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EVALUATING ERRORS OF TREE BIOMASS REGRESSIONS BY
SIMULATION

Tiberius Cunia

Professor of Statistics and Operations Research

SUNY College of Environmental Science and Forestry
Syracuse, NY 13210

To construct tree biomass regression functions
for use in forest biomass inventory, one would nor-
mally (i) select a sample of trees by some random
procedure, (ii) measure the biomass of the sample
trees, and (iii) calculate a biomass regression
function by some statistical procedure. The sam—
pling method is generally complex and its structure
is seldom taken into account by the estimation pro-
cedure. To see the effect of sampling method and
estimation procedure on the error of the inferences
made when the tree biomass regressions are used,
simulation techniques were applied to a population
of 22,753 forest trees distributed over 927 one-
fifth acre plots. Samples of trees were repeatedly
selected by different methods and, for each sample,
biomass regressions were calculated by various sta-
tistical procedures. Applied to the parent popu-
lation, the biomass regressions generated esti-
mates of the average biomass per unit area and
their error. From the analysis of the differences
between true and estimated average biomass, con-
clusions were drawn about the bias, precision, and
estimated precision of combinations of sampling
method and estimation procedure.

Introduction

The sampling designs used in forest biomass
inventory consist generally of two phases. In the
first phase, a relatively large sample of trees
(usually in clusters defined as trees growing on
plots of fixed area or Bitterlich sample points)
is selected by some statistical sampling procedure.
These trees are measured for species, diameter,
height, etc. but not measured for biomass. In the
second phase, a relatively small sample of trees
is randomly selected and its trees are measured
for biomass in addition to species, diameter,
height, etc. A tree biomass regression function
(on species, diameter, etc.) is calculated from
the second phase sample trees and this regression
function applied to the trees of the first phase
yields estimates of the average biomass per unit
area or total biomass in the entire forest area.

Because of the structure of the sampling de-
sign, the error of the biomass estimates has two
main components; one component due to the error of
the first phase and a second component due to the
error of the tree biomass regression function of
the second phase. This last component is usually
ignored when the error of the biomass estimates is
calculated; it is difficult to assess the error of
biomass regression in meaningful terms and although

the methodology to combine the two components ex-
ists, it is largely unknown to the forest mensura-
tionists.

The objectives of the present study are those
of evaluating the error of biomass regression
functions as applied to forest inventory data for
the purpose of estimating the average biomass per
unit area. For this, the error of the biomass re-
gression should be expressed in a suitable form;
it must be combined with the error of the first
phase sample data when the error of the average
biomass per unit area is being estimated. In our
study we shall assume that, to combine the errors
from the two phases we shall assume that the ap-
proach suggested by Cunia (1965, 1986) is being
used. This approach requires that (i) the biomass
regression functions be of the linear form

Y= Byx; FByx, + ..+ B x = (B]'[x]
where y = tree biomass, x, =1, and X, X,, «-., X
are the independent varia%les definedzin éerms of ™
diameter, height, species, etc, and (ii) wvalid
estimates [b] of [B] and [S. . ] of the covariance
matrix [0, 1 of [b] exist a%g are known. Conse-
quently, %ﬁe error expression of the biomass re-
gression function used in our study is [sbb]'

Because the error of the regression is a
function of (i) the sampling design by which the
sample trees are selected, and (ii) the estimation
procedure by which the regression is calculated,
we shall consider both these factors when evalu-
ating this error. We shall not consider, however,
(i) the error of measurement of the biomass of the
sample trees when determined by subsampling; we
shall assume that the trees are measured without
error, (ii) the error of the first phase sample;
we shall apply the biomass regression to the en-
tire tree population, and (iii) the error made
when the trees selected from one are applied to
another tree population.

To attain our objectives, we have used compu-
ter simulation techniques consisting of the fol-
lowing main steps. We have started with the con-
struction of a real world type population of some
23,000 trees distributed in clusters (sample plots
of fixed area) and measured, among other things,
for diameter, height and biomass. This popula-
tion was stored in the computer. Using a variety
of sampling methods, sample trees were then se-
lected by computer and their diameter, height, and
biomass recorded. There were 100 repetitions of
this entire simulated sampling process resulting
in 100 samples of trees, hopefully independent, for
any given sampling method and sample size. In the
next step, biomass regression functions were cal-
culated by a variety of estimation procedures, one
set of regressions for each sample of trees gener-
ated by the previous step. Each tree biomass re-
gression was then applied to the tree population
to estimate the known value of the average biomass
per unit area. Finally, the hundreds of thousands
of estimated values were analyzed for possible bias,
error and efficiency of each combination of sampling
method and estimation procedure.
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Construction of the Tree Population

The basic data used to construct our tree
population consists of field measurements of di-
ameter at breast height d, merchantable height
h _, and species, among other things, performed
on 22,753 trees contained in 927 one-fifth acre
plots selected by some random procedure from the
New York State forest lands. Only the merchant-
able trees were included in the population (trees
of diameter not less than 5 inches) and 260 of
the 927 sample plots were empty, that is, did not
contain trees of merchantable size. The total
height h and the total above ground biomass y
(green weight) was not measured in the field but
was generated for each population tree by a
Monte Carlo procedure described in detail in a
series of papers by Cunia and Michelakackis (1983b,
1984a, b) and Cunia, Michelakackis and Lee (1984).
Because the procedure by which h and y was gener-
ated is an important factor to consider when in-
terpreting the results of the analysis of the
simulated sample data, the method to generate h
and y is summarized below as follows.

The total height of each tree was generated
first by a formula of the form h = h + g where
(i) h is the simulated total tree height, (ii) A
is the regression estimate of the conditional
mean of height for given species, diameter d,
merchantable height h_ and geographical area, and
(iii) g is a random variable expressing the differ-
ence between actual tree height and average height
as estimated by the regression function. The
regression function of total height on diameter
and merchantable height was estimated from actual
sample data of some 1,600 trees of twenty species
selected from three states, New York, Michigan and
West Virginia. The least squares method was used
and the regression function was assumed to be of
the linear form ¥ = b, +b_d + b_h_. Separate re-
gression functions by species ana gtate were cal-
culated and most of the time either d or h was
sufficient to adequately define the regression
relationship. This means that for most regres-
sions, either b_ or b, was made equal to zero.
The regression Coeffidients bl' b., and b, were
stored in the computer and appliea to our tree
population data to calculate the values h.

The random variable g was generated by a
Monte Carleo technique according to a probability
distribution estimated from the same sample trees.
It was assumed that the shape but not the scale
of the probability distribution of g was the same
for all species. If (i) e is a standardized ran-
dom variable with mean zero and variance one, and
(ii) s is the conditional variance of total tree
heighth¥or given diameter, merchantable height,
species and state, the random variable q was de-~
fined as being equal to ev¥S ., . The variance S
was estimated separately for each sample regres-
sion but the probability distribution of e = q/vS
was estimated from the pooled data of all regres-
sions. As the sample distribution was found to be
irregular in shape, a two-stage graphical proce-
dure was used to smooth it out.

hh

Using the total height h as generated above,
the biomass of each population tree was generated
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by a similar procedure. The formula used was of
the formy = v + q where (i) y is the value of the
tree biomass obtained by this simulation process,
(ii) ¥ is the regression estimate of the conditional
mean of biomass for given species, diameter d, total
height h, geographical region and cluster (plot)

and (iii) q is a random variable expressing the
difference between actual tree biomass and the con-
ditional mean biomass as estimated by the regres—
sion function. The regression function of y on 4
and h was estimated from actual sample tree data
from Finland, New York, Michigan, Ohio, and West
Virginia. The weighted least squares method was
applied to a regression function of the linear

form ¢y = b, + b2d2h under the assumption that,
within eacﬁ species and state, the conditional
variance of y is proportional to (dzh)z. The re-
gression functions were calculated separately by
species and state and the effect of site was es-
timated by regression with dummy variables tech-
niques. To take the cluster effect into account,

we have estimated the probability distribution of
pairs of regression coefficients b, and b. calculated
within each individual cluster (pldt) frofi their own
tree data.

To estimate the probability distribution of q,
we have assumed that q = e(dzh)VS , where (i)
e is a standardized random variabfglxith mean zero
and variance one, (ii) S is the estimate of the
conditional variance of Ph Vtransformed variable
u = y/dzh for given diameter and height, and
(iii) the conditional standard deviation of Yy given
diameter d and height h is estimated by a%hvs .
The values of S u]v were calculated separatelgugg
species and stage and the probability distribution
of e = q/(dzh)VS was estimated from the pooled
data of all regrgg ¥ons. A graphical two-stage
procedure was also used to smooth out the irregular
shape of the sample probability distribution of e.

To generate the biomass of a given tree, the
Monte Carlo technique proceeded as follows. For
the trees of a given plot a set of regression co-
efficients b, and b_ was generated for each species
according to the bivariate probability distribution
of the pairs of plot values b, and b.. Using the
tree diameter, height, specieS and tﬁe geographical
region of the plot, the regression value ¥ was then
calculated by the corresponding regression function.
Finally, a value q = e{d?h)/s was added to ¥,
where (i) d and h are the treé diameter and height,
(ii) S is the stored value of the conditional
standard"8e¢viation of u= y/dzh for the given spe-
cies and region, and (iii) e is a random variable
with mean zero and variance one generated by the
computer according to the probability distribution
of e also stored in the computer.

Sampling Procedures

Although easily done by computer, it is rela-
tively difficult in real life to select trees in-~
dividually by simple random sampling. The usual
procedure is to select the sample trees in clusters.
Ordinarily defined as groups of trees contained in
plots of fixed area, or trees counted by relascope
from randomly selected points in the forest, the
clusters may be selected by simple or stratified



random sampling, in one or two-phases and all the
trees, or a randomly selected part of the trees of
the sample clusters are measured for biomass, di-
ameter, height and other attributes of interest.
In our simulation study we have sampled trees by
three main sampling procedures, denoted here, for
convenience, as (i) two-stage random sampling,

(ii) two-stage stratified sampling, and (iii) two-
phase, two-stage random sampling., Within each
sampling method we have defined several variants
by changing the tree subsampling procedure of the
second stage. Here is a more detailed description
of our three sampling methods.

