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ERROR OF BIOMASS REGRESSIONS: SAMPLE TREES

SELECTED BY DOUBLE SAMPLING

John Michelakackis and Tiberius Cunia

Graduate student and Professor of Statistics and
Operations Research, respectively, State Univer-
sity of New York, College of Environmental Sci-

ence and Forestry, Syracuse, NY, 13210

Sometimes it is useful to construct biomass
tables by a double sampling technique whereby (i)
the first phase sample provides a linear regres-
sion ? ry (d,h) of tree biomass on tree diameter
d and helght h, (ii) the sechd phase sample
provides a linear regression h = r, (d) of tree
height h on diameter d and (iii) the regres51on
of biomass on diameter alone is defined as y
r(d) = ¥y(d,rp(d). By simulation techniques,
sets of one hundred samples were drawn from a
known tree population by a variety of double
sampling (two-phase, two-stage) techniques, one
set for each sampling method. Using a variety of
Erocedures, the regression functions of the form
¥ = r(d) were first estimated from the data of
each sample and then applied to the parent popu-
lation to estimate the known value of the average
biomass per acre. By analyzing the probabilistic
behavior of the estimates, inferences were then
made about the bias, precision and sample-based
estimates of the precision for each combination
of sampling method and estimation procedure.

Introduction

In two previous papers, Cunia (1982) and
Cunia and Michelakackis (1983c) proposed a method
to use data from trees selected by a double (two-
phase) sampling technique to estimate biomass
regression functions and their error. The trees
of the first phase are measured for biomass Y
diameter d and height h and their data are used
to estimate a linear regression function 9
ry {(d,h) of biomass on diameter and height. The
trees of the second phase are measured for d and
h alone, and their data areAused to estimate a
linear regression function h = r,(d) of height on
diameter. The regression function of blomass on
diameter alone is estimated by the function y
r(d) = r, (4, h) =r, (q, rz(d)). It is assumed that
the error of rl(d h) and r, (d) can be properly
evaluated and, thus, thelr error can be combined
to estimate the error of § = r(d) by a technique
described in their papers.

To test this method, Michelakackis and Cunia
(1985) used simulated sampling. In the first
phase of the double sampling design above, they
have randomly selected, by computer, 15 percent
of the trees from 30 clusters (plots of fixed
area) also randomly selected from a known forest
tree population. These trees were measured for
biomass, diameter and height. In the second

phase, 11.7 percent of the trees from 200 random-
ly selected plots were measured for diameter and
height alone. Using the data from one individual
two-phase sample, they calculated (i) the regres-
sions § = rl(d h), D= r, (d) and y r(d) and
(1i) the estimates z of the average biomass per
acre u for the given population, (z-u) of the
bias of the sampling method and estimation proce-
dure and V of the variance of 2z, using the basic
assumptions of the statistical models they werked
with in the estimation of the regression func-
tions above.

This sampling and estimation procedure was
repeated 100 times, and 100 estimates z and V
were thus obtained, together with the average
estimates z of p, (Z-1) of the bias of z and V of
the variance of z. Because the 100 values z were
viewed as generated by the same, independently
performed random process, they calculated also
another estimate of the variance of z, this time
unbiased, namely s, = Z(z—2)2/99, where J means
summation over the 100 simulated samples.

For the calculation of the regression func-
tions y = rl(d h) Michelakackis and Cunia (1985)
have used four estimation approaches and, for
each estimation approach, several regression
equations. The four estimation approaches con-
sisted of two ordinary least (OLS) and weighted
least squares (OWLS) and two modified least (MLS)
and weighted least squares (MWLS) methods. As
the conditional variance of h given d is approxi-
mately homogeneous (at least for our tree popula-
tion) only the least squares OLS and MLS_ ap-
proaches were used in the estimation of h =
r,{(d). These four approaches will also be used
in this study. For a more detailed description
of these approaches the reader is referred to the
above mentioned paper or additional papers by
Cunia (1979, 1981) and Briggs and Cunia (1982).
For the purpose of the present study, it suffices
to say that (i) the ordinary least squares tech-
niques are applied to individual tree data and
they ignore the cluster effect, if any, and (ii)
the modified least squares are applied to cluster
variables and they take the cluster effect into
account.

The analysis of their simulated sampling
results showed that (i) for all four estimation
approaches, the best of the first and second n
phase regression functions are y =03 +a2d h and h
= yl+72d+v3d respectively, (ii) using these two
regression equations, four double sampling re-
gression functions ? = r(d) were defined and
applied to the tree population, one for each
estimation approach, (iii) all four corresponding
estimates z were either unbiased or with a bias
so small that in all cases it was not signifi-
cantly different from zero, (iv) the best estima-
tor z of U was obtained by the OWLS method (with
the QLS estimator following closely) but the
statistic V grossly underestimated the variance
of z and, finally (v) the best estimator of the
variance of z was obtained by the MLS method, but
the corresponding estimator z was not as precise
as the estimator z obtained by the OWLS method.
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The conclusions they reached are strictly
valid for the population they worked with and the
sampling and estimation procedures they have
specifically considered. But they are also indi-
cative of what one should expect in real life.
Because the population was constructed from em-
pirical data so as to imitate what really happens
in the real world, it is probable that only the
strength, not the type of conclusions reached is
affected. With respect to sampling and estima-
tion procedures, however, further research may be
needed.

It is the objective of the present study to
extend the scope of the Michelakackis and Cunia
(1985) study and investigate the generality of
their conclusions when (i) we vary the number of
sample clusters and the number of trees selected
from these clusters, (ii) we select the trees
from the sample clusters with unequal probabil-
ity, (iii) we select a fixed rather than a per-
centage of trees from the sample clusters and
(iv) the sampling is done with replacement. The
selection of the sample clusters themselves will
still be done by the same sampling procedure;
single random sampling without replacement.

The population of trees from which the simu-
lated samples will be selected remains the same.
The method by which it was constructed is des-
cribed in detail in a series of papers by Cunia
and Michelakackis (1983a, 1984a,b and Cunia,
Michelakackis and Lee (1984) and summarized by
Michelakackis and Cunia (1985). The interested
reader is referred to the above-mentioned papers
for more details.

Sampling Method

The basic sampling design considered here
has been defined as a double sampling or, more
specifically as a two-phase, two-stage sampling
design. Except for the sample size and the me-
thod of selecting the sample trees (of the second
stage) from the sample plots (of the first
stage), the two-stage sampling method used in
each phase is identical to that described in the
introductory section or, in more detail, in pa-
pers by Michelakackis and Cunia (1985) and Cunia
(1986) .

In each of the two phases we have used the
following two-stage basic design. In the first
stage m clusters (plots) are selected by single
random sampling without replacement. The clus-
ters selected in the first stage are further
subsampled in the second stage; sample trees are

selected from each sample cluster by one of seven

basic subsampling procedures. The sample size is
controlled by the number m of sample clusters and
number of sample trees per cluster. The first
phase trees are measured for their diameter 4,
height h and biomass y. The second phase trees,
however, are only measured for d and h; they are
no longer measured for y.

The seven subsampling procedures are better
described in terms of the following attributes:
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whether the trees are selected with or without
replacement, whether a fixed number or a fixed
percentage of trees are selected from the sample
clusters, whether the probability of tree selec-
tion is equal or proportional to h (height), d
(diameter), 4 (basal area) and d“h (approximate
volume) and whether a given number of sample
trees is selected from a small or a large number
m of sample clusters. For the first phase, the
number of clusters we have sampled is m = 1, 2,
5, 10, 15, 20, 30 and 50, the fixed number of
trees per clusters we have used isr =1, 2, 5,
10, 15, 20 and 30 and the fixed percentage is p =
5, 10, 15, 30, 40, 60 and 100. For the second
phase we have used the values m = 50, 100, 150,
200, 300 and 400, r =1, 2, 3 and 4, and p =
2.93, 5.86, 8.79 and 11.72. It may be of inter-
est to mention here the fact that when p = 2.93,
5.86, 8.79 and 11.72, the expected number of
sample trees per cluster is 1, 2, 3, and 4 re-
spectively. Not all possible combinations of the
attributes above were used in the present study.
For example, because of the type of population we
have constructed (with trees distributed in one-
fifth acre plots) it was not possible to select
trees with unequal probability and without re-
placement.

More specifically, we shall define the fol-
lowing seven subsampling procedures, which for
convenience will be known here as the seven basic
sampling methods used in each phase of the double

sampling design. In method 1, a fixed percentage
of trees is selected from each sample cluster,
with equal probability and without replacement.
When the fixed percentage is replaced by a fixed
number of trees, we obtain basic method 2, if the
tree selection is done without replacement, or
basic method 3, if the selection is done with
replacement. By making the probability of tree
selection of method 3 proportional to h, 4, 4
and d“h, we obtain the corresponding basic meth-
ods 4, 5, 6 and 7.

Note that the probability of selection re-
fers to the selection of trees from within a
sample cluster and may, or may not be the same as
the probability of tree selection from the entire
population. It is known that the tree size is
related to the number of trees contained in a
plot of fixed area. lLarge trees require more
space to grow than small trees and, thus, the
trees from plots with large number of trees must
be relatively small in size, on the average.
Consequently, a selection with equal probability
of (i) plots of fixed area and (ii) fixed number
of trees from each selected plot will not neces-
sarily result in a sample of trees selected with
equal probability from the overall population.
Large trees, selected mostly from plots with
small number of trees are much more likely to be
included in the sample than small trees.

When the simulation process was applied and
the simulated samples were produced, several
problems of the practical order were encountered.
For example, multiplication of the fixed percen-
tage p by the number of trees, say n in a given
sample cluster does not generally result in an



integer number (np) of trees to be sampled. To
decide whether to select or not to select an
additional sample tree from the given plot (cor-
responding to the fractional part of np) we had
to devise a Monte Carlo procedure. Furthermore,
when the trees are selected with replacement, the
same tree may have to be included in the sample
more than once. 1In order to have "different"
trees in the sample, we have used the diameter,
height and species of the tree selected more than
once and generated a new value for its biomass,
using the same procedure we have previously used
to construct the population. Finally, to reduce
the amount of simulation work required, we have
selected the sample clusters and the sample trees
within these clusters in a nested fashion. These
problems were discussed elsewhere and the inter-
ested reader is referred to Cunia (1986) for more
details.

Because of the large number of samples gen-
erated by the 100 simulation runs, the sample
data were stored in two sets of seven tapes each;
one set for each of the two phases and one tape
for each of the seven basic sampling methods.
Pairing a sample from one set with a sample from
the other set defines a two-phase, two-stage
sample from whose data biomass regression func-
tions are being calculated. There is an enormous
number of such pairs that one can define, result-
ing in an astronomical number of two-phase, two-
stage samples. To reduce this number by a factor
of 10000, we decided to pair samples only if they
come from the same simulation run. To further
reduce the number of double samples, we have also
decided to put aside, at least for the time
being, the data from six tapes of phase 2, those
containing the samples obtained by the basic
sampling methods 2, 3, ..., 7. This implies
that, in our present study, we have paired sam-
ples obtained by all seven basic subsampling
procedures of phase 1 with samples obtained only
with the first sampling method of phase 2. Fur-
ther reductions were also made arbitrarily; they
are not mentioned here.

Estimation Procedures

To estimate the average biomass per acre
of our tree population, when data from a two-
phase, two-stage sample are given, one may use a
wide variety of estimation procedures. Consis-~
ting of a fixed set of calculation rules, an
estimation procedure is defined in our study in
terms of (i) a least squares estimation approach
applied to (ii) a linear regression equation of a
given form using (iii) a given set of sample tree
data. As this terminology is specific to our
study, let us define in more detail the elements
of the various estimation procedures used here.

To estimate the coefficients of the various
regression functions, we have used the four least
squares estimation approaches briefly described
in the introductory section as the ordinary least
(OLS) and weighted least squares (OWLS) and the
modified least (MLS) and weighted least squares
(MWLS) methods. We have used all these four
approaches to estimate the coefficients of ¥ =
rl(d,h), the regression function of tree biomass

on diameter and height and the coefficients of 9
= r3(d), the regression function of biomass on
diameter alone, using only the data from the
first phase sample. However, to estimate the
coefficients of h = rz(d), the regression func-
tion of tree height on diameter from the data of
the second phase sample, we have used only the
OLS and MLS approaches; the conditional variance
of tree height given diameter is homogeneous.

Michelakackis and Cunia (£?85) have found
that the regression functions y = rl(d,h) = ¥

®,a%h and § = ry(d) = B, + 8,d% of the first phase

and ﬁ = rz(d) =v; + de + y3d2 of the second
phase were the best from among the several alter-
nate regression functions that they have con-
sidered. This was not surprizing; it is consis-
tent with the procedures used to construct the
population of trees. To simplify our study, we
have decided to use only these functions and,
thus, work with the double sampling biomass re-
gression functions defined as

~ " N
y = r(d) = rl(d,h) = a; + a,d“h
= a, + a d2(c + c,d + ¢ d2)
-9 2 1 2 3
= 2 3 4
= b1 + b2d + b3d + b4d

where a3, @5, Cyy €y and ¢y are the estimates

of a,, O

1 X Yl' Y2 and Y3 respectively and

b, =a , b, =a cl, b

1 1 2 5 = a2c and b, = a_c

3 2 4 273

To calculate the estimate [Sbb] of the co-

variance matrix of the vector [b]' = [b; b b3b4]
of regression coefficients, when the vectors
la]' = [a; a,] and [c)' = [c; ¢, c4] are given

together with the estimates [Saa] and [Scc] of
their covariance matrices, we have used the pro-
cedures described by Cunia (1982) and illustrated
by Cunia and Michelakackis (1983c¢). Because
these procedures have been streamlined and made
better for computer applications, and this new
streamlined version has not been given before,
let us describe it below, in the more general
form as used by our computer program.

We start by expressing the estimators of the
more general regression functions ? = rl(d,h) and

= rz(d) as
¥ =a;+ a,d’h + azd + ash + agdn + agd?
and A 2
h = < + c2d + c3d

Let us also express the covariance matrices [S
and [Scc] of [a] and [c¢] respectively in their
more explgpit form

aa]

S s « s e« 8
a
a2y 2% %1%
s s .. .8
2% ay2y 4%
[Saa] = . M -
* . )
a S a . e s e Sa a
Lal 6 35% 6%,
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and —
S S
99 99
) S
S =
[ cal ¢ c, e,
Sc.e. Se.c
1°3 %3

Some of the coefficients a and ¢ may be made
equal to zero (when they are not significantly

different than zero) and, thus,

the corresponding

rows and columns of [saa] and [Scc] will also be

made equal to zero.

For example, when y = a,; +

2 _ 2
a2d h and h = cq + c2d + c3d , then

[a]' = [a, a, O O O 0]
[el" = [e] ¢, ¢4l
% S O coeennn ....0-
e S B
S S [0 O ¢
3% %
[Saa = 0 0 0 vievenned 0
0 0 [ o

and [SCC] has the same form as that shown above.

