocus meetings on heost~insect interaction. In
1980, Dr. W. Mattson hosted a CANUSA-sponsored
meeting at the North Central Forest Experiment
Station, St. Paul, MN. This informal gathering
brought together CANUSA Program investigators
from the US and Canada for the purpose of sharing
preliminary information and data on host-insect
interactions. The second meeting took place In
the fall of 1982. CANUSA(E) aponsored a
Symposium on Spruce Budworm-Hest Intersctien at
the Eastern Branch Meeting of the Entomologlcal
Society of Awerica, Hartford, CT. The current
Workshop developed from this Symposium., We found
that participants were railsing question concerning
the similarity or differences between the gpruce
budworm and gypsy moth host fnteraction systema.

These Proceedings resulted from a three-day
Workshop held In April 1983 at the Park Plaza
Hotel, New Haven, CT, The structurs of the
Workshop allowed each participant a perind for a
presentation fallowed by lengthy discussion.
These discusgions were ltvely, friendly technical
exchanges clarifying or elaborating on polnts
raised by the speaker. Freguently, these
exchanges were thought-provoking and often
provided avenues for further detailed discussions
and In some cases, future cooperative efforts.

The papers that make up these Proceedings
were submitted at the Workshop as cAamera-ready
copy. As a result, the participants did not have
the beneflt of reappraising their work in light of
the discussions that followed thelr presentatfons
er other ideas that developed at the Workshop,

Since the Workshop was planned late in the
life of the CANUSA Progrem, we asked each
investigator to be especially aware of the
implications of these interactions on population
dynamics of the insect in relation to forest
management potential, When possible, we also

asked that future research needs and direction be
ment {oned,

As technical coordinators for this
Proceedings, it wns our task to arrange and more
effectively focus waterial so that papers
provide a amooth transition of ideas and research

activities on insect~host Interactions for the
spruce bhudworms and gypsy moth,
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CHANGES IN TREE QUALITY IN RESPONSE TO

DEFOLIATION

Jack C. Schultz1 and Ian T. Baldwinl

Research Assistant Professor and
Senior Research Assistant

Department of Biological Sciences
Dartmouth College, Hanover, NH 03755

Abstract

Plant chemistry alone fails to explain why
most trees escape defoliation most of the time.
Chemical variation in space and time, acting to
enhance the effectiveness of natural enemies, may
be the key. Changes and increasing variation in
direct response to insect attack (“induction')
may be particularly important for irruptive pests.

Introduction

The search for an explanation for pest
outbreaks and cycles has long been a focus of
CANUSA and represents a multimillion dollar
question. It is interesting to consider, however,
that such outbreaks are actually rare. Few
insect species exhibit them, and they are widely
scattered in time (Schultz 1983a). Most insect
species do not exhibit irruptive population
dynamics, and exist at very low abundances almost
all the time (Lawton and McNeil 1979). The
occurrence of irruptions leads one to suspect
that some regulatory factor has failed or been
defeated. Since many things kill herbiveorous
insects and/or influence their feeding, growth,
and fecundity, there is no shortage of possible
explanations. Nonetheless, no successful
generalization has emerged about these events;
instead, individual investigators favor
individual hypotheses (Schultz 1983a)}.

In our laboratory we emphasize the
influence of host tree quality, especially
defensive chemistry, on the performance of
defoliating insects. The reason for this is that
among those factors likely to be important to the
insect, food quality is one which may influence
all others, including the effectiveness of
parasites, pathogens, and predators (Lawton and
McNeil 1979, Schultz 1983a). Our major working
hypothesis has two main parts: 1) tree chemistry
has an impact on defoliating insects, but
chemical variability is the key, and 2) the
importance of host chemistry derives from its
interaction with other mortality and morbidity
factors,

l-/Present address: Department of Entomology,
Pennsylvania State University, University Park,
PA, 16802.

The reason for following this line of
reasoning involves the observation that the
relationship between insect and host plant is
coevolutionary in nature (Ehrlich and Raven
1965). Each participant exerts natural
selection on the other, resulting in an escalating
"arms race''. On the plant's part, chemicals may
be produced which function as defenses against
insects (Ehrlich and Raven 1965, Feeny 1970,
Swain 1979). However, the presence of these
chemicals selects for the ability to detoxify or
avoid them on the part of the insect (e.g.
Brattston 1979). If any plant or plant species
were to defend itself with a uniform, singular
chemical defense effective enough to keep
insects as rare as they are most of the time, we
would expect this strong selection to favor the
evolution of insects immune to it (Maiorama 1981,
Schultz 1983a). Exactly this result is common in
agricultural systems, where humans apply the
defense as artificial (or plant-derived)
chemicals, or employ umiform, resistant cultivars
(Lupton 1977). Since forest trees live many
years (and many insect generations), something
else must be important in defending themw, because
"super pests' do not continuously defoliate
forests. We argue that "something else"
necessarily involves variable plant chemistry.

Induced Variability

A form of variation we have been studying
lately involves damage-induced changes in leaf
chemistry in forest trees. A decrease in food
value or increase in the concentrations of
antiherbivore chemicals has now been observed in
black ozk (Wallner and Walton 1979), red oak
(Schultz and Baldwin 1982), red alder and willows
(Rhoades 1982), arctic birches (Haukioja and
Niemela 1978, Bryant 1981), yellow birch, sugar
maple, and poplars (Baldwin and Schultz 1983 and
unpublished), to mention a few, It is becoming
clear that tree leaf quality varies not only in
space (e.g., Schultz et al. 1981, Whitham 1981,
Zucker 1982) and seasonally (Feeny 1970, Schult:z
et al. 1981), but also rapidly in response to
attack. We have found, for example, that
phenolic concentrations are increased as much as
150% in undamaged leaves of partially (10%)
defoliated sugar maples and poplars within 36
hours, apparently through de novo synthesis
(Baldwin and Schultz 1983).