(1) Two-stage random sampling. In the first
stage, m plots (clusters) are selected from the 667
non-empty plots of our population by simple ran-
dom sampling without replacement. In the second
stage, sample trees from the sample plots of the
first stage are selected by one of seven subsampl-
ing procedures. 1In the first procedure, a fixed
percentage p of trees is selected by simple ran-
dom sampling without replacement. If a fixed
number r of trees is selected, subsampling meth-
ods 2 and 3 are obtained when the selection is
made without or with replacement respectively. The
last four subsampling methods are obtained when the
tree selection is made with replacement and with
probability proportional to a measure of tree size;
more specifically, proportional to tree height h,
tree diameter d, tree basal area (dz) and approxi-
mate tree volume (dzh) respectively for methods 4,
5, 6, and 7.

The size of the sample is controlled by the
nunber m of sample plotsand the percentage p, or
the fixed number r of trees subsampled within the
plot. We have used the values m = 1, 2, 5, 10, 15,
20, 30, and 50, the values p = .05, .10,.15, .30,
.40, .60 and 1.00 and the values r = 1, 2, 5,

10, 15, 20, and 30. 1In a second simulation study
we have also used p = .10, .20, ..., 1.00. Because
we did not want samples that were too small or too
large, we have used only those combinations of m
with p or r for which the expected sample size fell
between 10 and 500.

Note that the only sampling method resulting
in selection of trees with equal probability from
the entire population of trees is subsampling
method 1. Selecting a fixed number of trees from
each randomly selected plot {(as in subsampling
methods 2 and 3) results in a larger probability
of selection for the big trees. It is known that
the larger trees require more living space than
the smaller trees and, thus, the big trees have the
tendency to be contained in plots with a small,
rather than a large number of trees. For the same
reason, selecting fixed number of trees with proba-
bility proportional to h, d, 42, and d2h (subsampl-
ing methods 4, 5, 6, and 7) results in tree se-
lection with probability higher than h, 4, 42, and
azh respectively.

To reduce the amount of simulation work re-~
quired, we have selected the sample plots and the
trees within the sample plots in a nested fashion.
To better describe this procedure, let us consider,
as an illustrative example, the first subsampling
method. 1In.the first simulation run, the run that

generates the first sample of all sample sizes,

50 plots are selected by simple random sampling
without replacement. Five percent of the trees
selected from the first plot constitutes the first
sample of size m = 1, p = .05. By adding five
percent more trees from the same plot, we obtain
the first sample of size m =1, p = .10. But if
we add instead five percent of the trees selected
from the second plot, we obtain the first sample
of size m = 2, p = .05. Continuing this way (in
two directions, adding trees and plots), we finish
with the selection of the first sample of the last
sample size of m = 50, p = 1.00. Of course, some
of these samples will be discarded; those that re-
sult in conbinations of m and p for which the ex-
pected sample size is too small or too large.

Multiplying p by the number of trees in a
given sample plot does not generally result in an
integer number of sample trees. To decide whether
an additional tree corresponding to the fractional
part £ (from .0l to .99) is to be selected, a ran-
dom number R generated by the computer is being
used. If R £ f, an additional sample tree se-
lected at random from the remaining unselected
trees of the plot is added to the sample. Other-
wise, no additional sample tree is selected.

When the subsampling of trees is done with
replacement, the same tree may be selected in the
sample more than once. This may present a problem
when the sample plot has very few trees and the
fixed number r is very large. For example, if
r = 20 and the sample plot has one tree, the same
tree will appear twenty times in the sample. To
improve the sample, we have instructed the computer
to generate a new biomass value for every tree al-
ready in the sample that happens to be selected
again. The procedure to generate the new biomass
is identical to that used when the tree population
was constructed. '

(2) Two-stage stratified sampling. With this
method, the m sample clusters are selected by
stratified random sampling. The tree population
was first divided into three geographical regions
(strata) and a two-stage random sample selected
from each stratum separately. The same seven sub-
sampling methods of tree selection from sample
plots were used here as well. By combining now
samples of various sizes from various strata, we
obtain two-stage stratified samples of different
sizes and allocations.

(3) Two-phase, two-stage random sampling. In
the first phase, the trees from a relatively small
two-stage random sample are measured for biomass
vy, diameter d and height h. The tree data are
used to estimate the regression function of bio-
mass on diameter and height, say ¥ = r_(4,h). To
reduce the computer simulation work, t%e samples
already selected under the two-stage random sampl-
ing method of (1) above were used as the first
phase sample of the two-phase, two-stage random
sampling method. In the second phase, a relatively
large, two-stage random sample of trees is selected
and every tree is measured for diameter and height
but not for biomass. Only the first tree subsampl-
ing method is used with m = 50, 100, 150, 200,

300, and 400 and p = 2.93, 5.86. 8.79, and 11.72.
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The percentage p was selected so as to yield, on
the average 1, 2, 3, and 4 sample trees per plot
respectively. The data from this sample are used
to estimate the regression function of tree height
h on tree diameter 4, say A=r (d). The two
regression functions are then cOmbined to obtain

a regression function of biomass on diameter alone,
say § =r(d).

To obtain a two-phase two-stage random sample,
we must pair a sample of the first with a sample
of the second phase. The sample trees of the
first phase are selected by seven subsampling
methods and there is a variety of sample sizes
(values m and p or r) used. The sample trees of
the second phase are selected by one subsampl-
ing method and there are 24 sample sizes, the
product of six values m by four values p. For
each simulation run, we obtain one two-phase,
two-stage random sample for each conbination of
subsampling method and sample size of the first
phase with a sample size of the second phase. As
there are 100 simulation runs, there are 100 samples
generated by the same two-phase two-stage random
sampling procedure with the same sample size.

Estimation Procedures for the Biomass Regression
Functions

Consider first the two-stage random sampling
method. For each of the 100 samples generated
for the same sample size (m and p or r) and tree
subsampling procedure, we have calculated thirty-
two biomass regression functions, the combinations
of four least squares estimation approaches and
eight regression equations.

The first estimation approach is that of the
ordinary least squares (OLS) method applied to
individual tree data. The fact that several sam-
ple trees may have been selected from the same
cluster is not taken into account. Because the
conditional variance of the tree biomass for
given diameter or given diameter and height is
not homogeneous, it is more reasonable to use
the ordinary weighted least squares (OWLS) method.
The variance is assumed to be proportional to at
for the regression of biomass on diameter alone,
or proportional to a*n? for the regression of
biomass on diameter and height. With the OWLS
approach the cluster effect is also ignored.

The third and fourth estimation approaches are
known here as the modified least squares (MLS)
and modified weighted least squares (MWLS) methods.
They take into account the cluster effect when the
regression function is calculated. This is accom-
plished by applying the weighted least squares
method to the cluster (in our case the plot) not
the individual tree values. If the tree variables
are denoted by v, x., x2, .... and if I means
summation over the %rees of a given plot, then the
plot variables are defined as 2y, IX., ZX.; ecoe
In the MLS approach it is assumed that thé condi-
tional variance of Ly is proportional to the number
of trees in the plot, while in the MWLS approach
the conditional variance is assumed to be propor-
tional to Zd* if only d is used in the regression
or proportional to 7d%h?2 if both d and h are used.
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The basic justification and methodology of the mod-
ified least and weighted least squares is given in
Cunia (1979, 1981) and Briggs and Cunia (1982).

For each least squares estimation approach we
have used eight regression equations, the first
three of biomass on diameter alone, the remaining
five of biomass on diameter and height. The equa-
tions are all linear, and they contain terms of the
form 4, dz, h, dh and d%h. The significance of
the addition of some of these terms was sometimes
tested statistically.

Consider now the two-stage stratified sampling
method. Using the conclusions reached from the
analysis of the eight regression equations applied
to the seven subsampling procedures of the two-stage
random sampling method, we have selected two equa-
tions only, the best equation of biomass on di-
ameter alone and the best equation of biomass on
diameter and height. As the four least squares
estimation approaches were again used, the total
number of combinations of approach and equation is
eight.

The trees were selected by stratified sampl-
ing and the stratification itself may be used when
the regression function is estimated. We have de-
fined nine procedures to take the stratification
effect into account. These procedures range from
one single regression function calculated for all
strata with stratification effect completely ig-
nored to three, separately and independently cal-
culated regressions, one for each stratum. The
procedures are not described here, and the inter-
ested reader can refer to Arabatzis and Cunia (1986)
for a more detailed description. The total number
of regression functions calculated for each sample
is, thus, equal to 72, the product of two regres-—
sion equations by four least squares estimation
approaches and nine ways to take stratification
into account.

With the two-phase, two-stage random sampling
methods the estimation procedure is more complex.
Twenty regression functions were calculated for
each first phase sample, the combinations of four
least squares estimation approaches (OLS, OWLS,
MLS, and MWLS) and five linear regression equations
of the formy = r_(d,h) = a.x, + a.x. + «..., Where
x. = 1 and the ot%er variab}e% x are defined in
teérms of diameter d and height h (4, dz, h, dh
and d%h). Because the conditional variance of the
tree height for given diameter is approximately
homogeneous, only two least squares estimation
approaches (OLS and MLS) were used with the samples
of the second phase. They are combined with four
linear regression equations of height on diameter
of the formh = r_(d) = ¢.x, + c.X. + .... where
x. = 1 and the otﬁer vari%bies x are of the form
d and d%. There is a total of eight regression
functions for each second phase sample.

A method to combine a regression function
¥y = r. {d,h) of the first phase with a regression
function h = r_(d) of the second phase so as to
obtain a regre§sion function ¥ = r(d) of biomass
on diameter alone has been described by Cunia
(1982), Cunia and Michelakackis (1983a), and
Michelakackis and Cunia (1985, 1986). This method
defines the regression function as



v = rl(d,ﬁ) =b. +b.d+b.d®+b.dd+ bsd“

1 2 3 4

where the regression coefficients b b,, ¢ees b
are functions of the coefficients a and c of

r. (d,h) and r_(d) above and the specific indepen~
dént variable§ included in the regression being
dependent on the specific regressions r, (d,h) and
r_ (d) used. A method is also described to esti-
mate the covariance matrix of b., b sees b
when the regression coefficients a and c and
their covariance matrices are given.