Returning now to the more general case, it
can be shown by lengthy but straightforward
algebraic calculations, that the regression function
§ = rl(dwh) = r(d) can be written as

A
y =

[bl'[x] = blxl + b2x2 + b3x3 + b4x4 + b5x5

where X, = 1, Xy = d, Xy = d2, Xg4 = d3 and Xg =

d4, and b1 = (a1 + a4c1), b2 = (a3 + a,c, +

ascl), b3 = (a2c1 +aycy +age, + a6), b4 = (azc2

+ a503) and bS = a,cj.

write
[b] = [Clla] = [A]{c,]
where 3. 0 0
0 0 1
[c] = 0 c; O
0 c, 0
_9 Cq 0
[a; a,
a; ag
[a] = ag a,
0 0
0 0
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€1
€2

€3

ay
ag

a

In matrix notation we can

-
0 0
cq 0
Cy 1
Cq 0
o o
o

0

24

ag
a%—

[a]' = [a a, a, a, ag

[ce]' = [1 © €y c3]
Finally, it can be shown that the covariance
matrix of [b] can be estimated by the (approxi-
mate) formula

a6]

[Spp) = 1€1(54,1(C1" + [AlIS, ¢ 1(AI"

where [sc c ] is the estimate of the covariance

matrix ofetﬁe expanded vector [ce], that is

0 0 0 0

s. . 1= 0 s s s
ce Ce Cl Cl Cl c2 Cl C3

0 s s s
A% 9% %%

0 s s s
L 4% %% 19

When some of the regression coefficients a
and ¢ are made equal to zero, it suffices to
write zero whenever these coefficients occur in
the formulae above and substitute zero for all
their variance or covariance terms. This would
be the case in the present study where a3'= a, =

ag = ag = 0. Then it can be shown that
(b]' = [a; 0 acy asc, a,¢4]
and ,
— I
[sp = [C1Is_ 1ICI"+ [alls_ _ 1(a]
ee
L 0 c. S c.§ c.§
a a a
1*1 123, 22,2, 323,
(o] 0 0 o]
c. S 0 c. S c.c.S c.S
= la.a a
1%2 3% 12aa, 13aa,
2
c,.S 0 c.c. S c,. S c.c_ 8
2 a
al 2 172 a2a2 2 aza2 23 a2a2
2
c.8S 0 c.c.S c,c. S c. S
37a,a
122 13 azaz 273 ‘2‘3 3 a2a2
rass —
0 [} 0 0 0
0 0 0 o] o]
+ a2 0 0 Sc.c S..¢ Se,c
2 ©1% ©1% 1%
0 0 s S s
©1% ©2% ©%;
0 ¢} s S S
i €1 %% 3%

Except for the fact that b2 (the coefficient of
d) is not included in the regression function and
the other regression coefficients b3, b,, and b
are renumbered as b,, b, and b, respectively, the
regression function ? = r(d) is identical to the
double sampling regression function defined be-
fore as

¥ = by + bya? + byad 4 pyat




Let us denote a linear regression function
of tree biomass on diameter and possibly height
by the general expression

= [b]'[x] = blxl + b2x2 + .. .+ bmxm
where x; = 1 and XoiX3s « + o« ¢ X are func-
tions of diameter d and possibly height h. Then,
one can calculate this regression from different
sets of sample data and, subsequently calculate
the associated estimator of U, and its error, by
the formulae

z = [b]'[Mx] = estimator of u, and
V= [ux]'[sbb][ux] = estimator of the vari-
ance of z,

where [uU_7] is the vector of the population param-
eters U ? e e ey Nm defined as the "means
per acre" og the sums of variables Xee Xgp o o oy
X, respectively, expressed on a per acre basis.
For more details on these formulae the reader
should refer to Cunia and Michelakackis (1983c)

and Cunia (1986).

For each combined sample of the first and
second phase, that is, for each double sample, we
shall consider three estimators, each estimator
being based on a specific set of sample data.

The first, to be known here as the first single
sampling estimator, is based on_the regression
function ? = rl(d,h) =a; + a2d h calculated from
the data of the first phase sample alone. If [y ]
is defined as x

ul average number of 122.7238403
trees per acre
w1 = = =
u2 average sum of
tree values a2h 621801.6947
per acre

the first estimator of p is
= [al'mx]

where a, and a, of the vector [a]' = [a1 a2] are
the estimators of the regression coefficients oy
and a2'

The second estimator, to be known here as
the second single sampling estimator, is based on
the regression function 93 = ry(d) = by + byd
calculated from the sample data of the first
phase alone. 1If [b]'= [b1 b2] and

vy average number of 122.7238403
trees per acre
1 = = =
u2 average sum of tree 11408.69914

values d2 per acre
the second estimator of U is

zy = [b]'[p]

Finally, the third estimator is the double
sampling estimator based on the_regression func-
tion § = r(d) = b, + b,d? +b,ya% + b,a? calcu-
lated from the combined data of the samples from
the two phases, by the double sampling procedure

of Cunia (1982) and Cunia and Michelakackis
(1983c¢). Then, if

ul trees/acre 122.7238403

W = |P2] = | sum of di/acre - | 11408.69914
X 3 sum of d°/acre 142336.7020
g sum of d4/acre 23148812.849

the third estimator of W is
z3 = [b]'W )
where now [b]' = [b1 b2 b3 b4]

The main objective of the present study is
to investigate the probability behavior of the
double sampling estimator Zz3. But the bias and
precision of the first single sampling estimator
zy, as well as the bias and precision of the
height on diameter regression function h = r2(dL
may go a long way in explaining the bias, if any
and the precision of the double sampling estima-
tor Zq based on them. Furthermore, when the
sample of the second phase is not sufficiently
large with respect to the size of the first phase
sample, the second single sampling estimator 2y
may be more precise than the double sampling
estimator Z3; in which case, one may be better
off ignoring the information from the second
phase sample and use z, instead of Z3.

Because we shall always use, in our present
study, regression functions of the same form,
there are only twelve estimation procedures; the
combinations of four estimation approaches by
three estimators. Thus, for each basi¢ sampling

method and sample size of the first phase, com-
bined with a basic sampling method and sample
size of the second phase (defining a two-phase,
two-stage sampling method) there are (i) four
sets of up to 100 estlmates of regression func—
tions y (4, h), =r (d), y = r(d) and y
r3(d), one g'r each estlmatlon approach and (ii)

twelve sets of up to 100 estimates z of u =

115.549284 thousands of pounds of biomass per
acre, estimates (z-fl) of the bias of z and esti-
mates V of the variance of z, one set for each
estimation procedure. Because, for some basic
sampling methods the number of clusters or the
number of trees per cluster may be too small to
allow the calculation of regression functions or
estimators by some estimation procedure, we can-
not be sure that we have exactly 100 estimates z,
(z«4) and V for each set of the twelve estimators
above.

For each estimation procedure and each set
of up to 100 estimates z and V, we have calcu-
lated the basic summary statistics

=Yz/k, (Z-1 —Z(z-u)/k
=% V/k and S,z Z(z—z) /{(k-1)

where X is taken over the k £ 100 elements of
each set of the given estimation procedure for
the given combination of the basic sampling meth-
ods (and sample sizes) of the first and second
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phase. We have also calculated additional sum-
mary statistics such as, for example, \IV/S

(S3p) /2, t = (Z-H)/J 7k and the number of tlmes
u fell within the 95 and 99 percent confidence
intervals (z + tfV) where t = 2 for the 95 and t
= 2.6 for the 99 percent confidence level.

Analysis Procedure

For a given two-phase, two-stage sampling
method (and given number of sample clusters and
sample trees per cluster) the 100 simulation runs
can be viewed as 100 random experiments (in the
statistical sense), where each experiment gives
rise to 12 sets of random variables, the estima-
tors z, V, (zitJ§) etc., one set for each estima~
tion procedure. Under the assumptions of the
simulation process the runs are statistically
independent and performed under identical condi-
tions. As long as these assumptions are satis-
fied, and there seems to be no reason to doubt
that these assumptions are sufficiently well
satisfied, the set of random variables are also
statistically independent and identically distri-
buted. To simplify our discussion we shall as-
sume that each individual simulation run gener-
ates samples for which the 12 estimation proce~
dures can all be applied. The fact that we may
have less than 100 times 12 complete sets of
random variables can be explained by the fact
that small samples can sometimes be obtained such
that estimates cannot be calculated by some esti-
mation procedures.

The sample mean Z and sample variance S,,
calculated from the 100 random variables z are
.unbiased estimators of the true mean ¥ and vari-
ance czz of z. Because z is used as an estimator
of the mean biomass per acre}y, the statistic
(z=-y) is an unbiased estimator of the bias QJz
of z as an estimator of y. When the assumptions
of the estimation procedure are satisfied by our
population and sample of trees, the bias is ex-
pected to be equal to zero. The null hypothesis
that the bias is indeed equal to zero can be
tested by the statistic t = (2-W /Y8, 7100; this
statistic has the approximate t-distribution with
99 degrees of freedom.

Using the tree data of one sample alone, one
can also estimate the variance of z by the sta-
tistic V. In real life, where data from only one
sample is available, V is the only estimator of
the variance of z we have. If the assumptions of
the estimation procedure are sufficiently well
satisfied, -then V is a good estimator of O o5
Consequently, a comparison between V, or better,
the average V of the 100 estimators Vv, would
furnish information about how well the model
assumptions are satisfied for the given estima~
tion procedure (and given population, sampling
method and sample size). This comparison can be
based on (i) differences between estimators Vv, or
their average V, and Sygs (i1) ratio v/s,, or
ratio of the averagesv/s zr OF (iii) differences
or ratios of the correspondlng standard devia-
tions. We have preferred working with the ratios
v/szz
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We have analyzed (i) the bias of z, (ii) the
precision of z as measured by the unbiased esti-
mator S,, and (iii) the statistic V as estimator
of the variance of z. In addition, we have
analyzed the probability behavior of the 95 and
99 percent confidence intervals (z+tyV) of u cal-
culated under the assumptions of the estimation
procedure by counting the number of times these
intervals included 1 or happened to fall below or
above U. Because there is an enormous number of
combinations of estimation procedures and pairs
of samples of the first and second phase, we had
to analyze the simulation results by a systematic
approach consisting of several steps, the type of
analysis performed in one step being gonditioned
by the results of the analysis of the previous
steps.

We shall start with the conclusions reached
by Michelakackis and Cunia (1985) when they ana-
lyzed the results from one sampling method. They
have found that, among other things, (i) the
bias, if any, of the double sampling estimator z
is negligibly small, whenever the regression
equation is suitably selected, (ii) the ordinary
least and weighted least squares (OLS and OWLS)
approaches lead to estimators that are somewhat
better than those obtained by the modified least
and weighted least squares methods (MLS and MWLS),
(i1i) the error of the biomass estimators is
grossly underestimated by OLS and OWLS and
slightly overestimated by the MLS and MWLS and
(iv) the second single sampling estimator z
(based on the regression function 9 = r,(d) calcu-
lated from the data of the first phase Sample
only) is not as good as the double sampling esti-
mator z, (based on the regression function ¥ = r(d)
calculazed from the data of both phases). This
last conclusion differs somewhat from that reached
earlier by Cunia and Michelakackis (1983) when,
for their sample data at least, it seemed better
to ignore the information from the second phase
sample. It is the objective of the present study
to further investigate the generality of these
conclusions, as additional sampling methods are
being considered.

The analysis procedure as used here consists
of several main steps. We shall start with the
analysis of the effect of (i) number of sample
clusters, (ii) number of sample trees per cluster
and (iii) estimation within the first basic sam-
pling method applied to each of the first and
second phase. With this method, a fixed percen-
tage of trees is selected (from the sample clus-
ters) without replacement and with equal proba-
bility. The same type of analysis will be then
performed on the data selected by each of the
other six basic sampling methods where the fixed
percentage is replated by a fixed number of sam-
ple trees per cluster, selected with or without
replacement, with equal probability or probabil-
ity proportignal to tree height h, diameter 4,
basal area d“ or approximate volume dzh. Recall
that this refers to the data of the first phase
only, since the sample of the second phase is
still selected by the first basic sampling meth-
od.



In the final step we shall compare the con-~
clusions reached in the previous steps by speci-
fically analyzing the differences between the
seven basic sampling methods with respect to the
bias of z, the precision of z and the estimation
of this precision by the statistic V., We shall,
thus, draw the overall conclusions about the
specific differences between the sampling methods
that select, with or without replacement, a fixed
number or a fixed percentage of trees per clus-
ter, and with equal or unequal probability.

We were not able to perform a giant-size
type of analysis of variance (or covariance) on
the entire set of simulated sample data; the
processing of statistics derived from millions of
samples selected by various sampling methods,
various sample sizes and various estimation pro-
cedures seems prohibitively complex. Instead, we
have preferred using an intuitive, or largely
subjective approach based on an ocular analysis
of a large number of two and three dimensional
tables and graphs, constructed from a representa-
tive part of the simulated data. On occasion
some simple t-tests were made to support some of
the questionable intuitive conclusions. The next
two sections will illustrate the application of
this analysis procedure.

Analysis of Results - Effect of Sample Size and
Estimation Procedure within
Basic Sampling Methods

Because of the large number (over 10,000) of
all possible combinations of estimation proce~-
dures, sample sizes (number of clusters and num-
ber of trees per cluster) of the first phase and
sample sizes of the second phase, we started with
the analysis of a representative set; the combi-
nations of all estimation procedures by all sam-
ple sizes of the first phase with the following
six sample sizes of the second phase: 11.72
percent of the trees selected from 50 sample
clusters, 2.93, 5.86 and 11.72 percent of the
trees selected from 200 sample clusters and,
finally, 5.86 and 11.72 percent of the trees
selected from 400 clusters. It was decided to
consider additional combinations only if ques~
tions will arise about the conclusions reached
from the analysis of the results from the subset
above. Fortunately enough, this was seldom nec~
essary.

The statistical results of this analysis
were summarized in hundreds of pages of computer
output, and further summarized in a large number
of tables and graphs. The tables give (i) the
number of clusters, the percentage of trees per
cluster and the average size n of the sample of
the first phase_and (ii) the estimates (E-y) of
the bias of z, ¥V and Vé—- of the standard devia-
tion of z, the ratios /szz of these standard
deviations and the sample t-values (to test the
null hypothesis that the bias of z is equal to
zero). A table contains the statistics of all of
the first phase sample sizes for a given sample
size of the second phase sample and an estimation
procedure. There is a total of 32 tables, the

product of 4 least squares estimation approaches
and 8 estimators (two single sampling and six
double sampling estimators, one for~each sample
size of the second phase as stated above). As an
example, Table 1 shows parts of two such tables,
the statistics of the OLS and MWLS approaches
applied to the sample size of the second phase
consisting of 11.72 percent of the trees selected
from 400 sample clusters. To answer specific
questions, the information from the 32 tables was
used by the computer to generate several sets of
32 graphs, one graph of each set for each table
above.