The potential significance of this form of
leaf quality variability for understanding pest
outbreaks takes several forms. First, the ongoing
decline in food quality that results may help
explain the conspicucus decline in insect
population "quality" which occurs during
irruptive episodes, including slowed caterpillar
growth, reduced maximum size, and lowered
fecundity (Wellington 1965, Wallner and Waltom
1979, Rhoades 1979, Schultz and Baldwin 1982).
Such declines often occur before available food
is depleted, suggesting possible food quality
reduction, Low food quality under induction
alternating with high food quality under
"relaxation" (and especially during periods of
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Plant stress) might yenerate the cyc}ic o
behavior some ne: populations exhibit (Haukioja
and Hakala 1u7s, .ryant 1981},

Second, iacreased cffectiveness of
Predators, pathogens, and parasites as
irruptions proceed could be due to or augmented
by declining host plant quality (Schultz 1982).
An estimated 260% increase in gypsy moth
mortality due to tachunid fly infestation could
result from the 3-4% reduction in caterpillar
Zrowth rates on "ipduced" foliage (Schultz
1883a). if Jowcered feod quality influences
searching behavior hy larvae, so that more
movement and tasting occur, contact rates with
pathogens should increase (Schultz 1983a,b).
Preliminary results in our laboratory suggest
that gypsy moth larvae fed protein-deficient
diets do indeed exhibit increased movement and
searching behavior (Schultz, unpub. data).

A third potential consequence of the
induction effect inpvolves the role of spatial
variability. More detailed chemical comparisons
of oak leavos taken from trees being defoliated
Ly gvpsy moth larvae with those from unattacked
trees growing nearby (sec Schultz and Baldwin
1982 for sampling, extraction, and site
descriptions) reveal differences in variability
as well as total amounts of some phenolic
compounds, Using capillary CLC methods for the
quantitative analysis of two hydrolyzible
tannins, golire seid and ollagic acid
{Arpino et al. 1977, Baldwin in prep.), we may
plot the troguency distributions of leaves
having various dry weight concentrations of
these two astringent compounds. When we do this
(Fig. 1), wo find thar undamaged leaves on
tinduced” trees exhibit significantly different
frequency distributions {Chid test, p < .05).
Leaves {rom dmmaged trees have o significantly
wider range of values than do leaves from
unattacked troes,

Any insect which can perceive these chemical
differences has a wider range of leaf values from
which to select a preferred type. In an induced
tree, fewer leaves fall into the lower
hydrolyzible tannin content classes; hence an
insect respopding to gallic and ellagic acids as
antifceedants must scarch farther and longer for
suitable lewves,  This could increase metabolic
travelling co~ts, search time per consumpt ion
time, contact rates with pathogens and
predators, amd conspicuousness to predators and
parasites (Schults [U835.b).  Increased
variability, together with overall lower leaf
quality, shonld increase a variety of risks.

Some inxects may not discriminate among
leaves, but eal the broader range found in
induced trees. Recent evidence suggests that
switching Crom high to low quality or low to
high guaiity leaves can result in even poorer
growth performance than is attained on a diet
gonsisting of only pour quality leaves (E,
Haukioja, w.pub. datal. In cither case, induced
trees which al-0 exhibit increased variance
could become much peorer hosts than they were
before they were attacked,
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Figure 1. Frequency distributions of
hydrolyzible tannin contents of leaves from red
oak trees undamaged by gypsy moth larvae (top)
and undamaged leaves from nearby trees
defoliated 80-100% (bottom) during 1981,

Because the secondary chemistry of forest
trees is often dominated by phenolics, especially
tannins (Swain 1979), these are the compounds
most studied in the context of induction.
Recently, the importance of their biological
activity as antiherbivore devices has been called
into question (e.g,, Bernays 1978, Martin and
Martin 1983), Several investigators have found
weak or nonexistent correlations between tannin
contents and insect performance (e.g., Mattson,
this volume, Wagner, this volume). There are at
least two possible reasons for this. First,
sampling for phenolics is made very difficult by
the observation that tissue-to-tissue, leaf-to-
leaf, and needle-to-needle variation is so great
(Schultz et al, 1981). This means that we must
know the phenolic/tannin content of the tissue
actually consumed; it is not sufficient to sample
similar, or even nearby tissues for correlative
studies, The adjacent leaf may not répresent or
even resemble the chemical composition of the
leaf an insect consumed, Second, both sampling
and consumption can alter tissue chemistry.
Hence, we have a catch-22: we must know what the
chemical composition of a plant tissue was when
the insect began to feed on it, but once the
insect feeds on it, any remaining portion may be
altered, In nature, insects may select
low-phenclic tissues, but once partially eaten,
our sampling and analysis may show them to be
high-phenolic tissues.



Conclusions

This last point brings us to a point which
is critical for understanding the role of tissue
chemistry in the interaction between tree and
insect. This observation is simply that because
tissues vary tremendously in space and time,
insects have a choice in selecting food. They
may avoid tissues with one type of composition
while seeking out tissues with other
compositions, to which the insect may be
physiologically adapted. As a result,
understanding insect behavior and its sensory
and ecological bases is central to explaining
why certain insects eat certain tree species,
move among individual trees, grow and reproduce
better on some trees than others or at some times
than others, or are more susceptible to natural
enemies at certain times or in certain places.
These issues, of course, are fundamental to
answering the questions about population dynamics
that interest us all., It is clear that studies
of insect behavior, tree quality and tree
chemistry are needed to understand insect
population dynamics, but that we must pay as much
attention to variances as to mean values.
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