5

To calculate the 160 regression functions of
the form y = r(d) for each two-phase, two-stage
random sample (the 160 combinations of twenty
regression functions y = r (d h) of the first with
eight regression functions™h = r (d) of the second
phase) would have been prohibitiVely expensive in
terms of computer time and analysis work. Instead,
we have selected the four best regressions of the
first phase (one for each of OLS, OWLS, MLS, and
MWLS approaches) and the two best regressions of
the second phase (one for OLS and one for MLS).
Pairing the OLS regression of the second with the
OLS and OWLS regressions of the first phase and,
similarly, the MLS of the second with the MLS and
MWLS regressions of the first phase, results in
four regressions of the form § = r(d) for each
two-phase, two-stage random sample.

Application of the Biomass_ Regression Functions

The sampling is done for the purpose of de-
riving an estimate z of the mean biomass per acre
U of our tree population. The value of u is cb-~
viously known. But by analyzing the probability
behavior of z, we can make inferences about the
bias and precision of a given estimation procedure
applied to a given sampling method of a given
sample size.

There is one estimate z for each estimation
procedure and each simulated sample. If the re-
gression function is denoted in matrix notation as

v = ' + + e

y [b]'[x] blxl b2x2

where x, = 1 and, if the error of this regression
function is expressed as the covariance matrix
[Sbb] of [bl, it can be shown that

z = [b}'[u ]
estimafor of ¥, and

[ux]'[sbb}[ux]

estimator of the variance of z,

]

\4

fl

where the elements of [u_] are the known expected
values of the elements of [x] expressed on a "per
acre" basis.

For example, if the regression function is

¥y =b, +b.d+b._a?

1 2 3
then
= + +

Z = DU TR, T Pal,
where )

My = Mean number of trees/acre

M, = mean (sum of d)/acre

ux3 = mean (sum of d2)/acre

The formulae above are easy to prove. For each
tree i of the population, the estimate of its bio-
mass y, is y, = [b]'[x,], where [x,] is the vector
of the varla%les x of e tree 1i. lAddlng the esti-
mated biomass of all 22753 trees yields an estimate
¥ = Zy of the total blomass Y = iy, of our popu~
latlon} Dividing now ¥ by the totai forest area of

= 927/5 = 185.4 acres, we obtain an estimate
z = Q/A of the mean biomass per acre u = Y/A., Sym-
bolically this can all be written as

z'= ¥/A = z?./A
= Z(blx1 + b2x2 + ....)/A
= bl(lei/A) + b2(2x2i/A) + oeeen
= bylyg FPpHgy toeee

(b]* [u ]

The formula of the estimator V of the variance of

z follows immediately from the fact that (1) u_ is
known without error and (ii) if [a] is a vector of
fixed values and [v] is a vector (of the same order)
or random variables with covariance matrix estimated
by [S._ 1, then the variance of [z] = [a]'[v] is es~
timated by

S = Lla,a.S = [a]l'[s__1lal
LV, vv

Analysis Procedure

For each simulated sample and each regression
estimation procedure we have calculated the pair
of random variables z and V, estimators of | and
variance of z respectively. The pair of confidence
intervals (z * tvV), where t = 2.0 for the 95 per-
cent and t = 2.6 for the 99 percent confidence
level, were also calculated and whether u fell below,
within or above these intervals was recorded. The
100 simulation runs giving rise to the 100 samples
may be viewed as 100 repetitions of a random ex-
periment, each experiment generating two random
variables z and V, two random intervals (z * t/j
and two, trinomially distributed random variables
that show whether the confidence intervals include
the parameter p or fall below or above it. For
all practical purposes, these 100 repetitions may
be viewed as being statistically independent, and
we may also assume that from one to the next simu-
lation run, the probability distribution of the
random variables and intervals remains the same.

To analyze the probability behavior of z, we
have calculated, for each set of 100 simulated
samples and for each regression model the following
statistics, where % stands for summation over the
sample values from 1 to 100.

z = 2z/100 = average of the 100 sample values z
= estimator of 1

(E—u) = estimator of the bias of z
V= LV/100 = average of the 100 sample values V

= estimator of the variance of z under the
basic assumptions of the regression model
used
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S = 2(2—2)2/99 = estimator of the variance of z

2z with no assumptions made other than those

of the statistical independence of the
100 simulation runs and no change in
the probability distribution of z from
one to the next run

t = (z-n)/vs z/lOO = sample value of t that
is used £§ test the null hypothesis that
the bias of z is equal to zero

G/Szz = ratio of the two estimates of the
variance of z,

and finally, the number of times u is found to
fall below, within or above the 95 and 99 percent
confidence limits defined above.

Note that under the assumptions of (i) sta-
tistical independence of the various simulation
runs and (ii) unchanging probability distribution
of z from one to the next run, the statistics z
and S are unbiased estimators of the unknown
mean i and variance ¢ of the random variable z.
As z iS used as an est%ﬁatog of the mean biomass
per acre u, the statistic (z-u) can be used as
an estimator of the true bias of z, say (u -u).
The null hypothesis that this bias is equal to
zero can be tested by the t-statistic with 99
degrees of freedom. When (uz—u) is small, the
statistic S can be used as a measure of the ef-
ficiency of %he sampling method and estimation
procedure.

Note also that in real life only the estimator
V of the variance of z is available. This esti-
mator is valid, however, only when the basic as-
sumptions of the regression model are strictly
satisfied by the tree population we sample and
the tree selection procedure we use. As these
assumptions are seldom if ever satisfied, we can
make inferences about the goodness of V as an
estimator of the variance of z by comparing V, the
average of the 100 sample values V with the un-
biased estimator S . This comparison can be
made by means of sample differences (V-S ), the
average difference (V-S_ ) ox the sample“Fatio
V/Szz. We have preferreé using the ratio.

The analysis of the bias (2 -u) of z, the pre~
cision S of z, and the validity of the estimator
V has been made in two main steps. In the first
step we have compared the various regression
models within a given sampling method, tree sub-
sampling procedure and sample size. In this way
we were able to identify and, thus, eliminate from
further consideration, the least squares estima-
tion approach and the regression equation that may
yield consistently poor results, that is, esti-
mators with large bias and/or poor precision.

In the second step we have compared the var-
ious sampling methods, subsampling procedures and
sample sizes., More specifically, we have made in-
ferences about the effect on bias, precision and
estimated precision of z of the factors (i) sam-
ple size, that is nunber of clusters and number
of sample trees per cluster, (ii) fixed percent-
age p or number r of trees selected from sample
clusters, (iii) subsampling trees with or without
replacement, (iv) subsampling trees with equal
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or unequal probability and (v) the overall sampl-
ing method, the two-stage random or stratified
sampling or two-phase, two-stage random sampling.

To do this analysis, we have constructed hun-
dreds of detailed and summary tables and graphs
showing how (z-w), S , V, V/S , etc. vary with
the characteristics &f the sampflng method and
estimation procedure.

Main Conclusions Drawn From the Study

The detailed analysis and the conclusions
reached as the result of this analysis are con-
tained in a series of papers by Cunia (1985), Cunia
and Gillespie (1985), Michelakackis and Cunia (1985,
1986), Gillespie and Cunia (1986) and Arabatzis and
Cunia (1986). We shall not repeat them here. How-
ever, it may be of interest to give a summary view
of these conclusions, some of which came as a big
surprise.

When the regression model is suitably selected,
the bias of z is generally small even when it is
significantly different from zero. One regression
function that generates a large bias is y = Bd?h;

a function that should usually be avoided. The

bias does not seem to be affected by (i) the

sample size (number of clusters or number of

sample trees per cluster), (ii) the selection of

a fixed percentage p or a fixed number of trees

from a sample cluster, (iii) whether the sampling

is done with or without replacement, or (iv) the
least squares regression approach or equation (if
properly selected). It seems, however, to be some-
what affected by the probability of tree selection
when the clusters are subsampled; it seems to in-
crease from small, non-significantly different from
zero when the subsampling is done with equal proba-
bility (methods 1, 2, and 3), to slightly larger
values when the subsampling is done with probability
proportional to h and d (methods 4 and 5) and the
bias becomes significantly different from zero when
the probability is proportional to tree basal area
(method 6) or approximate tree volume (method 7).
The bias is also affected by stratification when the
allocation of sample trees to strata is poor and

the stratification effect is not properly taken

into account. The bias does not seem to be affected,
however, by the two-phase sampling method considered
in this study.

As expected, the precision of z as measured by
S is affected by (i) the overall sample size; the
larger the sample, the smaller the error, (ii) the
number of trees per cluster for given overall sample
size; the smaller the number of trees, the smaller
the error, (iii) the least squares estimation ap-
proach; the weighted least squares are slightly
better than the least squares approaches, and sim-
ilarly, the ordinary least or weighted least squares
are also slightly better than the corresponding
modified approaches, and finally, (iv) the regres-
sion functions of biomass on d and h are much better
than those on diameter alone.

The fact that the least squares is almost as
good as the weighted least squares approach came
as a surprise. We did not expect the least squares



method to be that robust. Also as a surprise

came the fact that no increase in precision is ob-
tained when the probability of selection moves from
equal to proportional to a measure of tree size.

On the contrary, for the least squares method (OLS
and MLS) the precision seems to decrease dramati-
cally as we move from equal to probability pro-
portional to 4 (or h), to basal area (d2),'and
finally to approximate volume (d2h).

Not completely unexpected, the precision of
z does not seem to be affected by (i) sampling
with or without replacement, (ii) selection of
a fixed number or a fixed percentage of trees from
a sample cluster, and (iii) the form of the re-
gression function when this form is not poorly se-
lected (as for example the form ¥ = deh) or when -
the independent variables are not the same (when
both 4 and h are used we have, as expected, a much
better estimator than when only 4 is used).

The precision of z can also be estimated by
V. As expected, the precision is grossly over-
estimated (error grossly underestimated) by the
ordinary least and weighted least squares regres-
sions based on the individual tree, not on the
cluster data. This overestimation of precision
increases with the size of the subsample; the
larger the number of trees selected from the same
cluster, the greater the overestimation. On the
other hand, there seems to be a slight underesti-
mation of the precision (overestimation of the
error) when the modified least or weighted least
squares methods are used. It is possible, how-
ever, that this underestimation is due to the fact
that with large samples the effect of the finite
population correction factor (for the sample clusters
that may go as high as 5 percent) has been ignored.