The first set of graphs shows the average
estimates (Z41) of the bias of z plotted against
the average size n, where n denotes the average
of the total number of trees per first phase
sample, as calculated from the set of up to 100
samples generated by the 100 simulation runs. To
facilitate the analysis, the computer drew a
smooth curve joining all values (2~} of the
first phase containing equal number of clusters.
Figure 1(a) shows, as an example, the graph cor-
responding to the OLS statistics of Table 1. An
ocular analysis of Table 1 and Figure 1(a) shows
that (i) the absolute size of the bias seems to
stabilize around the value zero, (ii) in relative
terms, say (2~p)/Z, the bias is small and not
significantly different from zero, (iii) the
sample estimate of the bias seems to decrease
with the increase of the average sample size n
and (iv) there seems to be no effect of the
number of clusters in the first phase sample.

Approximately the same conclusions can be
drawn from the analysis of the remaining 31
graphs. Because of the nested fashion by which
the samples were generated, it seems reasonable
to draw the overall conclusions by looking at the
union of all sample clusters and trees represen-
ted by the two samples with largest value n,
those of 100 percent of the trees from 15 sample
clusters (n¥501) and 30 percent of the trees from
50 sample clusters (n®507). Drawing conclusions
from the average bias of all first phase samples
of all sizes, gives too much weight to the sample
trees of the smaller size samples. For example,
the first 5 percent of the trees from the first
cluster (of a given simulation run) is contained
in the corresponding samples of all other sample
sizes.

The main conclusions from the analysis of
the entire set of tables and graphs can be sum-
marized as follows. The sample bias is negligi-
bly small, usually less than .5 percent of the
value of the estimate Z. With very few excep-
tions, the bias is not significantly different
than zero; even when it is large and significant,
an increase of the sample size n of the first
phase would generally make the bias small and not
significantly different than zero. The average
size of the sample bias does not seem to be
affected by (i) the number of clusters or the
number of trees per cluster (as long as the
overall sample size n remains the same) or (ii)
the estimation procedure. It only seems to be
affected by the average sample size n of the
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Table 1 - Estimates of the bias (Z-p), standard deviations (u/szz and

ﬁ) and ratio VV/SZZ

of the double sampling estimators z by
the OLS and MWLS estimation procedures.

The average sample

. size n, number of clusters m and percent of trees per cluster
p of phase 1 are as shown in the table, while the sample size
of phase 2 is that of 11.72 percent of trees selected from
each of the 400 sample clusters

First Phase Sample OLS Estimation Procedure MWLS Estimation Procedure

m P n Z-p yS, v/s,, Z-¢ ¥5_ yv/s,,
10 5 17 1.69 10.17 7.53 .74 1.61 9.32 8.42 .90
10 33 1.01 8.10 5.43 .67 2.37 8.18 7.64 .93
15 50 .69 6.92 4.53 .65 1.21 7.07 6.96 .99
30 101 .23 6.03 3.33 .55 1.01 5.99 6.55 1.09
40 134 .32 5.81 2.96 .51 .96 5.74 6.23 1.09
60 202 .18 5.73 2.49 .43 .45 5.94 6.11 1.03
100 336 .08 5.31 2.04 .38 .50 5.44 6.01 1.11
15 5 25 .96 7.70 6.11 .79 .42 8.10 8.20 1.01
10 50 .24 6.16 4.53 .73 .71 6.75 6.49 .96
15 75 .52 5.52 3.80 .69 1.07 5.81 5.84 1.01
30 150 .01 5.08 2.81 .55 .51 5.27 65.31 1.01
40 200 -.02 4.85 2.51 .52 .43 5.01 65.11 1.02
60 301 -.08 4.73 2.13 .45 .33 5.05 4.92 .97
100 501 -.09 4.56 1.74 .38 .34 4.92 4.71 .96
20 5 34 .18 6.21 5.44 .87 .21 6.43 6.80 1.06
10 68 .09 5.14 3.82 .74 .50 5.46 5.62 1.03
15 101 .32 4.60 3.23 .70 .75 5.16 5.05 .98
30 202 .29 4.18 2.43 .58 .65 4.46 4.60 1.03
40 270 .23 4.27 2.17 .51 .65 4.49 4.42 .99
60 405 .10 4.08 1.85 .45 .63 4.39 4.28 .98
30 5 51 .13 4.60 4.50 .98 .00 4.91 5.51 1.12
10 101 -.16 3.59 3.25 .91 .18 3.94 4.61 1.17
15 152 .03 3.36 2.76 .82 .41 3.59 4.25 1.18
30 304 .11 3.06 2.07 .68 .44 3.48 3.85 1.11
40 406 .13 3.04 1.86 .61 .46 3.52 3.76 1.07
50 5 85 .34 3.87 3.56 .92 .30 4.20 4.31 1.03
10 169 .03 3.19 2.61 .82 .42 3.42 3.65 1.07
15 254 .28 2.92 2.21 .76 .69 3.27 3.40 1.04
30 507 .11 2.45 1.69 .69 .53 2.85 3.14 1.10

first phase sample; but this is probably due to
sampling error.

The shape of the relationship curve of the
bias with the sample gize n (for a given number
of clusters of the first phase) seems to be about
the same for all single and double sampling esti-
mators. The height of the curve, however, is not
generally the same. This seems to imply that, in
some sense, the bias from the component samples of
the first and second phase (that generate
y = rl(d,h) and h = rz(d)) is transmitted to the
double sampling estimator.

The second set of graphs shows the estimates
Vf$ of the standard deviation of z plotted against
the average size n of the first phase sample.
Recall that (i) V is an estimator of the variance
of z calculated from the data of an individual
sample, under the basic assumptions of the model
defining the estimator z, and (ii) V is the average

of up to 100 values V of similarly generated samples,

by the sampling method and sample size. To facil-
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itate the analysis, the points of equal number of
sample clusters are joined by a smooth curve. The
ocular analysis of the 32 tables and graphs leads
to the following main conclusions.

The relationship curve ofVﬁ;and n has, as
expected an inverse-) shape. This is true for
all estimation procedures and for all curves
joining the points of equal number of clusters of
phase 1 sample. Little precision seems to be
gained by going above a sample size n of 200; the
relationship curve for n > 200 becomes almost a
horizontal line. The effect of the average size
n decreases with the estimate of the standard
deviationyfv; as expected, but not by much.

For the OLS and OWLS methods that ignore the
cluster effect, it seems that one single average
curve is sufficiently good to represent the sam-
ple with any number of clusters. Figure 1(b)
shows this relationship for the OLS data of Table
1. When the estimates are calculated by the MLS
and MWLS techniques that take into account the
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Figure 1 - Some of the relationships of (2-]3, ¥ Szz, ﬁand J'V/Szz with
average sample size n of the first phase sample, for the data of
Table 1. The number 10, 15, 20, 30 and 50 alongside a curve
shows the number m of sample clusters of the first phase sample.
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cluster effect, the curves are still the same
inverse-] shape but their height depends on the
number of clusters contained in the samples of
the first phase. As expected, the value of the
estimateJ%%increases with the decrease in the
number of clusters; the smaller the number of
clusters, the higher the curve. Because the
shape of these relationships is the same as that
of Wigures 1l{c) and 1(d), the plot of v against
n for the MWLS data of Table 1 is not shown here.

The third set of graphs shows the estimates

ng; of the standard deviation of z plotted a-
gainst the average size n. Wi one difference,
the conclusions reached about holds also true
for /5;; Figures 1(¢) and 1(d) show, as an
example, the relationship curves for\/Szz with n,
for the OLS and MWLS data of Table 1. The shape
of these relationship curves are still of the
inverse-J form. But because S,, is an unbiased
estimator of the true variance of 2z, the cluster
effect is shown explicitly, as expected for all
estimation approaches; the four curves are ap-
proximately parallel, with an increase in the
standard deviation of z as the number of clusters
(for the same overall sample size n of the first
phase) decreases.

Because S,, is an unbiased estimator of the
true variance of z and there are 12 random vari-
ables z (generated by the 12 estimation proce-
dures) for each random experiment (simulation
run) we can derive answers to a few additional
questions. By comparing first the precision
obtained by various estimation procedures we can
identify the estimation approach that seems to be
the most precise. We can also determine whether
there is a minimum sample size for the second
phase sample such that, below that size the sec-
ond single sampling estimator (the one ignoring
the second phase sample data) is more precise
than the double sampling estimator (which uses
the data from both phases). Finally, by compar-
ing the two estimators V and §__, we can deter-
mine to what extent V, the only estimator avail-
able in real life, is a good and valid estimator
of the variance of z.

To identify the estimation procedure that,
for a given sample size seems to yield consis-
tently better results, we have constructed addi-
tional tables. Because there are six double
sampling estimators, and the sample data of the
first five are included in the sample data of the
sixth, we show here Table 2 listing the standard
deviations S,. by (i) first phase sample size
(number of clusters and percent of trees per
cluster) (il) estimation approach and (iii) the
second single and the double sampling estimators.
In all cases the second phase sample size con-
sists of the selection of 11.72 percent of trees
from 400 sample clusters.

An ocular analysis of Table 2 shows that the
ordinary weighted least squares (OWLS) estimator
seems to yield, most of the time, the estimators
of smallest variance, followed closely by the
ordinary least squares (OLS) estimators. The two
modified least squares (MLS) and weighted least
squares (MWLS) estimators are about equally good
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but they are both less precise than the OLS
estimators. This is not surprising since the
range of tree diameters is wider for the OLS
(that are based on individual tree values) than
the MLS (that are based on the tree averages
within the sample clusters).

A brief look at the set of 32 basic tables
showed that the double sampling estimators are
not always better than the second single sampling
estimators (based on the regression function ? =
r,(d). To better see the combinations of the
first and second phase sample sizes for which the
single and the double sampling estimators are
about equally precise, four more additional ta-
bles were constructed, one for each least squares
estimation approach. As an example, Table 3
gives the estimated standard deviations of the
three types of estimators calculated by the modi-
fied weighted least squares approach; the two
single sampling estimators and the six double
sampling estimators (generated by the six sample
sizes of the second phase we have worked with
here) .

An ocular analysis of the statistics of
Table 3 leads to the following conclusions. As
expected, the first single sampling estimator
based on the regression function 9 = rl(d,h) is
always the most precise. However, when the sec-
ond phase sample size is sufficiently large, the
first single sampling estimator is not much bet-
ter than the double sampling estimator. For
example, if we consider the second phase sample
of 5.86 or 11.72 percent of trees from 400 clus-
ters and compare the first single with the double
sampling estimators, as shown for MWLS in Table
3, we find that their standard deviations are
unusually close; most of the time they differ by
about 10 percent. Recall that the population
contains 667 non-empty clusters (out of which 400
are in the sample) and the variation between the
heights of the trees within a given cluster is
relatively small.

Increasing the size of the second phase
sample by increasing the percentage of trees
subsampled per cluster does not always lead to
more precise estimators. For example, if we
consider the statistics of Table 3, it appears
that better precision is obtained with 5.86 than
with 11.72 percent of the trees from both 200 and
400 sample clusters. This may be due to sampling
error; the first 5.86 percent of the trees hap-
pened to be much less variable than the second
5.86 perent of the trees. But because this is
such an unreasonable result, it may also be due
to some undetected computational error. On the
other hand, an increase in the number of sample
clusters (for the same percentage of sample trees
per cluster) is always followed by an increase in
the precision of z.

Let us now compare the second single sam-
pling with the double sampling estimator. Star-
ting with the second phase sampling method con-
sisting of the selection of 11.72 percent of the
trees from 50 sample clusters (a method resulting
in an average sample of about 200 trees) we see
from Table 3 that, with the exception of the



Table 2 - The standard deviations JE;; of the second single and double sampling
estimators calculated by the four least squares estimation approaches.
The characteristics of the first phase sample (average sample size n,
number of clusters m and percent of trees per cluster p) are as shown
and the second phase sample size is that of 11.72 percent of the trees

from 400 clusters.

First Phase Sample Second Single Sampling Estimator Double Sampling Estimator
m P n OLS OWLS MLS MWLS OLS OWLS MLS MWLS
10 5 17  12.15 11.47 11.59 10.55 10.17 8.94 8.77 9.31
10 10 33  10.05 9.50 8.70 9.15 8.10 7.74 7.64 8.18
10 15 50 8.47 7.81 8.29 7.43 6.92 6.87 6.73 7.07
10 30 101 6.92 6.76 6.62 6.50 6.03 5.64 5.85 5.99
10 30 134 6.49 6.61 6.59 6.38 5.81 5.58 5.74 5.74
10 60 202 6.53 6.70 7.00 7.23 5.73 5.62 5.98 5.94
10 100 336 6.07 6.30 6.53 6.79 5.31 5.20 5.56 5.44
15 5 25 10.59 9.16 11.27 10.19 7.70 7.20 8.11 8.10
15 10 50 8.49 7.61 9.10 8.73 6.16 6.23 6.67 6.75
15 15 75 6.96 6.34 7.07 7.07 5.52 5.55 5.50 5.81
15 30 150 5.84 5.69 6.18 6.19 5.08 4.87 5.29 5.27
15 40 200 5.56 5.44 5.98 5.97 4.85 4.67 5.09 5.01
15 60 301 5.29 5.36 5.86 5.87 4.73 4.63 5.10 5.05
15 100 501 5.14 5.22 5.43 5.73 4.56 4.50 4.74 4.92
20 5 34 8.44 7.75 8.73 8.16 6.21 5.92 6.69 6.43
20 10 68 6.83 6.30 7.08 6.86 5.14 5.05 5.53 5.46
20 15 101 5.71 5.27 5.78 5.74 4.60 4.56 4.83 5.15
20 30 202 4.79 4.76 4.84 5.20 4.18 4.05 4.30 4.46
20 40 270 4.80 4.76 4.98 5.23 4.27 4.10 4.42 4.49
20 60 405 4.54 4.48 4.71 4.99 4.08 3.94 4.21 4.39
30 5 51 6.23 5.97 6.99 6.17 4.60 4.54 5.10 4.91
30 10 101 5.00 4.69 4.98 5.06 3.59 3.56 3.82 3.94
30 15 152 4.50 4.07 4.56 4.41 3.36 3.19 3.65 3.59
30 30 304 3.80 3.84 3.82 3.97 3.06 3.16 3.32 3.48
30 40 406 3.78 3.78 3.82 4.06 3.04 3.18 3.31 3.52
50 5 85 5.07 4.70 5.23 4.87 3.87 3.93 4.33 4.20
50 10 169 4.25 3.92 4.30 4.03 3.19 3.01 33.46 3.42
50 15 254 3.48 3.31 3.56 3.38 2.92 2.77 33.17 3.27
50 30 507 3.16 3.17 3.14 3.17 2.45 2.45 2.72 2.85

smallest size samples of the first phase, the
single sampling are more precise than the double
sampling estimators. But if we consider the
remaining second phase sample sizes (consisting
of the selection of 2.93 percent or more of the
trees from 200 clusters or more), the conclusions
change; in all cases, the double sampling estima-
tors seem to be much more precise. This seems to
imply that, provided the second phase sample is
sufficiently large, the double sampling estima-
tors are better, as they should be. How large
the sample should be is difficult to say; it will
depend on the population of interest. For our
population we have considered additional sizes
for the samples of phase 2. For example, when
the number of clusters m of the phase 1 sample is
higher than 30, the number of clusters of the
phase 2 sample should be at least 200, for the
double sampling estimator to be more precise;
with 150 clusters it was better to ignore the
phase 2 sample data and work only with the data
from phase 1.

To compare the two estimates ﬁand \/s_,‘,‘z of
the standard deviation of z, we have constructed
a fourth set of 32 graphs in which the ratios

S,z (listed in the 32 basic tables) were plot-
ted against the average sample size n of the
first phase sample. The points of equal number
of sample clusters were joined together by a
smooth curve. As an example, Figures 1l(e) and
1(f) show the graphs constructed from the OLS and
MWLS data of Table 1. An ocular analysis of the
32 graphs leads to the following main conclu-
sions.

The error of the estimates z of K derived by
the ordinary least and weighted least squares
techniques is grossly underestimated by V. This
underestimation increases with (i) the decrease in
the number of sample clusters and (ii) the in-
crease of the number of sample trees per clus-
ters, given of course, that the average sample
size n remains the same. This is to be expected
since OLS and OWLS ignore the effect of the
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Table 3 - The standard deviations /S of the eight estimators z

zz

calculated by the MWLS approach; m = number of clus-
ters, p = percentage of trees/cluster and n = average

sample size.

Single Sampling Estimators

Double Sampling Estimators

First Phase Sample

Second Phase Sample

m p n First Second

Number of Clusters and Percent p

50 200 200 200 400 400

Estimator Estimator 11.72 2.93 5.86 11.72 5.86 11.72

10 5 17 8.8 10.5
10 10 34 7.9 9.1
10 15 51 6.5 7.4
10 30 102 5.7 6.5
10 40 136 5.5 6.4
10 60 205 5.6 7.2
10 100 341 5.0 6.8
15 5 23 7.9 10.2
15 10 48 6.6 8.7
15 15 74 5.6 7.1
15 30 151 5.0 6.2
15 40 203 4.8 6.0
15 60 306 4.7 5.9
15 100 512 4.6 5.7
20 5 31 6.1 8.2
20 10 65 5.3 6.9
20 15 99 4.9 5.7
20 30 202 4.2 5.2
20 40 271 4.2 5.2
20 60 406 4.1 5.0
30 5 46 4.6 6.2
30 10 98 3.7 5.1
30 15 149 3.3 4.4
30 30 303 3.1 4.0
30 40 406 3.2 4.1
50 5 77 3.9 4.9
50 10 163 3.1 4.0
50 15 248 2.8 3.4
50 30 505 2.3 3.2
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5 9.1 9.4 9.8 8.9 9.3
7 8.4 8.2 9.0 8.0 8.2
1 7.4 6.9 7.5 6.8 7.1
3 6.0 5.9 6.4 5.7 6.0
8 5.8 5.5 6.1 5.4 5.7
8 6.0 5.8 6.3 5.7 5.9
4 5.6 5.5 5.8 5.2 5.4
1 7.9 7.8 8.4 7.9 8.1
5 7.0 6.9 7.2 6.7 6.8
9 6.2 6.1 6.4 5.7 5.8
7 5.5 5.6 5.9 5.1 5.3
6 5.4 5.3 5.6 4.8 5.0
5 5.4 5.3 5.6 5.0 5.1
4 5.3 5.3 5.5 4.8 4.9
7 6.2 6.1 6.5 6.0 6.4
1 5.9 5.7 6.0 5.3 5.5
8 5.6 5.4 5.7 5.0 5.2
4 4.8 4.7 5.0 4.3 4.5
4 4.9 4.7 5.0 4.2 4.5
3 4.8 4.6 4.8 4.2 4.4
0 5.1 5.0 5.5 4.7 4.9
0 4.5 4.4 4.6 3.8 3.9
8 4.2 4.1 4.3 3.4 3.6
7 4.0 4.0 4.1 3.1 3.5
6 4.1 4.0 4.1 3.2 3.5
1 4.7 4.5 4.8 4.1 4.2
6 4.2 4.1 4.1 3.4 3.4
3 4.0 3.9 3.8 3.2 3.3
1 3.6 3.6 3.5 2.7 2.9

clustering of trees. The total error of the
biomass regressions may be viewed as having two
additive components; one component due to the
variation "within" clusters, the other component
due to the variation "between" clusters. When
the ordinary least squares methods are used, the
two components are affected in the same way; they
are both divided by the total number of trees n
in the sample, with little effect, if any, on the
number of clusters from which they were selected.
The proper way would be to have the "between"
clusters component affected by the number m of
clusters and only the "within" clusters variation
affected by the total number of trees n. This is
essentially what the modified least squares meth-
ods do; the "between" clusters component is
roughly divided by the number of sample clusters
and the "within" clusters component is roughly
divided by the total number of trees.

As the reader can verify by ocular analysis,
the error of the estimates z calculated by the
two modified least and weighted least squares
techniques is sufficiently well estimated by V.
The slight overestimation that may exist, is most
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probably due to a large extent to the effect of
the finite population correction factor (that
should normally decrease the value of V), effect
that is being ignored here. To see the amount of
possible overestimation, consider first the MLS
approach. Then (i) is about 8 percent higher
than ngz when the sampling method of the first
phase is 30 percent of trees from 50 clusters
(for an average n value of about 500) and (ii)Vﬁi
is about 5 percent lower than VE;; when the
sampling method of the first phase is 100 percent
of the trees from 15 clusters (for the same
average n value of about 500). This yields an
average overestimation of about 2 percent. The
corresponding overestimation and underestimation
percentages for the MWLS approach (shown in Table
1) are about 10 and 4 respectively, for an over-
all average overestimation of about 3 percent.

It appears from the above discussion that
the conclusions reached by Michelakackis and
Cunia (1985) have been verified, ‘at least for the
first basic sampling method. Together with a few
additional conclusions, the results of the analy-

818 of this section can be summarized as follows.



(1) The bias, if any, is small and not
significantly different from zero. It does not
seem to be affected by the estimation procedure
or the size of the second phase sample. The only
detectable effect is that of the total number of
trees in the first phase sample. As long as this
number remains constant, it does not seem to
matter the number of sample clusters, or the
percentage of trees selected from the sample
cluster.

(2) The precision of the estimator z, as
measured by the statistic S,, is affected by (i)
the estimation procedure (the OWLS seems to be
the best approach followed closely by the OLS and
then by the two MLS and MWLS approaches that are
about equally good), (ii) total number of trees
in the first and/or the second phase sample (the
larger the sample size, the higher the precision)
and (iii) number of clusters for a given total
number of trees in the first phase sample (the
larger the number of clusters and, thus, impli-
citly the smaller the number of trees per clus-
ter,- the higher the precision, that is, the lower
the value of SzzL

(3) The variance of z is grossly underesti-
mated by the sample based statistic Vv (the only
statistic available in the real world), when the
OLS and OWLS approaches are being used. On the
other hand, the MLS and MWLS approaches result in
sufficiently good estimators V of the variance of
z, although possibly with a slight overestima-
tion.

(4) For a given, say minimum size of the
second phase sample, the estimator z based on the
data of the first phase sample alone, (the second
single sampling estimator) and the estimator
based on the data of the samples from both phases
(the double sampling estimator) are about equally
precise. If the size goes below this minimum,
the second single sampling estimator, which ig-
nores the information from the second phase sam-
ple is better. This minimum sample size has not
been determined here; it is a function of the
sample size of the first phase and the population
of interest.

(5) The first single sampling estimator is,
as expected, always more precise than the double
sampling estimator. This is not surprising.
However, this estimator can never be used in real
life forest inventory, unless the forest area is
very small; it is too expensive to measure the
height (in addition to the diameter) of each
sample tree. It is precisely for this reason
that the second phase sample is being drawn; to
reduce the number of trees measured for height.
The analysis has shown that as the size of the
second phase sample increases, the precision of
the double sampling estimator approaches the
precision of the first single sampling estimator.

The type of analysis described above, was
made for each of the other six basic sampling
methods. With small differences, the conclusions
were about the same. These differences can be
better discussed, however, by comparing the seven
basic sampling methods, the topic of the next
section.

Analysis of Results: Effect of Basic Sampling
Method

The seven basic sampling methods considered
here differ mainly by the probability of selec~
tion. As stated before, selecting a fixed number
(rather than a fixed percentage) of trees from
the sample clusters, results in a probability
that increases, on the average, with the increase
in the tree size. In terms of tree selection
from the entire population (not in terms of a
given cluster), only the first basic sampling
method contains trees selected with equal proba-
bility; for all other methods, the probability
increases with some measure of tree size. This
increase is negligibly small for the basic sam-
pling methods 2 and 3 (where a fixed number

rather than a percentage of trees is selected
with equal probability from within sample clus-
ters), it is somewhat higher for methods 4 and 5
(where the probability of selection is propor-
tional to tree height and diameter respectively)
and the increase in probability becomes quite
large with the last two methods 6 and 7 (where
the probability of selection within clusters is
proportional to basal area and approximate vol-
ume) .

The difference between the results of the
first three basic sampling methods seems to be
small, if any; it can hardly be detected from a
statistical point of view by the size of our
simulated experiment. This means that the dif-
ference between selecting a fixed percentage of
trees from each sample cluster (to obtain trees
sampled with equal probability) and a fixed num-
ber of trees (for convenience of sampling and
reduction of sampling costs per tree) is small if
any. Furthermore, the trees should be selected
without replacement (for greater efficiency)
since the selection with replacement does not
seem to lead to a better estimation of the preci-
sion of the statistic z. On the other hand, the
differences in the results obtained by the other
sampling methods are sufficiently large and
should be explicitly identified and analyzed.

To better see the differences in the results
obtained by the various sampling methods, we have
constructed Table 4 showing the bias (Z=-y), the
precision Vszz' the t-values to test the null
hypothesis that the bias is equal to zero and the
ratJ'.O\JV/Szz of the two estimates of the standard
deviation of z, for the specific combination of
largest phase 1 sample of 50 clusters with 10
trees per cluster and the largest phase 2 sample
of 400 clusters with 11.72 percent of trees per
cluster. For the case of sampling method 1
(where a fixed percentage rather than a fixed
number of trees is selected per cluster) we have
used 30 percent, or approximately 10 trees, on
the average for each of the 50 sample clusters.
Recall that 11.72 percent of the trees of phase 2
represents, on the average approximately 4 trees
per cluster. The statistics were listed by least
squares estimation approach (OLS, OWLS, MLS and
MWLS), by sampling method (1, 2, ... , 7) and by
type of estimator (first single sampling, second
single sampling and double sampling estimator).
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Table 4 - The sample bias (Z-1), standard deviation Vszz' F = (E-u)4/522/100 and ratio V/szz for the
two-phase samples where (i) the first phase consists of 10 trees (or 30 percent for sampling
method 1) selected from each of 50 sample clusters and (ii) the second phase sample consists
of 11.72 percent of the trees of each of 400 sample clusters.

First Single Sampling Second Single Sampling Double Sample
Estimation Sampling Estimator Estimator ) Estimators

Approach Method Z-u VS, t v/s,, v 5, t ,/VVszz 5, t V/s,,

OLS 1 .18 2.17 .8 .69 - .06 3.16 - .2 .64 .11 2.45 .4 .69
2 .30 2.20 1.4 .76 - .41 3.11 -1.3 .72 .23 2.44 .9 .76
3 - .16 2.37 - .7 .71 -1.55 3.71 =4.2 .61 - .23 2.58 =~ .9 .72
4 - .08 2.39 -~ .3 .77 1.31 3.44 3.8 .71 - .15 2.63 -~ .6 .76
5 .48 2.68 1.8 .82 -1.99 3.64 -5.5 .82 .40 2.88 1.4 .82
6 1.62 4.14 3.9 .71 -2.98 5.20 =5.7 .76 1.53 4.29 3.6 .71
7 1.48 5.30 2.8 .60 - .42 5.78 - .7 .74 1.40 5.44 2.6 .60
OWLS 1 - .51 2.27 -2.2 .66 -1.21 3.17 -3.8 .54 - .59 2.45 =-2.4 .69
2 - .34 2.24 -1.5 .69 -1.90 3.10 =-6.1 .56 - .42 2.44 -1.7 .71
3 - .61 2.36 -~2.6 .65 -2.73 3.33 ~8.2 .51 - .69 2.58 =2.7 .67
4 - .59 2.26 ~2.6 .63 .42 3.28 1.3 .51 - .67 2.51 =-2.7 .65
5 - .29 2.20 -1.3 .61 -2.35 3.05 =7.7 .50 - .37 2.43 =-1.5 .64
6 .00 2.02 .0 .60 -2.37 2.85 -8.3 .51 - .08 2.25 -~ .4 .65
7 - .33 2.10 ~1.%6 .55 .01 2.85 .0 .51 - .41 2.35 =-1.7 .60
MLS 1 .20 2.19 .9 1.15 - .01 3.14 - .0 1.09 .42 2.72 1.5 1.08
2 .33 2.21 1.5 1.22 ~- .43 3.13 -1.4 1.15 .55 2.75 2.0 1..13
3 - .10 2.41 - .4 1.19 -1.37 3.49 -3.9 1.13 .11 2,93 .4 1l.10
4 - .12 2.44 - .5 1.29 1.18 3.17 3.7 1.37 .09 2.99 .3 1.17
5 .79 3.27 2.4 1.28 -1.82 4.64 -3.9 1.26 .99 3.74 2.6 1l.1s8
6 2.34 5.95 3.9 1.03 -2.46 8.53 -2.9 1.01 2.54 6.26 4.1 1.00
7 2.15 7.18 3.0 .95 - .56 9.24 - .6 1.03 2.35 7.45 3.2 .93
MWLS 1 .30 2.33 1.3 1.17 - .08 3.17 - .3 1.08 .53 2.85 1.9 1.10
2 .46 2.39 1.9 1.17 - .66 3.24 =-2.0 1.05 .68 2.88 2.4 1.11
3 .10 2.76 .4 1.08 -1.52 3.59 -4.2 .99 .32 3.22° 1.0 1.04
4 - .16 2.47 - .6 1.12 1.12 3.36 3.3 1.03 .07 2.95 .2 1.07
5 - .12 2.23 - .5 1.16 -2.74 3.15 -8.7 1.04 .10 2.69 .0  1.12
6 - .06 2.23 =~ .3 1.13 -4.22 3.24 -13.0 1.07 .16 2.74 .6 1.08
7 - .57 2.37 =-2.4 1.06 -2.44 3.23 -7.6 1.11 - .35 2,87 =-1.2 1.03
Of course, we have analyzed many other com- clusions. Considering first the double sampling
binations of sample sizes of the first and second estimators we see that with one exception, the
phase. Because (i) the combination of the two sample bias is small (usually less than .5 per-
largest samples is the union of most of the other cent of the mean u) and not significantly diffexr-
smaller samples (recall that the samples of a ent from zero. The size of the bias is little,
given simulation run are drawn in a nested fa- if at all affected by the estimation approach
shion), (ii) the general conclusions derived from (oxrdinary or modified, least or weighted least
the analysis of combinatiSEEiEEfggagles of smal- squares). The only exception is with the OLS and
ler size are about the same and (iii) the avail- MLS estimators of the sampling methods 6 and 7
able space for more tables is rather limited in where the bias is relatively large (about 1.5 to
this paper, we have preferred showing only some 2.0 percent of the mean U) and significantly
of the most important results in a single Table different from zero. Recall that, for methods 6
4. Although for the analysis that follows we and 7, the probability of tree selection is pro-
shall refer to Table 4, the conclusions we have portional to basal area and approximate volume
reached are much more general and refer to sam- respectively. Because the bias is small for
ples of all sizes. these same methods when OLS and MLS are replaced
by the corresponding OWLS and MWLS approaches, it
Let us start with the bias (Z-1) of the appears that by properly weighing the sample data
statistic z as an estimator of the parameter u. (less weight for the large trees sampled with
An ocular analysis of Table 4 shows that the higher probability) the size of the bias may be
results are confusing, sometimes inconclusive and reduced.

it is rather difficult to draw any general con-
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Exactly the same conclusions can be drawn
from the analysis of the bias of the first single
sampling estimator. The correlation between the
pairs of values of the bias by the single and
double sampling methods is extremely high. This
is to be expected, since the same regression
function 9 =r,(d,h) is used to derive (i) the
first single sampling estimator and (ii) the
regression function ? = r(d) on which the double
sampling estimator is based. As the second phase
regression function B = r2(d) is calculated from
a large sample of 400 clusters (selected without
replacement from 667 non-empty clusters of the
population) it is not surprising to see that the
error of ? r(d) has as its main source the
error of ¥ = r;(d,h).