Finally, the two-phase, two-stage sampling pro-
cedures we have used, yields unbiased (or at most
with negligible bias) estimates and the method to
calculate the precision of the estimates is cor-
rect, whenever the precision of the first and
second phase regressions are properly evaluated.

The conclusions above hold true for the popu-
lation as constructed here. We feel that our popu-
lation resembles real world tree populations. The
relationship between diameter and height as it ap-
pears in real world sample plots is preserved be-
cause we have worked with real world plots. The
relationship between diameter, height and biomass
was, on the other hand, generated by the computer;
but this relationship is expected to imitate very
closely what happens in real life. Finally, the
cluster effect we have added to our population may
not be equal in size but it is definitely similar
in structure to what we expect in the real world.
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Tree biomass regressions are generally con-
structed (i) from samples of trees selected by
cluster rather than simple random sampling and
(ii) by least squares techniques that ignore the
cluster effect. The results of a simulation
study are reported whereby (i) samples of trees
were selected by cluster sampling from a known
tree population, (ii) the biomass regression
functions were calculated by ordinary least
squares methods and by methods modified to take
the cluster effect into account and (iii) the
estimates of the average biomass per acre were
compared to the known true value of the tree
population. These results show, among other
things, that (i) the estimates of the average
biomass per acre based on the ordinary and modi-
fied regression techniques are about the same but
the estimates of the precision are grossly over-
stated by the ordinary least squares, and (ii)
the bias is not significantly different than zero
for all suitably selected models.

Introduction

A common sampling design for taking the
biomass inventory of a given forest area is the
two phase or double sampling method. Phase one
consists of a large sample of trees measured for
diameter at breast height, species, and possibly
height, along with other variables. These trees
are not measured for biomass. The phase two
sample is a smaller sample of trees measured for
biomass as well as species, diameter, height, and
possibly other variables measured in the phase
one sample. This sample is used to construct a
regression function of biomass on several predic-
tor variables, ordinarily species, diameter, and
possibly height. This regression function is
then applied to the data of the phase one sample
to estimate the mean biomass per tree or mean
biomass per unit area.

Simple random sampling of trees is seldom a
practical method of sampling a forest. It is
more efficient to apply the method of cluster
sampling. Cluster sampling involves dividing the
forest into overlapping or non-overlapping clus-
ters defined as plots of fixed or variable area.
A subset of these clusters is then selected and
some or all of the trees from each sample cluster
are selected and measured for the variables of
interest. The advantage of cluster sampling is
the reduced average sampling cost per tree that

is associated with the reduced movement of sam-
pling crews over the forest. The disadvantage is
the corresponding reduced amount of information
per tree; trees growing close together will tend
to be more similar than trees growing farther
apart.

One common method of estimating biomass
functions from the phase two sample is the method
of ordinary least squares (OLS) or weighted least
squares (OWLS). These methods assume that the
sample trees are selected independently of each
other. This assumption is clearly violated in
cluster sampling; trees in a given cluster are
not selected independently of each other. Cunia
(1979) suggested three modifications of the least
squares method for cluster sampling. The first
modification, using ratio estimator models, has
been applied by Kotimaki and Cunia (1981) to two
cluster samples of trees. The second modifica-
tion uses linear regression models, and has been
applied to the same two samples by Briggs and
Cunia (1982). In both cases, the researchers
found that the intracluster correlations had
little effect on the point estimates of mean
biomass. The estimates of the error of the point
estimates, however, were much larger under the
modified procedures. The assumptions of the modi-
fied models were better satisfied by the actual
sampling conditions than were the assumptions of
the ordinary models. Therefore, it was assumed
that the unmodified procedures underestimated
the error and that the modified procedures were
better at estimating the error.

The objectives of the present study are to
verify and extend the results of Kotimaki and
Cunia (1981) and Briggs and Cunia (1982) by exam-
ining the accuracy and precision of various bio-
mass function estimation procedures as applied to
cluster sampling. We shall only consider the
error of the phase two sample; the error of the
first phase sample will be ignored. To accom=-
plish this, we shall apply simulation techniques
in which a given population of trees is grouped
into clusters and repeatedly sampled. All popu-
lation parameters (including u = mean biomass per
acre) are known exactly. The biomass equation
from the phase two sample will be applied to the
population stand table, rather than a phase one
estimate. The resulting estimation of mean bio-
mass per acre may then be compared directly to
the known parameter y. In the earlier studies
listed above, samples and estimates came from
natural populations, for which the precise param-
eters were unknown. Estimates could not be com-
pared to a fixed standard, but rather were ana-
lyzed intuitively by how well their inherent
assumptions were satisfied.

The simulated population used in this study
consists of 22,753 trees from 667 non-empty and
260 empty permanent one-fifth acre sample plots
selected from the State of New York. The trees
were measured in the field for their species,
diameter at breast height d and merchantable
height. The total height h and total biomass y
(green weight above ground) were simulated for
each tree by Monte Carlo techniques described in
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detail by Cunia and Michelakackis (1983, 1984a,b)
and Cunia, Michelakackis, and Lee (1984). 1In
generating total height and biomass, the tech-
niques took into account the effects of species,
diameter, merchantable height, site quality,
geographical region, and the intracluster corre-
lation effect, as well as the random effect of
the probability distributions of total height and
biomass around their respective regression func-
tions.

Sampling Procedures

Our sampling procedure is the following: m
clusters (m = 10, 15, 20, 30, or 50) are chosen
at random (without replacement) from the popula-
tion of 667 non-empty clusters, and p percent (p
= 10, 20, ...,100 ) of the trees from each
cluster are chosen (at random without replace-
ment) and measured for biomass (y), diameter (d),
and height (h). The average cluster size is
about 34 trees. The study considers only those
combinations of m and p which yield an average
sample size (m)(p)(34) of at least 10 trees but
less than 600 trees. There are 36 such combina-
tions which, for convenience, will be known here
as sampling methods. For each of these 36 sam-
pling methods, 100 independent samples of trees
were generated by comfuter from the known popula-
tion of 22,753 trees.-/ This yields a study set
of 36 x 100 = 3600 different randomly selected
cluster samples of trees.

Estimation Models

The main population parameter of interest is
u = average total biomass per acre, defined as
the total biomass of all trees in the population
divided by the total forest area occupied by the
simulated population.~ It is known that y is
equal to 115.549 thousands of pounds per acre.

Two sets of models are initially used to
estimate y. The first set consists of two ver-
sions of each of seven ratio estimators, for a
total of 14 ratio estimator models. The second
set includes four versions of each of five linear
functions , for a total of 20 least squares re-~
gression models. Initially, we applied each of
these 34 estimation procedures to each of the 100
samples consisting of 50 clusters with 30 percent
subsampling. After analyzing the results, we
selected two ratio estimators and eight least
squares regression models for further analysis in
application to the remaining 3500 samples of
trees. .The original 34 models are briefly des-
cribed below; for more complete descriptions, the
reader is referred to Gillespie (1985).

l/This work was done by Sueh Fang Hsu,
Graduate student, SUNY-CESF.

E/Total area = (927 plots) x (1/5 acre per
plot) = 185.4 acres.
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Ratio Estimators

Ratio estimator models assume that the rela-
tionship between tree biomass y and a highly cor-
related variable x is adequately described by the
equation y = Rx, where for this study R is defined
as u /px, the ratio of the arithmetic means of y
and ¥, and x is defined as either d“ or d“h. Note
that R is also the ratio of the means per acre or
totals over the entire forest of y and x. The
purpose of sampling is to estimate R, which is
assumed unknown. Models 1 through 7 consist of
seven estimation procedures with x = d2; models 8
through 14 consist of the same estimation pro-
cedures with x = d“h. These procedures are used
to calculate ¥ = the point estimate of R, and Srr
= the estimate of O ypr the variance of r.

Letting first x = d2 and taking the sum-
mation over all trees of a given sample, we define
the following seven models:

Model 1.
The true regression model of y on x is assumed to
be y = Rx, with the sample trees selected by

simple random sampling and the conditional
variance of y given x is constant (homoscedastic):

r, = Exy/Zx2
and

S = (Zy? - (Txy)2/1x?)/(n-1)1x2
15

Model 2.
Identical to model 1, but with the conditional
variance of y given x assumed to be proportional
to x :

r, = Iy / Ix

and

Sy ¢ = (E(y%/x) - (Iy)2/Ix)/(n-1)Ix
272

Model 3.
Identical to model 2, with the conditional vari-
ance of y given x assumed to be proportional to
x2 :

ry =I(y/x)/n

and

Sy y = (Z(y/¥2 - (Z(y/%) )2/n)/(n-1)n
33

Model 4.

Ratio-of-means model which assumes only that the
sample trees were collected by simple random sam-
pling:

r =y/x



where § and x are the arithmetic sample means of
y and x respectively.  This estimator is known to
be biased (Cochran, 1977). The variance of r, is
estimated by

= - + 2 x2
Sr4r4 (SYY 2(r4)st (r4) Sxx /nx

where Sxx’ S v’ and SX are the usual sample
variances an% covariance of x and y.

Model 5.

Mean-of-ratios estimator, which also assumes only
that the sample trees were collected in a simple
random sample:

rg = E{y/x) /n = r3

Sy y = (Z/x)2%-(E(y/%) )%/n) /n(n-1)
5°5
This estimator is also known to be biased (Coch-
ran, 1977).

Model 6.
Modified ratio-of-means model, where the trees
are assumed collected by a simple random sample
of clusters. The modification utilizes the

cluster variables

u, = cluster biomass = fy in cluster h,
h =1,2,...m,

and m = number of clusters in the sample,
and
Vp = Ix in cluster h
with I taken over the trees of cluster h. The

modified ratio-of-means estimate of R is calcu-
lated by

rg =WV = ((Zy)/m) / (Gx)/m) =r, =1,
but the variance has a different formula:
sr6r6 ="{Sgu - 2(xg)s,, * (r%)svv)/mvz

where u, v, Suu’ ;vv’ and Suv are ?he usual
sample means, variances, and covariance of u and

v.
Model 7.