On the other hand, the bias of the second
single sampling estimators is significantly dif-
ferent from zero, with the exception maybe of the
sampling methods 1 and 2, where the probability
of tree selection from within the sample clusters
is the same for all trees. This may be due to
(i) the form of the regression function we have
used (9 = r3(d) = 31 + B2d2 that was good in the
preliminary study of Michelakackis and Cunia
(1985) may no longer be good when applied to
sample data collected by other sampling methods)
or (ii) simply to inherent sampling error (we
have obtained an unusual sample). The bias does
not seem to be affected by the least squares
estimation approach (OLS, OWLS, MLS and MWLS,
they all seem to yield the same bias) but the
probability of tree selection seems to affect the
bias (sampling with equal probability seems to
yield smaller bias, often not significant, while
sampling with probability proportional to basal
area seems to yield the bias of largest (abso-
lute) value).

A final note about the bias. Because the
seven sets of 100 simulation runs (one set for
each basic sampling method) are statistically
independent (each set was made with a different
random start), we may view the seven sample val-
ues of the bias (Z-u), one value for each set, as
seven estimates of the bias which is zero under
an appropriately defined null hypothesis (that
Wz =y for all seven sampling methods). Based on
the theory of binomial distributions, one may
then state that, for a given least squares esti~
mation procedure, the bias is significantly dif-
ferent from zero, whenever exactly six or exactly
seven sample values of the bias are of the same
sign. This is the case with seven out of twelve
estimation procedures of Table 4. This seems to
imply that (i) the bias of the second single
sampling estimator is negative for all estimation
approaches, (ii) the bias of the first single
sampling and double sampling estimators by the
OWLS approach is also negative and finally (iii)
the bias of the remaining OLS, MLS and MWLS
approaches for the first single sampling and
double sampling estimators is positive. However,
this last conclusion, as well as the two preced-
ing conclusions are somewhat questionable and
should be accepted only with some reservations.

Consider now the precision of z, expressed
as the standard deviation (error) af z estimated
by,’Szz. An ocular analysis of Table 4 leads to
the following conclusions. Starting with the
ordinary and the modified weighted least squares
approaches (OWLS and MWLS) one may conclude that,
for both single and double sampling estimators,
we have (i) the ordinary weighted least squares
estimators (OWLS) are more precise than the cor-
responding modified estimators (MWLS), (ii) with-
in the same estimation approach, the seven sam-
pling methods yield estimators z of about the
same precision and (iii) as expected the double
sampling estimators are more precise than the
corresponding second single sampling estimators
but not as precise as the corresponding first
single sampling estimators.

It is worth mentioning here that the double
sampling estimator is not always more precise
than the corresponding second single sampling
estimator. For some combinations, when the size
of the second phase sample 'is not sufficiently
large with respect to the first phase sample
size, the second single sampling estimator is
better. 1In all these cases it may be worth
ignoring the information from the second phase
sample and base the estimate of u on the data
from the first phase alone.

The same type of ocular analysis performed
on the ordinary and the modified least squares
methods (OLS and MLS) leads, with one major ex-
ception, to the same basic conclusions. The
exception is with the sampling methods for which
the probability of tree selection is proportional
to basal area (method 6), proportional to approx-
imate volume (method 7) and sometimes proportion-
al to diameter (method $) where the precision of
z is much lower than that of the other sampling
methods. This is difficult to explain, and for
this reason this result should only be accepted
with some reservations. Additional research may
be necessary to confirm or to reject this conclu-
sion.

Finally, an overall view of Table 4 seems to
suggest that, with the exception of the basic
sampling methods 6 and 7 {(and possibly 5), the
OWLS estimator is the most precise, followed
closely by the OLS and then by the MLS and MWLS
approaches.

Let us turn finally to the values of the
ratio JV/SZZ. A simple look at Table 4 shows

that the error of z is grossly underestimated for
the OLS and OWLS, and slightly overestimated for
the MLS and MWLS approaches. On the average and
for the sample sizes considered in Table 4, the
value of the ratio /S is about .70 - .75 for
oLS, about .55 - .65 for OWLS, about 1.10 for MLS
and finally about 1.07 for MWLS.
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Concluding Remarks

The objectives of this study were those of
investigating the validity of statistical infer-
ences one makes, when biomass regression func-
tions are estimated by the ordinary least squares
techniques (or techniques modified to take into
account the effect of the sampling method), ap-
plied to sample tree data selected by a two-
phase, two~-stage sampling design. The basic
procedure of calculating the regression function
9 = r(d) of tree biomass y on tree diameter 4,
when one is given estimates of the regression
functions 9 = r,(d,h) of biomass on diameter and
height and h = rz(d) of height on diameter calcu-
lated from the tree data of the first and second
phase respectively, is briefly described in the
paper. For more details, the reader is referred
elsewhere.

We have considered seven basic sampling
methods (all of the same two-phase, two-stage
type) that differed only by the second phase
procedure of subsampling trees from the first
stage sample clusters. Within each sampling
method we have varied the number of sample clus-
ters and the number of trees selected from these
clusters. We have also considered twelve estima-
tion procedures, the combinations of four estima-
tion approaches (OLS, OWLS, MLS and MWLS) with
three types of estimators (based on the regres-
sion functions 9 = rl(d,h) of the first phase,

9 = r3(d) of the second phase and ? = r(d) of the
combined data of the two phases).

Most of the results we have found here are
those we expected. For example, we expected the
bias to be small and not significantly different
than zero, most of the time; the precision to
increase with the overall increase of the sample
size (total number of sample trees), or within a
given sample size, to increase with the increase
of the number of sample clusters (or the decrease
of the average number of sample trees per clus-
ter); the statistic V to grossly underestimate
the variance of z for OLS and OWLS and be approx-
imately right for MLS and MWLS; the weighted
least squares procedures to be more precise than
the least squares, and the ordinary least squares
techniques to yield better estimates of u. than
the modified ones; the first single sampling to
be more precise and the second single sampling to
be most of the time less precise than the double
sampling estimators. One result, however, may
need emphasizing here in more explicit terms.

The method suggested by Cunia (1982) to estimate
a biomass regression function (and its error) by
double sampling techniques (in our case two-
phase, two-stage designs) is essentially sound,
provided that the first and second phase regres-
sion functions on which it is based have been
properly derived and their error properly esti-
mated.
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We have also found the following completely
unexpected results.

(1) The least squares method is much more
robust than we ever thought. It generated esti-
mates that were only slightly less precise than
those obtained by the weighted least squares
method, the standard technique generally used to
estimate biomass regression functions. If the
construction of biomass tables is for the purpose
of estimating average biomass per tree or unit
area, it does not seem to matter much one way or
the other, whether the tables are constructed by
least or by the weighted least squares. This
conclusion may not necessarily apply, however,
when the regression functions are estimated for
(i) a general use outside the inventory estima-
tion problem considered here or (ii) the applica-
tion to a limited range of tree size, as for
example, to the calculation of the biomass of the
trees above 12 inches of diameter.

(2) It is generally thought that sampling
trees with probability proportional to some mea-
sure of tree size (basal area or volume) leads to
better estimates of the biomass regression func-
tions. It is known that the conditional variance
of the tree biomass is approximatelg proportional
to tree basal area (d“)or volume (d“h). Then, it
seems intuitively right to assume that including
in the sample a proportionally higher number of
large trees would increase the precision of the
regression estimator. Cunia (1979) did not dis-
pute the fact that better precision may be ob-
tained when larger trees are sampled with higher
probability. But he presented arguments in the
sense that proceeding this way, one may introduce
a bias of unknown size.

The present simulation study showed that the
introduction of a bias in the estimation of pis
a real possibility, especially true when the
least squares procedures (OLS and MLS) are being
used. It was surprising to see that, the sample
bias, which in Table 4 was about 1.5 - 2.0 per-
cent of the mean |, was much higher for other,
smaller sample sizes. But the real surprise was
to see that the precision of the estimates did
not improve with the increase of the probability
of tree selection with the tree size. On the
contrary, there was a drastic reduction in this
precision for some sample sizes and estimation
procedures. Furthermore, to measure the biomass
of a large tree may be much more expensive than
to measure the biomass of a small tree. Conse-
quently real arguments can be brought in favor of
sampling with equal probability. However, be-
cause it seems to go against our intuition, we
should be more cautious and accept this conclu-
sion with some reservations. Further research
may be necessary and additional evidence must be
gathered before reaching a definite conclusion in
favor or against sampling with probability pro-
portional to size.



Of course, the conclusions drawn from this
study are valid, in the strict statistical sense,
only for our tree population. As it was con-
structed from real world data, this population
is, in some sense, representative of real world
populations. Consequently, we feel that our
conclusions are sufficiently general to go beyond
the narrow application to one, somewhat artifi-
cially constructed forest tree population.
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USING SIMULATION TO EVALUATE VOLUME EQUATION
ERROR AND SAMPLING ERROR IN A TWO-PHASE DESIGNl/
David C. Chojnacky
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Forest Service, U.S. Department of Agriculture,
Ogden, UT 84401

Three volume estimators were evaluated using
computer simulation on a population of 150 timber
plots. The estimators were designed in a two-phase
fashion where a large sample of trees were measured
for diameter and height and a subsample were mea-
sured for volume. Bias and variance performance
were compared among estimators.

Introduction

A simple linear volume equation
(V = a + b*D?H) is often used in timber surveys
without regard to its potential to inject volume
prediction errors. In essence, the volume equation
is assumed to predict without error. However,
error can be a problem and can be dealt with by
devising a model-based estimator using the D2H
volume equation. Volume prediction error can then
be quantified and added to sampling error in a
timber survey.

Bose (1941-42) first designed such an estima-
tor to include the effects of linear regression
equation error, with sampling error, in cinchona
bark survey for India'’s forests. Bose used a
small sample to estimate parameters for an
equation relating cinchona bark volume to an
auxiliary variable, and a larger sample to
estimate the population mean of the auxiliary
variable. The sample variance for his estimator
was simplified by assuming the existence of a
bivariate normal distribution between cinchona
bark volume and the auxiliary variable. Khan and
Tripathi (1967) extended Bose's work to use of a
multiple regression equation in a two-phase
sampling design, They assumed a multivariate
normal distribution between the auxiliary
variables and the variable of interest to derive
variance estimators. Cunia and Michelakackis
(1983) applied Khan and Tripathi's method to
timber volume sampling but without the multivariate
normal assumption for variance derivation.
Instead, they used an approximation formula for a
general function of random variables to compute a
variance for their estimator (Kempthorne and Folks
1971). Pfefferman and Nathan (1977) extended
regression-equation sample designs to include
selection of sample elements in clusters. But
they used a Bayesian approach that required known
distributions for the regression parameters
associated with the auxiliary variables.

l/Paper presented at a national workshop on Tree
Biomass Regression Functions and Their Contribu-
tion to the Error of Forest Inventory Estimates,
Syracuse, NY, May 26-30, 1986.

In my Ph.D. dissertation (Chojnacky 1985), 1
devised five estimators to sample timber volume
using a D?H equation in two-phase cluster design.
The auxiliary variable (D?H) was determined in
phase one, and the volume equation parameters
were estimated in phase two. The estimators were
similar to those described above, except variances
were derived without making distribution assump-
tions about the auxiliary variable or regression
parameters (slope and intercept). For this paper,
I evaluated three of the most promising estima-
tors (Table 1) and their variances (Table 2) in a
computer simulation of 500 repeated samples from
a tree volume population. Estimator 1 was
model-unbiased and required the fewest assumptions
for variance derivation. However, it was a
special case of the two-phase design where
phase-one and phase-two sample sizes were equal.

Table 1.--Three estimators for computing mean
volume per cluster in a two-phase
design. (See list of symbols at end of
text for complete symbol definitionms.)

Estimator Cluster sample mean
. z 1 B o~ ~
1 Yo=3 E(aiTi+Bixi)
i=1
n
1
- m o, . Eizlxi
2 Yo=g Z(aiTi+BiXi) —
i=1 1
m in
i=1
- 1 rzl A A
3 Y =- (aT,+BX,)
3 no2 i i
where
Ti = total number of trees in cluster i
X, = sum of D2H values in cluster i
n = number of clusters in phase-one

sample

m = number of clusters in phase-two

sample
ai,Bi = model parameters estimated for
cluster i
a,B = model parameters estimated from all

cluster data combined.
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Table 2.--Sample variances for the three estimators partitioned into variation due to phase 1 sampling,
phase 2 sampling, and model uncertainty. (See list of symbols at end of text for symbol

definitions.)
Classical sample variance
Estimator Partition 1 Partition 2 Partition 3
- 2 (= = 2
- = n “ T T, (X, -x.,)
1 v(¥1~Y..) = (1~ %)%Yl +.]:. Z T 02 [___1 +__..___i i 11 - l]
n i1 :
i=1 "' n(e -1)s
i b4
i
2 2 = = 2
- m a2 T T, (X, -x,)
T = n,s m, s 1 1 i1 71 1
2 v(¥,-Y..) = I - =)=y + (1 - =)=d + = —_— . =
(Y2 ) ( N)n 2 ( n)m m ! Tioi [mt + 2 N]
i=1 i m(t,-1)s
i x
i
A 2
3 v(¥s-T..) = (1 - Dy, n . = ozt=t=?
N 1 T (X X 1
n + = Z Tic [—+ f z -
i=1 mt (mt-1)s
X
In this application of two-phase sampling, volume
equation parameters were estimated from the phase-
SALMON
two sample. Because those parameters require
costly field measurements, it was more practical %?AT'UNAL
for field applications to use an estimator with a 2 FOREST
phase~two size much smaller than the phase-one %@&
sample. Estimators 2 and 3 were biased but did A
allow a smaller phase-two sample size. \
Objectives in using the repeated samplings
were to: p
IDAHO FALLS @ ®JACKSON
1. Determine each estimator's bias
2. Compute a simulation variance for each IDAHO
estimator ®POCATELLO
3. Construct confidence intervals for each S TWIN FALLS
imat
estinator WYOMING
Data
Tree volume inventory data from Idaho,
Wyoming, and Utah were used to evaluate the three

estimators. The data, treated as a population,
included 150 clusters of trees sampled for cubic
meter volume from the Ashley, Challis, Salmon,
and Targhee National Forests (Fig. 1). The
volume clusters were a subsample of a large FOREST
stratified random sample covering the entire

L]
SALT LAKE CITY

forests. From each cluster, at least six trees UTAH

12.7 cm diameter at breast height (d.b.h.) and

larger were selected .proportional to d.b.h. along

a transect. These trees were felled and measured Figure l.--Area map of the Salmon, Challis,
for inside bark volume, d.b.h,, and total height. Targhee, and Ashley National Forests.
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Eight species--white bark pine, subalpine fir,
white fir, aspen, Douglas-fir, Engelmann spruce,
lodgepole pine, and ponderosa pine--were sampled.
No more than four species occurred in a single
cluster. In more than half the clusters, only
one species occurred, Figure 2 illustrates the
frequency distribution of total volume per
cluster for the 150 clusters.

Simulation And Computation

For computer simulation, the population of
150 clusters was sampled 500 times in two phases
(Table 3). In phase one (sample n) a sampling
fraction of 0.5 was used to obtain 75 clusters
from the population. For phase two (sample m)
three sampling fractions of 0.13, 0.27, and 0.53
were used to obtain samples of size 10, 20, and
40 clusters from the first-phase sample. Samples
in both phases were randomly selected without
replacement. Sample sizes selected represented a
compromise between choosing the most interesting
comparisons and keeping within a limited computer
budget. Because volume equation parameters
were determined in phase two, this phase was most
interesting for sample size comparisons. There-
fore, I chose three sample sizes for phase two.
I saw little advantage in varying the phase-one
sample size, so it was kept constant. Given
sample sizes in both phases, 500 repeated samples
was the maximum allowed by the computer budget.

FREQUENCY
35

30

o veleeszsercecleryercersbeceerreeslererereeel

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxiﬁ

20
population mean = 4.86 m?
18 standard deviation = 3.37 m3
mean trees per cluster = 1l trees
p 5
b K
] 2,
10 s
] b4
] b
1 b4
] K
1 bd
5 5
p %
] B
] K .
o 5 AR B8
111111111122222°2
123456878901234567898012348S

CuBIC METER VOLUME

Figure 2.~-Frequency distribution of cubic meter
volume per cluster for the population.

Table 3.--Diagram of the repeated sampling

process.
POPULATION
Clustera: 1”2"/1\' . ., Ne150
Trees: 1, 2, . . ., T1
--------------- 500 Repeated SAMPLES -~ =~ = = - = = = =~ ~ = « = =~
PHASE ONE
Clusters: 1, 2, . . . 1. . ., n=75
auxiliary tress: 1, 2, . . ., Tl volume trees: t, 2, . . ., 11/2
(all estimators) (eatimator 1 only)

PHASE TWO
Clusters: 1, 2, « « « £« + +» =10
n=20
u=40

volume trees: 1, 2, . . ., 11/2
(estimators 2 and 3)

The auxiliary variable (d.b.h. squared times
height) for the volume regression equation was
obtained from every tree selected in phase ome.
Also in phase one, half the trees (t,) in each
cluster were selected to estimate voliime equation
parameters. Equation parameters for estimators 2
and 3, were estimated from half the trees in each
cluster selected in phase two. Each estimator
and its sample variance were computed 500 times.
In addition, a single simulation variance was
computed for each estimator:

~ ~

T, ¥, 02/ ®D )

Simulation %
ij
j=1

variance

where

a

Y,. = mean volume per cluster for the ith

i3

estimator for the jth repeated sample

i=1, 2, 3 for the 3 estimators

=
1

number of repeated samples,

Simulation Results

Frequency distributions of the 500 sample
means for each estimator appeared to follow the
normal distribution (Fig. 3). I saw little
difference among these distributions for the
phase-two sample sizes (m = 10, 20, or 40). Bias
for each estimator was determined by comparing
the population mean (4.856 m® per cluster) to
each estimator's mean of 500 sample means. Less
than 1 percent bias was found for each estimator
among all sample size combinations (Table 4).

289



m = 20

58
ESTIMATOR 1 52
4.6
4.0

ESTIMATOR 1 °|

5.2
ESTIMATOR 2 46
4.0

ESTIMATOR 2 !

58 K
h ESTMATOR 3
ESTIMATOR 3 )
4.6 X
4.0
M
0 20 30 a0 50 80 To o oo Moo o 10 20 30 40 50 60 70 80 90 100 110 120 130 140
FREQUENCY FREQUENCY
Figure 3.--Frequency distributions of sample Figure 4.--Frequency distributions of estimator
means for m=20, sample variances for m=20. (Note the nonuniform

vertical scale.)

Variances were first examined by comparing Confidence intervals were constructed using
each estimator's simulation variance to its both the simulation and sample variances. For
respective mean sample variance (Table 5). the simulation variance, confidence intervals
These means from the sample variance distributions were based on the normal distribution without the
were closest to their respective simulation need for a degrees of freedom (df) variable.
variance for estimator 1, For estimators 2 and This was because the simulation variance was
3, the difference between the two variances computed from a large distribution of sample
decreased as sample size increased. Because most means that approximate the normal distribution
sample variance frequency distributions were (see Fig. 3). On the other hand, the sample
highly skewed (Fig. 4), distribution quantiles variance involved small sample sizes for m,
were compared to the simulation variance. requiring use of the t-distribution and a df
Comparison of quantile plots (in Fig. 5) clearly variable. Selecting appropriate df for the
showed the sample variance of estimator 1 to be t-distribution confidence intervals did present a
the most reliable variance estimator throughout slight problem. While a standard t-table is
the distribution of repeated samples. The sample designed for one df variable, estimators in this
variance for estimator 3 was next in reliability in study presented up to three. In Table 2, the
considering total performance for all sample variances of the estimators are partitioned into

sizes of m.

Table 4,--Bias of the three estimators. Table 5.--Simulation variance and mean sample
variance for the three estimators.

. a/ Sample Simulation Mean of
Estimator Sample sizes Bias— Estimator sizes variance sample variance
n m distribution
n m
Percent
- 1 75 10 0.082 0.079
1 75 - 0.2 20 .072 .077
- -.1 40 .073 .078
- .2
2 75 10 .134 117
2 75 10 .6 20 .102 .092
20 .0 40 .080 .083
40 .3
3 75 10 .129 .099
3 75 10 .8 20 .093 .086
20 -.1 40 .080 .082
40 .1

2/Percent: bias is defined as the mean of the
estimator (sample mean) distribution minus the
population mean, divided by the population mean.
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Figure 5.--Difference between the sample variance
of the estimator and its corresponding simulation
variance for quantiles of the sample variance
distribution for m equal to 10, 20, and 40.

(Note the nonuniform vertical scale for m=10.)

three terms representing three sources of
variation and three df values. The following
formula (Cochran 1977, p. 96) was used to compute
the combined degrees of freedom:

(vi,.+tvo, . tvg .)2
df, . = ij 1] ij 2)
13 o 2 y. 2
21_‘] + Bij
dflij dfzij dfsij

where

i = estimators 1 through 3

i = gamples 1 through 500
df = degrees of freedom
v1ij = variance due to phase-one

sampling (lst partition, Table 2)
vzi, = variance due to phase-two
J sampling (2d partition, Table 2)

vsij = variance due to the model

(3d partition, Table 2)
df - (-1 for i=1
15 m-1 for i=2,3

df2ij = m-1 for all i

af - n-1 for i=1
31 m-1 for i=2,3.

To computerize the confidence interval
computations, t-values were computed from an
asymptotic expansion of the inverse of the
cumulative student's t-distribution given by
Abramowitz and Stegun (1964, p. 949). Only four
terms of the asymptotic expansion had to be used
because resulting t-values corresponded almost
exactly (to three significant digits) to those
given in a standard t-table for degrees of
freedom larger than three,

Confidence intervals of 95 percent were
computed for each estimator using both the
simulation and sample variances. The number of
confidence intervals containing the population
mean was tallied (Table 6). For the simulation
variance, the percentage of confidence intervals
containing the population mean was close to the
theoretical 95 percent, On the other hand,
confidence interval tallies for the sample
variance fell slightly below the expected 95
percent. This was most likely due to
inconsistent performance of sample variance
formulas (in Table 2). For example, estimator 2
showed more variance underestimates for m=10 than
for the larger sample sizes of m (in Fig. 5).
However, the confidence interval results for this
estimator were best for m=10, indicating the few
but large variance overestimates (for m=10 in
Fig. 5) compensated for the more numerous
variance underestimates. In addition to the
sample variance inconsistencies, problems in the
degrees of freedom formula could have caused the
slight confidence interval underestimates.
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Table 6.--Percentage of 95 percent confidence
intervals containing the true population mean for
500 repeated samples.

Confidence intervals

Esti~ Sample Degrees of Simulation Sample

mator sizes a/ variance variance
PR freedom—
Percent containing
population mean
1 75 10 75(76)82 95,2 92.4
20 75(76)82 95.2 93.6
40 74(76)81 94.8 93.2
2 75 10 9(18)27 94.4 93.0
20 21(32)52 95.2 91.0
40  42(48)71 96.4 92.4
3 75 10 9(12)18 94,2 92,2
20 20(23)38 94.8 92.2
40 40(44)64 95.0 91.6

E/The degrees of freedom (df) are for the sample
variance confidence intervals and are computed
from Cochran's (1977, p. 96) formula. Given are
the minimum, median (in brackets), and maximum df
from each frequency distribution of 500. The
simulation variance confidence intervals required
no df variable because they were from the normal
distribution,

Conclusions

This study concludes with two questions:
(1) Which of the three estimators is best?
(2) Is the error from a volume equation great
enough to warrant consideration for a timber
survey?

Estimator 1 exhibited the least bias. But
no estimator exceeded a 1 percent bias, making
bias a moot point in choosing among estimators.
Comparison of the variances showed estimator 1
had the smallest variance, particularly when the
phase-two sample for estimators 2 and 3 was m=10,
However, when variances were used to compute
confidence intervals, there was no clear distinc-
tion among estimators. All simulation variance
confidence intervals performed close to the
expected 95 percent probability level. The
sample variance confidence intervals were all 1
to 4 percent below the 95 percent probability
level.

Because neither statistical bias nor
variance evaluations clearly separated the three
estimators, the choice for best can be based upon
other considerations. Foresters have economic
and practical reasons to take the fewest number
of volume measurement plots possible. Therefore,
the flexibility for subsampling volume measurement
clusters in phase two makes estimators 2 and 3
much more appealing than estimator 1. Further-
more, estimator 3 seems preferable over estimator
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2 because it is easier to compute. Estimator 3
only requires regression parameters estimated
once from all volume measurements combined,
instead of parameter estimates for each cluster
selected in phase two.

An underlying assumption in this study was
the importance of adding volume equation error to
the overall sampling error. The assumption was
examined by using estimator 3 and partition 1 of
its sample variance formula (in Table 2) as a way
to ignore volume equation error and still obtain
a sample mean and a sample variance in a timber
survey. Dropping terms from a sample variance
has no effect on estimator bias but does affect
estimator precision, For estimator 3, the lack
of partition 3 (in Table 2) in its sample variance
resulted in sample variance reductions of 18, 13,
and 7 percent for respective phase-two sample
sizes m=10, m=20, and m=40. The reduced sample
variance for estimator 3 was then used to recompute
its 95 percent confidence intervals given in
Table 6. The results in percentages were 90.4,
90.8, and 91.2 for respective sample sizes m=10,
m=20, and m=40. Comparing these to the estimator
3 confidence intervals in Table 6 indicated a
small drop in percentage of correct intervals due
to ignoring partition 3.

From the reduced variance analyses for
estimator 3, volume equation error is most
important for the phase-two sample sizes m=10 and
m=20. This implies that volume equation error
need only be considered if the phase-one to
phase-two sampling fraction 1s less than about 25
percent. Because two-phase sampling fractionms
less than 25 percent are probably most desirable
in practice, volume equation error is likely to
be of some significance in timber volume surveys.
Therefore, estimator 3 or some similar estimator
should be used in timber surveys to account for
volume equation error.
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“HIGH ORDER REGRESSION MODELS FOR REGIONAL
VOLUME EQUATIONS"
Joe P. McClure and Raymond L. Czaplewski
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Four regression models were compared in
estimating total or merchantable volume using
diameter, and total or merchantable height for
loblolly pine and white oak. No model was
consistently best for wunbiased predictions.
However, the higher order weighted quadratic
and segmented models were more reliable than
the simple weighted and unweighted models.

Introduction

Volume equations using diameter at breast
height (D) and tree height (H), as the single
independent variable D?H, in the simple
equation V = a_ + a; (D?H), have a long history
in forest mensuration. However, experience at
the USDA Forest Service, Southeastern Forest
Experiment Station, Forest Inventory and
Analysis Project (SE FIA) has shown the need
for higher-order models when a single volume
equation is used for trees of all sizes.

Volume equation coefficients are usually
estimated wusing simple 1linear regression.
However, the variance in volume often increases
with tree size (Cunia 1964). This has been
demonstrated for loblolly pine and white oak by
McClure et al. (1983). Homogeneous variance
(homoscedasticity) is an important assumption
in regression, even if the regression model is
used strictly for prediction rather than for
hypothesis testing. 1If the variance is greater
near one extreme of the independent variable,
then chance events in this region can have
undue leverage on the regression solution.
This could degrade accuracy in other regioms,
especially for small trees, for which there may
be more observations but less variance.

In weighted regression, the model is
transformed to produce a constant variance in
the dependent variable for the full range of
transformed tree sizes. The variance of tree
volume has been reported to increase rRughly
proportional to the power function (p2H) ", for
example: k=0.5 (Clutter et al. 1983); k=1.5
(McClure et al. 1983); k=2 (Cunia 12&5&. The
volume equation is weighted by (D?H) which
results in a transformed model with homogeneous
errors.

The objective of this study was to
evaluate the effect of weighted regression and
higher order prediction equations on the
accuracy of volume estimation. Unbiased
predictors of 1individual tree volume are
important in extensive forest inventory because
errors in applying such models approach zero as
the number of tallied trees becomes large if
the variance remains consistent.