Modified mean-of-ratios model, where the trees

are assumed collected by a simple random sample

of clusters. The modification utilizes the clus-—

ter variables

Wy = L(y/x) = sum of ratios (y/x) in cluster h.

n, number of sample trees in cluster h, and

the modified mean-of-ratios estimates of R and

Oy are calculated by

r, = Iw/In = tz(y/x))/n = rg= ry

= - 2 2
Sr7r7 m(Sww 2(r7)swn + (r7)Snn)/n
where Sww' snn' and S are the usual sample
variances and covariance of w and n. Although r,
=1, = rg, the variances and assumptions of each
model are distinct; therefore these are all dif-
ferent models. Similarly, while r, = r. = r, and
Sr3r3 = Sr r ¢ the assumptions of these three
models are also distinct, hence they represent
three different models.

Models 8 - 14 consist of the same seven
estimators with x = d“h. Once r and Srr have
been estimated, we calculate

zZ; =ry U, = the point estimate of mean biomass
per acre, and
= 2 _ ;
V1 = sr,r_ (ux) = the estlmate.of the
ii variance of z.,

1

where U, = the known average "sum of x" per acre

Regression Estimators

The study considers 20 procedures (models)
for estimating linear regressions equations of y
as a function of d or d and h. These models
consist of 20 combinations of five linear regres-
sion functions with four least squares estimation
approaches. The five linear functions considered
are:

1. y = By + Byd + B3d2
2. y = B, + 63d2
3. § = B, + B4d2h
4. y = B,d%h
=8 + 2 2
5. v =8,+8,d+8,a%48 d h+8,dn+8 h

with function 5 retaining only those terms for
which the estimated coefficients are statistical-
ly discernible from 0. These functions are ex-
pressed in the standard mathematical notation }'=
[B)'[x], where [B] = the vector of regression
coefficients, [B]' denotes the transposed vector
[B], and [x] denotes the vector of predictor
variables corresponding to [g].

We consider four approaches to calculate
[b], the point estimate of the vector [g] of
regression coefficients. The first approach is
that of ordinary least squares (OLS), applied to
the individual trees of the sample with the con-
ditiohal variance of y given [x] assumed to be
constant. The second approach is that of ordin-~
ary weighted least squares (OWLS), also applied
to the individual trees of the sample, but with
the conditional variance of given [x] assumed
to be proportional to (i) 4" for models which
use d alone or (ii) d"h“ for models which use
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both 4 and h as independent variables. These
first two approaches are both well documented in
statistical literature as, for example, by Draper
and Smith (1981), and by Neter, Wasserman, and
Kutner (1983).

Approaches 3 and 4 are modified regression
techniques which utilize cluster variables,
rather than individual tree values. Since most
forest inventories utilize cluster samples
(rather than simple random samples of trees),
modified techniques may be more accurate and
precise than standard techniques for which the
assumptions are not satisfied. These modifica-
tions are briefly described below. For more
detailed descriptions of the rationale and method
" of modification for cluster sampling, the reader
is referred to Cunia (1979, 198l1) and Briggs and
Cunia (1982). Modification for approaches 3 and
4 consists of creating m new cluster variables u
and Vh by summing vy and X; over each cluster h
(i =1,2, ... ny and h = 1,2, ... m, where n, =
number of trees in cluster h):

by = Iyg in cluster h, and
Vp = in in cluster h.

The new sample size will now be the number of
non-empty clusters in the sample. The new model
is now assumed to be u = [B]'[v]. Comparison
of approaches 1 and 2 versus approaches 3 and 4
will illustrate the error made by treating a
cluster sample as if it had been collected by
simple random sampling.

We assume that the variables y are normally
distributed and selected independently within any
given cluster, that the conditional variance of y
given [x] is equal to afc , where ajy is known for
each tree and 0 is an unknown constant, and that
the other assumptions of least squares methods
are satisfied. Since u is defined as the summa-
tion of several random variables y in a cluster,
it is reasonable to further assume that the con-
ditional variance of u given [v] is proportional
to (Zaf)c . Approach 3 assumes that the vari-
ables u and v of the various clusters are statis-
tically independent, and that af = 1 so that the
conditional variance of u given [v] is propor-
tional to X (1)“ = Ny, the number of sample trees
in cluster h. This is the modified least squares
(MLS) approach. Approach 4 makes the same as-
sumptions except that a; is assumed to be d
(functions 1,2) or d4h (functions 3,4,5). The
conditional variance of u given [v] is assumed to
be proportional to Zd4 or Zd4h2. This is the
modified weighted least squares (MWLS) approach.

To summarize, regression models 15-19 con-
sist of the 5 linear functions estimated by ap-
proach 1; models 20-24 are the 5 linear functions
estimated by approach 2; models 25-29 are the 5
linear functions estimated by approach 3; and
models 30-34 are the 5 linear functions estimated
by approach 4.

Once we have obtained the estimate [b] of
B] and [Sbb] of [Obb] = the covariance matrix of
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[b], the estimators z, and Vi for regression
model i are given by:

z, = [bi]'[ui] = the point estimate of mean
biomass per acre, and

v, = [uiP[Sbb][ui] = the estimate of the

variance of Zie

where[pﬂ a column vector of "means per acre" of
each of the respective predictor variables x
included in model i. These means are all known
exactly for the simulated population.

We point out that, in terms of calculations
(but not assumptions), (i) models 3 and 5 are
identical, (ii) models 8 and 18 are identical,
and (iii) models 10, 12, and 23 are identical.
We therefore consider 30 rather than 34 distinct
estimation procedures.

Analysis Procedure

For a given estimation procedure i (i = 1,2,

... 34) and each sample j from a given sampling
method (3 = 1,2, ... 100), we calculate the éample
statistic z.. and sample variance \/F which
estimate the population mean u and varianceo .,
respectively. We also note whether u is above,
within, or below the 95 percent and 99 percent
confidence intervals of z... Finally, we sum-
marize all 100 estimates Z; 5 and V,. for each
model-sampling method combination with the sta-
tistics:

1. z, = Iz,./100
i3]

2. 5, = (322, - (Zz,.)2%/100)/99
ij ij

3. V. = 1v,./100
ij

1 1

5. t., = (z, - u)//szz/loo

6. The number of times (out of 100 trials) that U
was above, within, or below the 95 and 99
percent confidence intervals of zlJ
V. is an average estimate of the variance of
under the assumptions of the model i. If the

mo%el assumptions are strictly satisfied, then

each V,. and their average V are unbiased esti-
mators of the variance Ozz of zZ. Because the

100 estimates z;4 are generated gy the same ran-

dom process (sampling method and estimation pro-

cedure), they may be considered to be 100 statis-
tically independent random variables. In this
case, unbiased estimates of U and O, are given

zz
by the usual statistics z and S, e

The analysis focuses on the variation of
these summary statistics between models for a
given sampling method, and within each given
model over varying sampling procedures.



Analysis Part I

For the initial analysis, we apply the 34
models to 100 samples from the 50 cluster, 30
percent subsampling method. The results of this
analysis are given in Cunia and Gillespie (1985),
and are briefly summarized below.

The bias of the ratio-of-means estimator
(models 2, 4,6, 9, 11, and 13) is small and
generally not significantly different than zero
for our sample data. This is true for both
x = d° and x = d°h. The other ratio estimators
{models 1, 3, 5, 7, 8, 10, 12, 14) have statisti-
cally significant bias that may vary from 2 to 7
percent of the mean U. The estimate szz of the
variance of z is very high for models 1 and 8,
and more reasonable for the other models. The
estimate V of the variance of z is (i) much lower
than S for models which ignore the cluster
effect, and (ii) slightly higher than 5,5 for
models which allow for the cluster effect. Hence
the only acceptable ratio estimator models are
models 6 and 13, ratio-~of-means estimators which
account for the effects of cluster sampling. The
adjustment for cluster sampling does not affect
the accuracy of the estimation procedure. It
does affect the estimated precision of the point
estimate; the average estimated precision V for
modified models 6 and 13 is approximately three
times as large as V of the corresponding unmodi-
fied models 4 and 11. This agrees with the
findings of Kotimaki and Cunia (1981), and is
illustrated by the behavior of the confidence
interval; only the confidence intervals for
models 6 and 13 included ¥ an acceptable number
of times out of 100 replications.

For the linear regression models 15 to 34,
this first analysis indicates that (i) regression
models 18, 23, 28, and 33 (with the equation
y = 84d h) are very erratic, with large bias and
low precision; (ii) the bias of the other 16
regression estimators is generally small and not
statistically different from zero; (iii) the
models which ignore the effect of cluster sam-
pling tend to grossly overestimate the precision
of the point estimators, with the estimate V much
lower than the corresponding 8,0 and (iv) modi-
fied models are much better at estimating the
precision of Z;4, as illustrated by the relative-
ly small differénce between V and S,,r as well as
the degree of confidence interval reliability.
This agrees so far with the findings of Briggs
and Cunia (1982).

At this point, the field of models is nar-
rowed down to two ratio estimators (models 6 and
13) and 8 regression estimators (models 15, 17,
20, 22, 25, 27, 30, and 32) for complete analysis
over the remaining 35 sampling procedures. These
models are selected because they all yielded
generally unbiased estimates of u but different
estimates of the error. Part two of the analysis
will look at the behavior of these models over
varying sampling methods.

Analysis Part II

Analysis of estimated bias (2 - u).

The size of the estimated bias (z - ¥) varies
within and between the 36 sampling methods. A
set of tables and graphs given by Gillespie
(1985) shows.this variation. Following are the
main conclusions that we have derived from the
analysis of these tables and graphs.

Within the models using d alone, none of the
estimates of bias are significantly different
from zero at the 95 percent confidence level.

The conclusions are the same for the models using
both d and h except for the 10 (and sometimes 15)
cluster samples, for which the bias is signifi-~
cant. There seems to be no reason for this
inconsistency. We have concluded that, in gener-
al, the bias of z is small and, for our data, not
significantly different than zero.

It is of interest to mention also that (i)
for models using d alone, the absolute value of
the bias seems to remain approximately constant
over samples of any size (except for the 10 or 15
cluster samples, where it is larger), and (ii)
there is a tendency for the bias of the models
with d and h to decrease when, for a fixed number
of sample trees, the number of sample clusters
increases. This last phenomenon is assumed to be
due to random effects.

Analysis of /S, the estimate of YO, 5e

The statistic Ki;:is defined as the estimate of
the standard deviation (error) of z. For a given
model-sampling method i, it is calculated from
the 100 estimates Zise and is thus independent of
any model assumption$ concerning variance estima-
tion. Table 1 lists Vszz for all 360 model-
sampling method combinations.

As expected, ngz decreases as average sam-
ple size increases and as the number of clusters
increases for a fixed sample size. As percent
subsampling increases for a fixed number of clus-
ters, /szz decreases until approximately 30 to 40
percent of trees on a cluster have been sampled,
then remains approximately constant as percent
subsampling increases. Models using d alone have
consistently higher Vszz (lower precision) than
similar models using both d and h; this is due to
the additional information contributed by h'in
the estimation of biomass. Models using d alone
show greater improvement in precision due to
increases in the number of clusters sampled, with
the difference in the precision estimates of
these two groups becoming negligible when 50
clusters are sampled.

The OLS, OWLS, and ratio estimator models
which use the same independent variables have
roughly equal standard errors for any sampling
method. The same relationship exists between MLS
and MWLS models. This shows that, with respect
to the point estimation of ;, unweighted regres-
sion procedures are very robust; we do not get
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Table 1 The estimate ,{Szz (thousands of pounds per acre) of the standard deviation of z, by model
and sampling method; m = number of clusters, p = percent of trees sampled per cluster.

Sampling
Method Model
m j<) 6 13 15 17 20 22 25 27 30 32
10 10 9.72 6.63 10.31 6.74 9.63 6.58 11.82 7.70 11.05 7.54
20 8.41 5.96 8.48 6.07 8.52 5.62 9.14 6.06 8.57 6.04
30 7.96 5.58 7.85 5.71 7.98 5.32 8.64 6.12 8.40 6.13
40 T 7.71 5.46 7.51 5.54 7.63 5.27 8.09 5.90 8.23 6.01
50 7.71 5.30 7.42 5.41 7.52 5.14 8.11 5.90 8.24 6.02
60 7.54 5.16 7.36 5.22 7.40 5.01 7.85 5.78 7.84 5.82
70 7.52 5.13 7.33 5.18 7.42 5.04 8.04 5.63 8.04 5.65
80 7.57 5.13 7.42 5.17 7.46 5.00 8.39 5.69 8.36 5.56
90 7.51 4.99 7.44 5.05 7.39 4.90 8.55 5.57 8.45 5.41
100 7.53 4.90 7.42 4.97 7.37 4.86 8.55 5.44 8.26 5.29
15 10 7.26 4.91 7.45 5.47 6.94 5.43 8.03 5.87 7.52 5.61
20 6.55 4.76 6.73 4.97 6.56 4.94 7.34 5.32 6.77 5.28
30 6.29 4.68 6.31 4.80 6.40 4.83 6.59 4.94 6.25 5.06
40 6.18 4.71 6.22 4,83 6.16 4.82 6.79 4.98 6.51 4.95
50 6.15 4.62 6.18 4.78 6.12 4.71 6.57 5.00 6.46 4.97
60 6.02 4.47 5.99 4.62 6.00 4.60 6.41 4.93 6.32 4.86
70 6.01 4.44 6.01 4.58 6.05 4.56 6.43 4.92 6.41 4.82
80 6.00 4.45 6.01 4.57 6.01 4.55 6.35 4.88 6.54 4.82
90 6.06 4.35 6.07 4.46 6.06 4.49 6.47 4.76 6.63 4.74
100 6.09 4.33 6.05 4.49 6.05 4.54 6.47 4.78 6.64 4.68
20 10 5.62 4.09 5.59 4.32 5.59 4.38 5.79 4.67 5.65 4.30
20 5.21 3.60 4.91 3.60 5.03 3.82 5.36 3.68 5.14 4.06
30 4.95 3.62 5.06 3.57 5.03 3.69 5.47 3.64 5.19 3.77
40 4.87 3.61 4.90 3.56 4.80 3.71 5.37 3.70 5.13 3.83
50 4.76 3.50 4.75 3.46 4.66 3.56 5.19 3.71 5.00 3.78
60 4.77 3.45 4.71 3.42 4.64 3.47 5.15 3.69 4.99 3.78
70 4.74 3.36 4.71 3.36 4.62 3.41 5.01 3.63 5.00 3.69
80 4.74 3.36 4.83 3.35 4.70 3.47 4.95 3.60 5.07 3.65
30 10 5.08 3.56 5.21 3.87 4.88 3.44 5.25 4.07 5.14 3.73
20 4.58 3.16 4.49 3.21 4.37 3.24 4.60 3.37 4.55 3.53
30 4,35 3.17 4.33 3.19 4.27 3.34 4.48 3.28 4.47 3.34
40 4.21 3.17 4.05 3.18 4.02 3.30 4.07 3.24 4.09 3.38
50 -~ 4.00 3.02 3.99 3.02 3.93 3.16 4.06 3.12 3.88 3.21
50 10 4.20 2.79 3.94 2.85 3.86 2.85 3.91 2.97 3.83 3.08
20 3.68 2.56 3.49 2.52 3.53 2.47 3.62 2.60 3.43 2.86
30 3.31 2.49 3.26 2.46 3.33 2.50 3.32 2.52 3.22 2.61
much more precise point estimates by using the and Cunia (1982) and Kotimaki and Cunia (1981).

slightly more complicated weighted procedures.
However, \/Szz is generally slightly higher for

modified (MLS or MWLS) versions of a model than Analysis of \[’\7-, the estimate of ,/5,,_2

for unmodified (OLS or OWLS) versions of the same

model. In other words, modified models are The statistic V is the estimate of g,, as calcu-
slightly Tess precise than analogous unmodified lated under the assumptions of each giveq‘model.
models. This difference is most noticeable with We will focus on the standard deviation YV, which
10 cluster samples, and decreases as the number is calculated as the square root of the arith-
of clusters sampled increases. Although the metic average of the 100 estimates V;. of the
difference in most cases is not statistically variance of z.. (one model applied to 100 sam-
discernible (Gillespie 1985), it is nonetheless ples). Table 3 shows ﬁfor all 360 model-
interesting that this trend is so consistent. sampling method combinations in the study.

One possible explanation for this trend is that

the range of individual tree measurements y, 4, The estimate YV decreases as average sample
and h is relatively larger than the range of size increases. For the unmodified regression
average summed cluster variables u and v. This models, ﬁseems directly dependent upon the

trend did not occur in earlier studies by Briggs number of trees in the sample size, regardless
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Table 2 The estimatdﬁf}thousands of pounds per acre) of the standard deviation of z, by model and
sampling method. m = number of clusters, p = percent of trees sampled per cluster.
Sampling
Method Model
m p 6 13 15 17 20 22 25 27 30 32
10 10 9.66 6.46 7.35 5.05 8.29 6.19 10.31 6.13 12.51 7.80
20 8.45 5.96 5.26 3.80 5.60 4,31 9.45 5.63 11.27 6.78
30 7.97 5.76 4.50 3.21 4.51 3.46 8.85 5.43 9.88 6.21
40 7.64 5.49 3.89 2.80 3.87 2.97 8.56 5.19 9.55 6.05
50 7.54 5.52 3.45 2.52 3.44 2.66 8.13 5.33 9.36 6.04
60 7.39 5.46 3.12 2.29 3.14 2.42 7.98 5.20 9.21 6.10
70 7.38 5.38 2.90 2.13 2.89 2.23 7.94 5.30 9.02 6.06
80 7.23 5.32 2.69 1.99 2.71 2.08 7.77 5.16 8.82 6.00
90 7.18 5.29 2.55 1.89 2.55 1.96 7.95 5.13 8.90 5.96
100 7.16 5.27 2.42 1.81 2.41 1.86 7.87 5.13 8.82 5.87
15 10 7.92 5.54 5.92 4.29 6.38 4.82 7.84 5.58 9.32 6.32
20 6.76 4.92 4.33 3.17 4.34 3.36 7.21 5.01 7.95 5.43
30 6.36 4.72 3.63 2.65 3.54 2,72 6.71 4.71 7.26 5.04
40 6.10 4.55 3.12 2.30 3.05 2.35 6.37 4.48 6.95 4,85
50 6.03 4.48 2.79 2.05 2.71 2.10 6.19 4.38 6.80 4.77
60 5.93 4.44 2.53 1.87 2.48 1.92 6.05 4.29 6.71 4.74
70 5.93 4.37 2.35 1.73 2.30 1.77 6.03 4.25 6.65 4.70
80 5.83 4.34 2.18 1.63 2.15 1.66 5.86 4.20 6.53 4.68
90 5.77 4.29 2.06 1.54 2.03 1.56 5.84 4.13 6.51 4.64
100 5.75 4.28 1.97 1.48 1.91 1.48 5.81 4.13 6.44 4.58
20 10 6.85 4.92 5.16 3.77 5.49 4.15 6.68 4.86 7.71 5.45
20 5.90 4.27 3.79 2.77 3.76 2.88 5.99 4.31 6.58 4.67
30 5.59 4.07 3.17 2.31 3.08 2.35 5.73 4.09 6.20 4.39
40 5.38 3.91 2.73 2.01 2.65 2.04 5.52 3.91 5.95 4.23
50 5.30 3.86 2.44 1.79 2.36 1.82 5.35 3.85 5.81 4.16
60 5.20 3.81 2.21 1.63 2.16 1.67 5.22 3.77 5.72 4,11
70 5.17 3.77 2.04 1.51 2.01 1.54 5.16 3.72 5.67 4.07
80 5.08 3.74 1.92 1.43 1.87 1.45 5.00 3.67 5.57 4.05
30 10 5.63 4.04 4.29 3.18 4.32 3.36 5.37 4.01 5.89 4.39
20 4.84 3.48 3.11 2.32 3.02 2.34 4.70 3.50 5.07 3.74
30 4.54 3.27 2.58 1.90 2.47 1.92 4.41 3.27 4.77 3.52
40 4.38 3.16 2.23 1.66 2.14 1.66 4.27 3.15 4.63 3.41
50 4.30 3.10 1.99 1.48 1.91 1.49 4.15 3.09 4.55 3.34
50 10 4.41 3.20 3.44 2.58 3.33 2.61 4.32 3.25 4.52 3.41
20 3.80 2.73 2.45 1.82 2.35 1.83 3.70 2.77 3.92 2.93
30 3.57 2.56 2.04 1.49 1.91 1.50 3.46 2.57 3.69 2.76

of the sampling method. For the ratio estimators
and modified regression models, all of which
account for the cluster effect of sampling, \(V
behaves much like \f§;;; specifically, [V de-
creases with an increase in the number of clus-
ters sampled, as well as with increased value of
p (up to 30 to 40 percent). For these models,
the effect of increasing the number of clusters
does more to reduce VV than_increasing percent
subsampling. Estimates of\[/V from models which
use only d are generally 1.3 to 1.5 times as
large as estimates from models which use d and h.