Methods

Stem profiles of sample trees used were
measured and tree volumes computed using
methods described by Cost (1978). Cubic-foot
volumes of individual standing trees (427 of
avajilable data) were estimated nondestructively
using a McClure Mirror Caliper (McClure 1969)
and marked section poles (McClure 1968) on a 5
to 10% subsample of regular SE FIA sample plots
in Virginia, North Carolina, South Carolina,
Georgia, and Florida. Also, felled trees were
measured at Thundreds of active logging
operations distributed throughout these states.
Both sources of data were pooled and treated as
equivalent.

Trees were randomly assigned to either
developmental or test data groups so that
residuals wused to compare models were
independent of the errors iIin estimating
regression coefficients (Reynolds 1984). The
developmental data set contained 4134 loblolly
pine and 984 white oak trees; the test data set
contained 1000 loblolly pine and 500 white oak
trees. Two measures of volume were considered:
total (V_) and merchantable (V). The former
includes = estimated cubic foot 1inside bark
volume of the main stem (ground level to tree
top), forks, major limbs, and minor limbs
(0.5 to 4,0 inches at 1limb base, occurring on
main stem, forks, or major 1imbs).
Merchantable volume is restricted to 1inside
bark mainstem material below a 4~-inch top
diameter outside bark (dob) and above a l-foot
stump height. Total tree height (H ) and

height to a 4-inch dob (H,) were combined with

squared diameters at breast height (D2) to
produce two independent variables predicting
volume: D2Ht and D2H4.

Trees are described by diameter classes
using standard Forest Service definitions.
Trees between 1~ 5-inches D are labeled
saplings (trees smaller than l-inch D, {i.e,,
seedlings, were not measured). Loblolly pine
trees greater than 9-inches and white oak trees
greater than ll-inches D are called sawtimber.
Intermediate~sized trees are called poletimber.
Sgplings are used only for estimating Vt using
D“H_.

t

Four forms of prediction models were
evaluated: simple weighted (1), simple
unweighted (2), quadratic weighted (3), and
segmented weighted (4).
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~ where

vV = Vt or Vm

2 2
X =D Ht or D H4

a, = join-point constants in D2H units

b1 = parameters estimated using linear
regression.

(D2H)2,
common for publighed volume

The quadratic form in (3) 1includes
which 1is less

equations than D, H, D?, or DH covariates.
Model (3) was chosen to explore the possible
curvilinear relationship between D2?H and V
rather than the usual linear assumption. The
segmented model (4) takes the form of a
continuous line, broken into three segments at
the points X=a1, and X=a

2

The parameters for the simple, unweighted
model (2) were estimated using simple
regression. Parameters for the weighted models

(1, 3, 4) were estimated using multiple linear
regression with a zero intercept. The
unweighted versions of all four models, which
are used to predict volume rather than estimate
parameters, have a non-zero intercept,.

For parameter estimation in the weighted
regression models, it was necessary to first
estimate k by studying the relationship between
volume variance and D?2H. Trees from the
developmental data set were divided into equal
intervals based on D?H_ or D2H,. The minimum
number of observed treés within each of these
intervals 1s a subjective decision, and many
interval lengths were explored (Tables 1 and
2). The variance of volume within each
interval was calculated and was plotted against
the average D2Ht or Dzﬂa. for that interval.

Table 1. Prediction equations for volume variance in loblolly pine for the model: Var(V) = 02(D2H)k

Volume Minimum Minimum
function sample number of 2 2
size classes in(c%) k R MSE

Vt=f (DZHt) 15 90 -13.25 1.65a 0.939 0.1715
20 71 -12,85 1.60 .932 .1808
25 56 -12.13 1.51 .916 L1791
30 43 -11.32 1.41 .910 .1639
40 30 -10.42 1.28 .899 .1629
50 20 ~9.60 1,11 .883 1440
75 9 -12,04 1.46 .849 .0467

Vt-f (D2H4) 15 83 -12.35 1.56a .939 .1223
20 65 -12,13 1.53 .934 1247
25 56 ~11.89 1.50 .929 .1294
30 44 -11.39 1.43 .927 L1191
40 27 -10.13 1.26 .915 L1011
50 19 -9.04 1.10 .881 .0863
75 8 -6.86 .77 .602 .0897

Vm-f (DZHt) 15 90 -9.30 1,202 .716 .5450
20 71 -8.33 1.07 .653 .5952
25 56 -8.44 1.06 .635 .5575
30 43 -7.14 .90 .528 .6034
40 30 =5.30 .64 .360 .6436
50 20 =2.43 .24 .086 .5470
75 9 -1,15 .14 .898 .0270

v =f (D2H4) 15 83 -14.10 1.73 .965 .0838
20 65 ~13.87 1,70 .961 .0890
25 56 -13.74 1.69 .957 .0957
30 44 ~-13.36 1.64 .961 .0795
40 27 ~-12.57 1.53 .958 .0704
50 19 -11.,91 1.43 .951 .0558
75 8 -10.63 1.23 .903 .0373

aSubjectively selected as the best predictor of variance in volume given tree size.
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The variance incfeased with tree size and could
be reasonably predicted by the power model

var (v) = o2(?mk (5)

An example and illustration of this
relationship is provided by McClure

et al, (1983), Logarithmic transformation of
(5) ylelds a linear model for which parameters
were estimated using simple linear regression:
en [Var(V)] = 2n(0?) + k[2n(D2H)] (6)
The results using (6) are given in Tables 1 and
2.

To estimate k, it is necessary to select a

minimum sample size for D3H intervals
to calculate variance in volume as a function
of tree size (D2H). This variance 1is a
function of 1interval 1length because the

variance increases with the range of D2H values
in any one interval. Also, there is only one
data point per interval (mean D2H and Var(V)
for that interval) that can be used in the
regression model (6) for estimating k. These
factors encourage use of short D2H intervals.
However, as interval length decreases, so does
the sample size for estimating variance within

that interval. Therefore, interval length is a
compromise between sample size and homogeneity
in tree size, which 1s necessarily a subjective
decision. The selected estimates of k in
Tables 1 and 2 yield rather smooth and
well-defined relationships between Var(V) and
tree size. We recommend sample sizes of 12-20
trees in each D?H interval for data sets that
are comparable to ours in size and number of
D2H intervals. Also, k is treated as a known
constant in fitting models (1-4), which 1s not
an  accurate assumption. However, these
problems of subjectivity and assumptions for k
are greatly mitigated by the insensitivity of
parameter estimates in volume models to errors
in estimating k. McClure et al. (1983) suggest
that k=1.5 is reasonable for most tree species.

The join-point parameters (a, and a,) in
the segmented model (4) are nonlinear. " They
cannot be simultaneously estimated using
multiple linear regression., Multiple 1linear
regressions using a wide range of join-point
values were performed. The two joln-points
were iteratively varied in increments of 1,000
D?H units from 1,000 to 40,000, subject to a, <
(a, - 1,000). The join-points from %he
muitiple regression with the smallest residual

mean square error were selected as the best

Table 2. Prediction equations for volume variance in white oak for the model: Var(V) = 02(D2H)k

Minimum
sample Number of
size classes tn(c?) k R2 MSE

Vtsf (DZHt) 15 26 -9.89 1.21 0.756 0.4498
12 20 ~-8.57 1.02 .748 .3446

13 19 -8.43 1.40% 745 .3473

14 16 -14.46 1.78 .853 .1307

16 12 -14,.62 1.80 .861 .0914

18 11 -15.64 1.94 .882 .0820

20 6 -11.05 1.31 475 .1051

Vt=f (D2H4) 10 29 -10.70 1.40a .809 .2853
12 22 -10.88 1.43 .857 .2294

14 16 ~9.84 1.28 .809 .2204

16 13 -11.48 1.49 .905 .0647

18 9 -11.95 1.56 .905 .0910

20 7 -11,18 1.44 .889 .1012

Vmuf (D2Ht) 10 26 -4,52 5.15 .200 1.0104
: 12 20 -2.17 1.82 .040 L7799

14 16 -14.92 1.81 .871 .1150

16 12 -15.26 1.86% 911 .0582

18 11 -16.10 1.97 .925 .0514

20 6 ~-16.06 1.97 .748 .0729

Vm=f (D2H4) 10 29 -13.04 1.62 .874 L2345
12 22 ~13.04 1.63 .916 .1650

14 16 -12.64 1.57 .900 .1583

16 13 -14.30 1.792 .948 L0491

18 9 -14.90 1.89 .960 .0532

20 7 -14.17 1.78 .960 .0509

aSubject:lvely selected as the best predictor of variance in volume given tree size.
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estimates of a, and a,. A nonlinear
minimization routine was useg to further refine
estimates of the join-points., However, the
nonlinear step failed to substantially improve
model predictions.

Independent test data were partitioned
into 20 D?H classes for loblolly pine and 10
classes for white oak., Class intervals were
chosen so that each contained approximately 50
trees from the test data set, resulting in D*H
intervals of varying width. Residual error is
defined as the observed volume (V_) minus the
predicted volume (V) using models® (1-4). The
variance of the weighted least square residual
(Draper and Smith 1981) was made homogeneous
for the entire D2H range by applying the same
weighting transformation used to estimate model
parameters in weighted regression:

2. \~k/2

Ry = (Vq~Vy) (O38)
The specific values of k for each of the eight
combinations of species, volume type, and
height type are footnoted in Tables 1 and 2.

The null hypothesis that the weighted
least square residual is normally distributed
given an estimated mean and variance was tested
at the 0.05 significance level using both the
Kolmogorov-Smirnov and Crimer-von Mises
statistics (Reynolds 1984). This assumption is
needed later to test the hypothesis that the
mean of the residuals equals zero. If this
Gaussian hypothesis of normally distributed
residuals was rejected using one statistic but
not rejected using the other, then the null
hypothesis was rejected for that case. This
Gaussian hypothesis was tested for each of the
32 combinations of species, independent and
dependent variables, and model form. There
were 973 to 1,000 loblolly pine and 481 to 500
white oak trees used in each such test (sapling
size trees were not used if the model included
\Y or H,). For each rejected Gaussian
h?pothesis, similar tests were performed for
each of the 10 to 20 D?H classes so that
Gaussian methods could be validly applied to
portions of the D?H range. There were 359 such
tests, most of which used 45-55 trees.

For each D?H class for which the Gaussian
hypothesis was not rejected, a test for bias
was performed using the weighted least square
residuals. The null hypothesis is that the
mean of the residual error for all trees in the
D2H class interval is zero (i.e., unbiased).
This hypotheses was tested by constructing a
957 confidence interval for the mean weighted
least square residual (R):

R + tS(n—i)
where
n
s?2 - 3 (Ri—i)zln-l
i=1
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and t 1s the 97.5 percentile of the t
distribution with n-1 degrees of freedom. The
null hypothesis was accepted if this confidence
interval contained zero. There were 464 such
hypotheses tested (as many as 20 D?H classes
for each of the 16 loblolly pine models and 10
for each of the 16 white oak models). These
tests used independent test data, and most
tests used 45-55 trees.

Results and Discussion

Parameter estimates for all models are
given in Table 3. The Gaussian hypothesis for
the weighted least square residuals across the
entire D?H range was not rejected in only 8
cases of the 32 tests: all three weighted
models for loblolly pine V_ using H,; the four
weighted models for white oak V = using the
simple (1) or quadratic (3) model" forms with
both H  and H,; and the simple, unweighted
white Toak moé%l (2) for V.. The null
hypothesis that the mean weighteg squared error
across the entire D?H range is zero (unbiased)
is not rejected in 7 of the 8 cases; the
exception is the unweighted simple 1linear
regression model (2) for oak., The large number
of trees (973, 481) in the tests for
goodness—of-fit and wunbiasedness makes the
possibility of Type II error small. For the 24
remalning combinations of species, model form,
volume type, and height type, the Gaussian
hypothesis was tested within each D?H class
(Table 4). When the Gaussian hypothesis was
rejected, which occurred in 30 of the 359
individual D?H classes, no tests for
significant bias were performed.

The final set of hypotheses tested were
those associated with unbiased predictions of
volume using D2H, These were performed for
each D?H class for which the hypothesis of
normally distributed, weighted least square
residuals was not rejected. The results of
these tests, the magnitude and direction of any
bias, and the standard deviation for each D3H
interval (S,) of the weighted least square
residuals are also given in Table 4. (S, was
essentially the same for all four model fo¥rms.)
These statistics can be used for computing
prediction, tolerance, and confidence intervals
(Reynolds 1984). The confidence interval was
used to test the hypothesis that the mean of
the weighted least square residual 1is zero
(i.e., unbiased estimate of volume). It is
these tests that directly address the objective
of this study.

The unweighted model form (2) has a strong
bias (overestimated volume) for saplings and
small poletimber of both species using the D2?H
covariate (Table 4). Although these smaller
trees are not as commercially wvaluable as
larger trees, they often represent a major
portion of the standing volume of an inventory
unit, especially in  commercially active
geographic areas. However, the unweighted
model (2) was significantly less biased than
the weighted models (1, 3, 4) for these small



trees when D?H_ 1is used to estimate V_ rather
than D?H,. Coriversely, V_ estimates £0r white
oak sapiings were less biased wusing the
weighted models (1, 3, 4).

All models usually produced unbiased
estimates for large poletimber and all but the
largest sawtimber classes (Table 4). All
models yielded biased estimates for
saplings--overestimated for loblolly pine, and
underestimated for oak., Most of the
differences in bilas among models were for
small- and mid-sized poletimber and very large
sawtimber. The magnitude of blas for smaller
trees was much less for weighted regression
models (1, 3, 4) than for unweighted model (2)
using D2H,. To a lesser extent, the opposite
trend was observed for the D2Ht is covariate.

There was no consistently best model
formulation for unbiased predictions of volume
for small- and mid-sized poletimber. The
weighted simple model (1) was less biased in
estimating V_ for oak using D?H,, while there
was less bias using the unweighted simple model
(2) in predicting V_ for oak or V_ for loblolly
pine using D2H, (Table 4). TheFe was little
difference between (1) and (2) in all other
cases. The weighted quadratic model (3) was
somewhat better than the weighted simple model

Table 3. Estimated Parameters for Volume Equationsa

(2) for estimating V_ using D2H,, but there was
little difference 'Otherwise. The weighted
segmented model (4) was the most consistent
formulation for unblased estimates of loblolly
pine volume. However, the quadratic model (3)
also did well for 1loblolly pine, and it
slightly out-performed the segmented
formulation for white oak trees in this size
range.

For very large sawtimber, the segmented
model (4) was usually best for loblolly pine
(Table 4), The weighted simple model (1)
tended to produce blased estimates of white oak
volume for such trees, while the other models
were unbiased for oak. There was 1little
difference among models for smaller sawtimber.
The least number of biased D2?H classes in
loblolly pine was obtained using the segmented
model (4), while the quadratic model (3) was
the next best. For white oak, the quadratic
model (3) was usually best for sawtimber, with
the segmented (4) and unweighted simple (2)
models being the next best.

The variance of weighted residuals should
be relatively constant for all tree sizes.
This is generally true in Table 4, with three
exceptions: loblolly pine V_ = f£(D?H, ), and
white oak V_ = £(D?H,) and f(D®H ). There is a
trend for tﬁe variance to increage as tree size

0 1 b, by a8
LOBLOLLY PINE
v =f (DZHZ.), k=1.70, n=4002
Simple Weighted (1) 0.4257 0.002528
Simple Unweighted (2) 1.3419 0.002367 -9
Quadratic Weighted (3) 0.3690 0.002612 —6.397x10__4 . -4
Segmented Weighted (4) 0.6213 0.002524 -4,486x10 -1.301x10 1,000 7,000
Vt=f (DZHA), k = 1,53, n=4002
Simple Weighted (1) 1.1545 0.002794
Simple Unweighted (2) 1.8217 0.002683 -9
Quadratic Weighted (3) 1.1070 0.002856 —4.234}(10_4 -t
Segmented Weighted (4) 1.4030 0.002157 ~-5.483x10 -2.025x%10 1,000 2,000
Vm=f (Dth), k=1.20, n=4002
Simple Weighted (1) -0.1886 0.002028
Simple Unweighted (2) -0.4329 0.002066 -9
Quadratic Weighted (3) -0.1742 0.001994 1.826x10_4 -4
Segmented Weighted (4) -0.8456 0.002117 7.946al0 -1.420x10 : 1,000 2,000
Vt=f (DZHt), k=1.60, n=4132
Simple Weighted (1) 0.0187 0.002298
Simple Unweighted (2) -.01871 0.002343 -9
Quadratic Weighted (3) 0.0217 0.002266 2.454x10_4 -4
Segmented Weighted (4) ~0.1413 0.002304 1.712x10 0.641x10 1,000 6,000
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Table 3. Continued

0 1 2 3 1 2
WHITE OAK
Vm=f (Dzﬂa), k=1.79, n=959
Simple Weighted (1) 0.6054 0.002695
Simple Unweighted (2) 1.6202 0.002496 -9
Quadratic Weighted (3) 0.5363 0.002799 —8.085x10_4 -4
Segmented Weighted (4) 0.8141 0.002666 -3.989z10 ~2.158x10 1,000 12,000
Vt-f (D2H4), k=1.43, n=959
Simple Weighted (1) 1.4280 0.003243
Simple Unweighted (2) 12,1424 0.003127 -9
Quadratic Weighted (3) 1.3550 0.003327 —4.842x10_4 -4
Segmented Welghted (4) 1.9400 0.003190 ~-2.174x10 -2.326x%10 3,000 27,000
v =f (Dth), k=1.86, n=959
Simple Weighted (1) -0.0491 0.001886
Simple Unweighted (2) -0,2660 0.001970 -9
Quadratic Weighted (3) -0.0467 0.001829 4.693x10_4 -4
Segmented Weighted (4) 1.2613 0.002445 12.330x10 -4,657x10 1,000 2,000
v, =f (D2Ht), k=1.40, n=984
Simple Weighted (1) 0.0186 0.002439
Simple Weighted (2) -0.2596 0.002473 -9
Quadratic Weighted (3) 0.0223 0.002420 1.061x10_4 -4
Segmented Weighted (4) -0.3225 0.002458 0.345x10 -0.653x10 1,000 25,000
8Units are: v-—-cubic feet; d--inches; Ht’ Ha——feet

increases in these three cases, suggesting that
the corresponding estimate of k is too small.

In this study, a large number of trees
were randomly divided into developmental and
test groups. It is expected that models fit to
one such group can be applied to the second
with little bias. Our results merely compared
several model forms as an approximation of the
true relationship between D?H and volume. If
simple random sampling of trees from a large
geographic region 1is conducted, then our
results would apply directly to such samples.

Conclusions

There was little difference among the four
models studied in estimating volume of commonly

available, commercial sawtimber. However,
there were differences among models 1in
predicting poletimber volume when a single
equation was wused for trees in all size

classes, Unfortunately, there was no obviously
best model for producing unbiased predictioms.
"Even simple, unweighted regression performed
very well in some cases. Higher order weighted
models, such as the quadratic and segmented,
tended to be less biased and more dependable
than simpler models.
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Table 4. E?f and Standard Deviation of Weighted Least Square Residuals by D2?H Class: R =
(v,-¥ (D2H) "~
Test
Midpoint Mean for each model form® s:Tgie
D2H class 1 2 3 4 Var(R)b (n)
LOBLOLLY PINE
- 2 =
Vm—f(D H4) k=1.70
Poletimber 350 -8, 38 -69. 33 -6. 35 -11.323 10.83 45
530 2. 78d -32, 50d 3. 13d 6.19d 7.57 54
880 2,77 =21, 69d 2.39 9.10 8.06 49
1,130 2. 43d -16.45d 1.68d =-2.46 10.04 40
1,420 3.52 -7.22d 2.26 0.29 9.83 59
2,350 1.51 —5.95 0.08 ~1.05 8.24 45
Sawtimber 2,900 2. 07d -3.04° 0.55 -0.02 9.27 57
3,500 2.57 -0.73 1.03 0.83 9.56 71
4,400 2.36d 0.69d 0.85 0.93 9.05 45
5,300 3.40 2.97 1.98 2,21 8.59 55
6,300 -0.49 0. 02 -1.79 -1.51 9.18 47
7,350 -1.23 0. 08d —2.40d 1.77d 10.47 48
8,550 4,43 6.53 3.55 8.75d 9.76 44
9,950 -0.33 2,44 -0.89 4,23 9.61 43
11,500 ~1.62 1.75 ~1.78 3.16 11.83 45
13,550 -2.53d 1.39 -2.19 2,46 10.80 42
15,400 -3.82 0.59 -2.89 1.37 10.82 36
21,500 —2.81d 2,28 —.68 2.63 13.29 42
50,000 -8.55 ~2.53 -3. 54 -2.61 10.59 55
=F(D2 =
Vt—f(D H4), k=1.53
Poletimber 350 -18.11¢ ~90.963 -15.019 "\ -23. 65 40.31 45
630 6. 38d —38.19d 7.22 14, 33d 24,45 54
880 3.80 —28.19d 3.60 18.63 21.69 49
1,130 2,92 -22.37d 2.15d ~-8.72 20.84 40
1,420 10.35 -9.27d 9.10 2,80 19,06 51
2,350 -0.08 ~10.97 -2,04 ~4,41 18.67 45
Sawtimber 2,800 3. 73d -4,01 1.56 0.56 18.25 57
3,500 5.79 0.52 3.50 3.63 23,23 71
4,400 6.26 3.33 3.93 4,86 22,42 45
5,300 6.18 5.06 3.89 5.44 20,13 55
6,300 -1.98¢ -1.68° -4.16° ~2.21¢ 20.76 47
7,450 -2.13% -0.50% -4.11% -1.887 23.95 48
8,550 10.95 13,72 9.26 11.62 23.00 44
9,950 -0.45 3.42 ~1.,73 0.50 23,53 43
11,500 -2.,51 2.38 -3.25 -1.66 28.53 45
13,650 -3.44 2,40 -3.47 -1.67 27.59 42
16,400 ~6.43 0.28 -5.59 -4,35 25,86 36
20,500 ~3.33 d 4.66d -0.65d -0.79 32,04 42
50,000 -17.87 ~-8.07 ~10.66 7.93 28,32 55
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Table 4. Continued

Test
Midpoint Mean for each model forma 32?Zie
D2H class 1 2 3 4 var(r)® (n)
V =f(D?H_), k=1.20
n t d d d
Poletimber 630 -35.84 8.915 ~34.38 -30.22, 23.77 5
880 -49.34 -13.244 -46.92 ~70.044 65.00 17
1,130 -62.307 ~32.06 -59.184 21.18 61.62 36
1,420 -56.35 -31.819 -52.49% 12.06 79.51 53
1,850 ~57.624 -38.33; -53.025 -3.07 63.50 66
2,350 -38.46 -23.78 -33.205 3.95 65.61 62
2,900 -38.88 -27.45 -33.15 -4.96 67.35 61
3,600 -18.93 -10.65 -12.78 6.78 79.87 55
Sawtimber 4,400 -16.62 -11.69 -10.11 0.42 78.98 69
5,300 -19.12 -16.59 -12.45 -8.24 78.59 63
7,350 22.71 21.05 29.26 22,85° 75.20 55
8,550 ~14.44 -18.09 -8.23 -19.32 77.16 46
9,950 16.83 11.53 22.55 7.82 105.11 45
11,600 27.68 20.70% 32.65 14.46 109.50 54
13,650 39.34 30.35 42.99 21,10 111.59 49
16,400 24,89 13.73 26.45 1.28 116.29 57
20,500 18.99 5.41 17.15 -10.57 144,36 47
50,000 -9.00 -27.73 -24.,50 8.81 155.43 85
2
vV =£(DH), k=1.60
c d c d
Saplings 350 2.25 112,81 1.32 84.87 14.43 11
630 -4.36 5.56 -3.42 -1.87 10.10 12
Poletimber 880 -4,17 3.12 -3.15 -4.05 16.56 24
1,130 -4.24 1.53 ~3.16 1.39 14.69 38
1,420 -3.91, 0.42 -2.78, 0.66 17.59 53
1,850 -5.93 -2.85 -4,77 -2.26 13.93 66
2,350 -2.72 -0.67 -1.55 0.19_ 13.83 62
2,900 -4.28¢ -2,91°¢ -3,11 -1.83¢ 16.12 61
3,600 -2.65 -1,90 -1.50 -0.63 16.19 55
Sawtimber 4,400 -1.80 -1.67 -0.71 -0.19 15.32 69
5,300 -1.39 -1.59 -0.28 0.03 15.00 63
6,300 2,28 1.63 3.20 0.47 17.50 48
7,350 3.37 2.42, 4,17 0.51 13.47 55
8,550 -2.87 -4,11 -2.23 -6.03 13.43 46
9,900 2.69 1.23 3.15 -0.69 17.53 45
11,500 4.07, 2.38 4.31, 0.44 17.58 54
13,650 5.57 3.73 5.56 1.76 18.02 49
15,400 3.22 1.04 2.56 -0.96 18.27 57
20,500 2.94 0.49, 1.67, -1.55 20.48 47
50,000 -1.72 -4,66 -5.33 -6.849 21.16 85
WHITE OAK
= 2 =
V_=£(D?H,), k=1.79
Poletimber 430 -1.33 -39.323 -0.38, -0.49 9,45 56
1,080 3.044 -14.247 2.52 3.76 7.67 46
1,650 2. 64d -6.66 1.60, 0.10, 7.46 40
2,550 4,54 -0.32 3.28 3.02 8.08 52
3,750 1.24 ~0.71 -0.06 0.38° 9,71 47
Sawtimber 5,350 0.59 0.66 -0.59 0.18 7.28 49
7,500 -1.30 0.32 -2.16 -1.36 8.80 54
11,950 -1.07 1.66 -1.34 0.14, 8.59 56
17,350 -2.40, 1.34 -1.48 3.96 8.39 46
40,000 -4.07 0.90 1.18 3.00 8.79 35
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Table 4. Continued
Test
Midpoint Mean for each model form® szfgie
D2H class 1 2 3 4 Var(R)b (n)
v =£(D%H,), k=1.43
t 477
Poletimber 430 -0.93 —82.163 3.27, -48.15% 42.64 56
1,080 9.34 ~34.28 8.99% -8.54 43.30 46
1,650 10.02, -16.68 7.465 6.29, 36.89 40
2,550 20.45 4.29 16.54 25.82 44,25 52
3,750 5.43 -3.04 0.66 -3.75¢ 56.30 47
Sawtimber 5,350 3.75 1.24 ~-1.34 -1.49 42.90 49
7,500 -4.08 -1.40 -8.86 -6.00 55.49 54
11,960 -6.38 0.51 -9.88 -6.58 57.21 56
17,350 -12.67 -1.27 -12.60 -9.28 62.27 46
40,000 -11.89 6.31 5.11 26.30° 88.58 35
2
v =£(D°H_), k=1.86 |
Poletimber 1,080 —4.323 -2.43, —3.513 0.85 6.53 25
1,650 -4.16 -3.29 -3.35 -0.82 5.17 55
2,550 -1.06 -1.02 -0.30 5.66¢ 4,81 48
3,750 -0.35 -0.09 1.04 4,50 4.19 53
Sawtimber 5,350 0.09 -0.67 0.67 2.65° 5.13 50
7,500 0.00 -1.01 0.40 1.31 4.82 52
10,950 0.44 -0.78 0.54, 0.79, 4.88 73
17,350 1.78¢ 0.38 1.34 1.38 4.50 66
40,000 2.36 0.75 0.01 1.19 4.80 58
V. =f£(D%H.), k=1.40
t t
Saplings 430 13.82° 191.553 12.20° 231.253 22.65 19
Poletimber 1,080 447 22.76 5.64 25.94 34.54 26
1,650 -7.32 5.45¢ -5.95 7.26% 30.46 55
2,550 -1.71 6.40 -0.15 6.87 32.42 48
3,750 1.03 5.85 2.69 5.55 39.91 53
Sawtimber 5,350 -6.61° -4.06 -4.95 -5.02, 43.55 50
7,500 -12.74 -12.23, -11.21 -13.82 44.09 52
10,950 -10.99 -12.38 -9.86 -10.17 53.05 73
17,350 -3.21 -6.39 -3.05 -2.92 55.15 66
40,000 10.71 4,81 5.97 20.73° 67.31 58

aRegression model forms are: (1) weighted simple; (2) unweighted simple; (3) weighted quadratic; and (3)
weighted segmented.

bVariance for all four models was identical, only the mean error varied between models. cHypotheses of
normally distributed least square residual rejected.

dDo not reject hypothesis of normally distributed least square residual, but reject hypothesis mean

weighted residual equals zero. For those means not footnoted, both the Gaussian and unbiased hypotheses

were not r
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Proceedings of a workshop co-sponsored by -the USDA Porest Service, the
State University of New York, and the Society of Amerfcan Foresters.
Presented were papers on the methodology of sample tree selection, tree _
biomass measurement, -oonstruction of bicmass tables and estimation of
their error, and combining the error of biomass {ables with that of the
sample plots or points. Also presented were papers on various: aspects
of biomsss research currently beins oonducted. in the United Stat.u,
Canada, and abroad.

Keywords: Bioms, regression f’unotiona. regrouion error, ampling
error, meaauvemont error. .




Headquarters of the Northeastern Forest Expenment Station are in Broomall, Pa.
Field laboratories are maintained at: .

o Amherst, Massachusetts, in cooperation with the University of Massachusetis.

e Berea, Kentucky, in cooperation with Berea College.

e Burlington, Vermont, in oooperation with the University of Vermont.

¢ Delaware, Ohio.

- @ Durham, New Hampshire, in cooperation with the University of New Hampshire :
. ‘Hamden, Connooticut in cooperation with Yale University.

. Morgantown w«t Virginia, in cooperation with West Virginia University,

e Orono, Maine, in cooperation with the University of Maine, Orono.
© Parsons, West Virginia.
® Princeton, West Virginia.

- @ Syracuse, New York, in cooperation with the State University of New York
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