With small sample sizes,VV as estimated by
weighted least squares models is generall
slightly higher (10 to 30 percent) than\l'%' as

estimated by unweighted least squares regression

models for similar sampling methods. This dif-
ference gets smaller as the number of clusters
and/or the percent subsampling increases. The
estimates of \JV from modified regression models
are 30 to 50 percent higher than estimates from
unmodified regression models. The estimates of
V from ratio estimator models are larger than
those from unmodified regressions, but smaller
than those from modified regressions (which use
the same independent variable(s).
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Table 3 The ratioJV/Szz of the two different estimates of the standard deviation of z, by model and
sampling method. m = number of clusters sampled, p = percent of trees sampled per cluster.

Sampling

Method Model

m p 6 13 15 17 20 22 25 27 30 32

10 10 0.99 0.97 0.71 0.75 0.86 0.94 0.87 0.80 1.13 1.04
20 1.00 1.00 0.62 0.63 0.66 0.77 1.03 0.93 1.32 1.12
30 1.00 1.03 0.57 0.56 0.57 0.65 1.02 0.89 1.18 1.01
40 0.99 1.01 0.52 0.51 0.51 0.56 1.06 0.88 1.16 1.01
50 0.98 1.04 0.46 0.47 0.46 0.52 1.00 0.90 1.14 1.00
60 0.98 1.06 0.42 0.44 0.42 0.48 1.02 0.90 1.18 1.05
70 0.98 1.05 0.40 0.41 0.39 0.44 0.99 0.94 1.12 1.07
80 0.96 1.04 0.36 0.38 0.36 0.42 0.93 0.91 1.06 1.08
90 0.96 1.06 0.34 0.37 0.35 0.40 0.93 0.92 1.05 1.10
100 0.95 1.07 0.33 0.36 0.33 0.38 0.92 0.94 1.07 1.11

15 10 1.09 1.13 0.79 0.78 0.92 0.89 0.98 0.95 1.24 1.13
20 1.03 1.03 0.64 0.64 0.66 0.68 0.98 0.94 1.17 1.03
30 1.01 1.01 0.57 0.55 0.55 0.56 1.02 0.95 1.16 1.00
40 0.99 0.96 0.50 0.48 0.50 0.49 0.94 0.90 1.07 0.98
50 0.98 0.97 0.45 0.43 0.44 0.45 0.94 0.88 1.05 0.96
60 0.99 0.99 0.42 0.40 0.41 0.42 0.94 0.87 1.06 0.97
70 0.99 0.98 0.39 0.38 0.38 0.39 0.924 0.86 1.04 0.97
80 0.97 0.98 0.36 0.36 0.36 0.36 0.92 0.86 1.00 0.97
90 0.95 0.99 0.34 0.35 0.33 0.35 0.90 0.87 0.98 0.98
100 0.94 0.99 0.33 0.33 0.32 0.33 0.90 0.86 0.97 0.98

20 10 1.22 1.20 0.92 0.87 0.98 0.95 1.15 1.04 1.37 1.27
20 1.13 1.19 0.77 0.77 0.75 0.75 1.12 1.17 1.28 1.15
30 1.13 1.12 0.63 0.65 0.61 0.64 1.05 1.12 1.19 1.16
40 1.10 1.08 0.56 0.56 0.55 0.55 1.03 1.06 1.16 1.11
50 1.11 1.10 0.51 0.52 0.51 0.51 1.03 1.04 1.16 1.10
60 1.09 1.10 0.47 0.48 0.47 0.48 1.01 1.02 1.15 1.09
70 1.09 1.12 0.43 0.45 0.43 0.45 1.03 1.02 1.13 1.10
80 1.07 1.11 0.40 0.43 0.40 0.42 1.01 1.02 1.10 1.11

30 10 1.11 1.13 0.82 0.82 0.89 0.98 1.02 0.98 1.15 1.18
20 1.06 1.10 0.69 0.72 0.69 0.72 1.02 1.04 1.12 1.06
30 1.04 1.03 0.59 0.60 0.58 0.57 0.99 1.00 1.07 1.05
40 1.04 1.00 0.55 0.52 0.53 0.50 1.05 0.97 1.13 1.01
50 1.08 1.03 0.50 0.49 0.49 0.47 1.02 0.99 1.17 1.04

50 10 1.05 1.15 0.87 0.91 0.86 0.92 1.10 1.10 1.18 1.11
20 1.03 1.07 0.70 0.72 0.66 0.74 1.02 1.06 1.14 1.02
30 1.08 1.03 0.62 0.60 0.57 0.60 1.04 1.02 1.14 1.06

Analysis of the ratio VVVSZZ

The ratio \/V/SZz illustrates the difference be-
tween the assumed and the actual precision of the
various models. Table 3 lists this ratio for all
360 model-sampling method combinations.

For the ratio of mean estimators and modi-
fied regression, the ratio\/VVSzz is approximate-
ly 1.0 or slightly higher, staying constant re-
gardless of changes in the sampling method or
gsample size. For unmodified regression models,

VV/szz is generally between .4 and 1.0, decreasing
with increases in percent subsampling from a
fixed number of clusters, and increasing with an

250

increase in the number of clusters sampled for a
fixed percentage of trees. The net effect is a
slight decrease in the ratio as the average
sample size increases, indicating that ¥V de-
creases relative to Spor

In general, the ratio\lvyszz is larger for
weighted regression models than for similar but
unweighted regression models. The ratio is also
much larger for modified regression models (ap-
proximately 1.0 or higher) than for similar but
unmodified regression models (from .4 to 1.0).

In all cases of unmodified regression
models, the ratio if less than 1.0. If SZZ is



accepted as a better (and unbiased) estimate of
Tpgr then V underestimates o z in unmodified
models. This is expected, since the assumptions
of independence among sample elements is vio-
lated.

These relationships are emphasized by the
analysis of confidence interval reliability.
Unmodified regression models yield 95 percent
confidence intervals which were only correct 40
percent of the time. Ratio estimators and modi-
fied unweighted regression models yield 95 per-
cent confidence intervals which are correct ap-
proximately 95 percent of the time (except when
samples came from 10 clusters). Modified weight-
ed regression models yield 95 percent confidence
intervals which are 95 to 100 percent correct,
implying that they may be too large and that the
weighted modified procedure overestimates the
error of the estimate.

It is important to note that the study popu-
lation was simulated by a weighted, unmodified
regression model with conditional variance set
proportional to a4n2, In the modified weighted
regression models, the cluster biomass was de-
fined as u = Iy, with the variance of u assumed
to Ee progogtional to the sum of the a§ {(with af
= d" or d°h*). A better assumption (based on the
success of the modified unweighted regression
models) seems to be that the conditional variance
of u is proportional to the number of sample
trees in the cluster, ny, even when the indivi-
dual tree biomass conditional variance is known
to be proportional to d%h? (Gillespie, 198S).

sSummary Comments

The main objectives of this study were to
verify the results of Briggs and Cunia (1982) and
Kotimaki and Cunia (1981) concerning the estima-
tion of biomass tables by cluster sampling.

These earlier studies found that the point esti=
mates of biomass were approximately equally accu=-
rate whether or not 'the estimation procedure
considered the cluster effect of sampling. How-
ever, they felt (but could not prove) that ignor-
ing the cluster effett caused a large underesti-
mation of the error of such point estimates.

Our conclusions generally agree with these
results., The ratio—of~means estimator and para-
_ bolic least squares regression models were prac-
tically unbiased estimators of i, especially when
samples were selected from at least 15 ¢lusters.
There was no statistically discernible difference
between modified and unmodified procedures in
calculating point estimates of biomass.

The estimate S of error of the point esti-
mates was (i) much lower for models using both d
and h than for models using d alone; (ii) roughly
equal for weighted and unweighted versions of a
similar regression model; ahd (iii) slightly
higher for modified (for cluster effect) versions
of regression models than for unmodified versions
of the same model.

For all models, Szz decreased with both an
increase in the number of clusters sampled for a
fixed average sample size, and with increased
percentage p subsampling from a fixed number of
clusters. This decrease tapers off after 30 to

40 percent of subsampling.

The estimate V of the error of the point
estimates reflects the model assumptions concern-—
ing variance estimation. For unmodified regres-
sion models, V was consistently less than S ’
which implies. that ignoring the cluster effect
will lead to underestimation of the error, or
overestimation of precision. For modified models
and the ratio of means estimators which consid-
ered the cluster effect, V was approximately
equal to or slightly greater than S,,+ except for
modified weighted regression models when V was
consistently larger (by up to 25 percent) than
5,,- This overestimation of the true error by
moﬁified weighted regression models was not re-
ported in the earlier studies. The consistency
of this behavior over the variety of sampling
methods studied implies that the assumptions of
the modified weighted regression estimators con-
cerning variance estimation may not be correct
for our study population. This was emphasized by
the behavior of confidence interval reliability,
where counts of confidence intervals which in-
c¢luded the known population mean 1 (out of sets
of 100 trials) were consistently greater than
expected. Unweighted modified regression models
yielded the best estimates of error, implying
that the conditional variance of the cluster sum
of biomass i proportional to the number of trees
in She cluster, rather than the sum of d4 or
a%n

The present study was limited to simple
random samples of clusters and of a fixed propor-
tion of trees within clusters. Future studies
may have to consider (i) selecting trees from
clusters with probability proportional to some
measure of tree size; (ii) consideration of other
estimation protedures, such as generalized least
squares or a hybrid regression which combines OLS
point estimates and MLS error estimates; and
(iil) estimation techniques applied to portions
of samples, for éxample trees above a specified
DBH.
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It is common to select sample trees for
biomass tables construction by stratified, two-
stage cluster sampling whereby (i) several clus-
ters (plots) of trees are selected at random from
each of a given number of strata and (ii) from
each sample cluster a certain percent of trees
is selected at random to be measured for bio-
mass, diameter and height. The common procedure
to estimate a biomass regression function appli-
cable to the entire forest area (containing all
strata) is to use the least or weighted least
squares method applied to the individual tree
data irrespective of the stratum from which each
tree has been selected. Simulation techniques
were used to evaluate the validity of the infer-
ences made when (i) the above procedure is used
to estimate the biomass regression function and
the average biomass per unit area of a given
forest, or (ii) this procedure is replaced by
alternative procedures that take into account the
effect of the stratum from which the individual
trees are being selected. It is shown that (i)
the common estimation procedure is generally poor
as it may lead to biased results and (ii) the
proper estimation procedure is to calculate bio-
mass regression functions separately by stratum.

Introduction

Cunia (1986) describes a computer simulation
process whereby (i) samples of trees are selected
by a variety of sampling techniques from a large
population of forest trees, (ii) for each indi-
vidual sample so selected, a variety of statisti-
cal procedures are used to estimate the regres-
sion function of tree biomass on diameter or
diameter and height, (iii) each biomass regres-
sion of each individual sample is applied to the
tree population values of diameter and height to
estimate the mean biomass per acre and (iv) by
comparing the estimates with the known value of
the population mean biomass per acre, inferences
are made about the probability behavior of the
estimates; inferences about the effect, if any,
of the sampling method and estimation procedure
on the bias of the estimates, their precision and
their estimated precision,

He has described three major sampling tech-
niques. The first is the two-stage random sam-
pling where m sample plots are selected from the
population of 667 non-empty plots (clusters of
trees) by simple random sampling without replace~

ment and the trees from the selected plots are
subsampled by a variety of sampling procedures.
A second sampling method, defined as two-phase,
two-stage random sampling, generates samples
consisting of two, two-stage random samples; a
first phase, relatively small sample where the
trees are measured for diameter, height and bio~
mass and a second phase, relatively large sample
with the trees measured for diameter and height
but not biomass. The third sampling method,
denoted here as stratified, two-stage sampling is
similar to the first; the difference is that the
m sample plots of the first stage are selected by
stratified, not simple random sampling,

Cunia and Gillespie (1985), Gillespie
(1985), Gillespie and Cunia (1986) and Michela-
kackis and Cunia (1985, 1986) discuss in more
detail the simulation processes and the results
obtained by the first two sampling methods. 1In
the present paper we shall discuss the results
obtained by the third method. The detailed re-
sults are reported by Arabatzis (1986). More
specifically, we shall describe the simulation
process applied to stratified two-stage sampling
and its five components, namely, the population
being simulated, the sampling method, the estima-
tion procedures for the biomass regression func-
tion, the application of the biomass regression
to estimate the mean biomass per acre and final-
ly, the analysis of the results obtained. Not to
repeat processes already described or conclusions
already reached, we shall refer heavily to the
above-mentioned papers.

Forest Tree Populations Being Simulated

The basic tree population, herebj called
Population 1 has been constructed by a procedure
described in a series of papers by Cunia and
Michelakackis (1983, 1984a,b) and Cunia, Michela-
kackis and Lee (1984) and summarized in a paper
by Cunia (1986). For more details the interested
reader is referred to these papers. It suffices
to state here that (i) the basic data used to
construct the tree population consists of actual
field measurements of diameter at breast height
(d), merchantable height (hm) and species, among
other things, performed on 22753 trees of mer-
chantable size (d>5 inches) contained in 927 one-
fifth acre plots (260 of which are empty, that
is, without merchantable size trees) selected
from New York State forest lands and (ii) the
total height and biomass of each individual tree
was generated by Monte Carlo technigues that took
into account the effect of diameter, merchantable
height, species, site quality, geographical re-
gion, individual plot and finally, the random
variation of tree height or biomass about its own
(conditional) expected value.

To apply stratified sampling, one must use
strata that are simple to define and sample, and
sufficiently different from each other to make
the sampling efficient. For simplicity, the sam-
ple plots were classified into three strata by
the geographical region in which they happened to
fall. Unfortunately, this resulted in strata
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that were very similar to each other. Prelimi-
nary samples with plots selected by an allocation

that was far from proportional, generated unstra-

tified means (which ignored the plot stratifica-
tion) that were not significantly different from
the true mean (biomass per acre) of the popula-
tion. This stratification obviously was not
appropriate for the objectives of our study.
Consequently, changes were required in the popu-~
lation tree biomass to make the differences be-
tween strata sufficiently large. This was accom-
plished by increasing (or decreasing) the biomass
of each individual tree from a given stratum by
an amount calculated by a formula of the form
(a+bd2), where the constants a and b were stratum
specific and @ was the tree diameter.

More specifically, we have defined (i) the
new Population 2 by using the values (a,b) equal
to (238, -2.46), (60, .60) and (-11, -1.34) for
the trees of stratum 1, 2, and 3 respectively,
(ii) the new Population 3 by using (200, .40) for
stratum 1 and (-11, -1.34) for stratum 3, with
the biomass of the trees of stratum 2 remaining
unchanged and (iii) the new Population 4 where
the values (a,b) were those equal to (150, .30),
(10, -.50) and (200, 1.50) for stratum 1, 2 and 3
respectively. As it will be later seen, the
three strata of the new three populations become
sufficiently different.

Stratified Two-Stage Sampling Procedure

The first stage of the sampling procedure
consists of my, My and my non-empty sample plots
(clusters of trees) selected by simple random
sampling from the 233, 188 and 246 non-empty
plots of stratum 1, 2, and 3 respectively. There
are also 64, 119 and 77 empty plots (without
merchantable size trees) in these strata, but
there was no point in selecting such plots in the
sample. They were considered, however, when the
estimate of the mean biomass per acre was calcu-
lated. In the second stage, a fixed percentage p
of trees from each plot of the first stage sample
was selected by simple random sampling without
replacement. Because the multiplication of the
percentage p with the number nj of trees in the
i-th plot is not necessarily an integer, a random
number R from .00 to .99 was used to decide
whether an additional sample tree is to be selec-
ted from the plot (when R < fractional part of
the product nip) or no additional tree is to be
selected otherwise.

For the purpose of the present study forty
sets of 100 independent samples were selected by
computer from each of the three strata. These
forty sets represent forty different combinations
of (i) first stage number m of sample plots (m =
2, 5, 10, 15, 20, 30) and (ii) second stage
percentage p of sample trees (p = 5, 10, 15, 20,
40, 60, 100). Not all combinations of m and p
values above were used, and the resulting sample
size of the combinations used varied from 7 to
1020 trees. The specific combinations of m and p
that were used are listed in Arabatzis (1986);
they are not given here.
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A stratified sample is now defined as a
combination of three samples, one from each stra-
tum. As there are 4000 samples from each stratum
(40 sets of 100 simulated samples) there are
theoretically a total of 4000° = 64,000,000,000
possible stratified samples. To reduce the num-
ber of these samples to a manageable size, we
have decided to consider stratified samples that
(i) use the same percentage p in all strata, (ii)
are generated by the same simulation run (that
is, they have the same simulation run number) and
(iii) consist of arbitrarily selected values my,
m, and mj. The specific types of stratified
samples used will be given later.

Estimation Procedures for the Biomass Regressions

The various procedures to estimate the tree
biomass regression functions are defined as com-
binations of (i) assumed form of the regression
function, (ii) type of least squares method used
and (iii) way by whiech the stratification of
sample tree data is taken into account.

Two basic forms of regression function were
used, R

form 1: y =8 + B,d + B3d2 , and
form 2: y = B + B,a? + Byd%n

where y = tree biomass and, as defined before, 4
= tree diameter and h = height. The selection of
these forms was based on (i) the conclusions
reached by Cunia and Gillespie (1985), Gillespie
and Cunia (1986) and Michelakackis and Cunia
(1985, 1986) and (ii) the fact that a term of the
form bd“ was added to each tree biomass of Popu-
lations 2, 3 and 4.

Four least squares methods were used, the
ordinary least squares (OLS), ordinary weighted
least squares (OWLS), modified least squares
(MLS) and modified weighted least squares (MWLS).
These methods are described in more detail in
Cunia and Gillespie (1985), Gillespie and Cunia
(1986), Michelakackis and Cunia (1985, 1986),
Cunia (1986) and Arabatzis (1986). This detailed

_description is not repeated here. It suffices to

say that (i) OLS is the usual least squares
regression procedure applied to individual tree
data without reference to the plot the tree was
selected from, (ii) OWLS is the usual weighted
least squares method where the conditional vari-
ance of y given d is assumed to be proportional
to d* and the conditional variance of y given 4
and h is assumed to be proportional to d h? and
(iii) MLS and MWLS are the usual least and
weighted least squares methods modified so as to
take the cluster (plot) effect into account;
these modifications consisting of the application
of the weighted least squares method to the plot
(not tree) data with the assumptions about the

weights to use varying from MLS to MWLS.

We have defined nine procedures to take (or
not to take) into account the effect of stratifi-
cation, when the data of the sample trees are
being used. These procedures are described in




detail by Arabatzis (1986) and for more informa-
tion, the reader is referred to his work. How-
ever, because they are essential to the interpre-
tation of the results obtained and conclusions
reached from the analysis of these results, the
nine procedures are summarized below.

Procedure 1 - The trees are assumed to have
been selected by unstratified sampling and, thus,
one common regression function is estimated, and
then applied, to all three strata. This is the
usual procedure used by foresters when one re-
gression function is desired for all strata and
stratified sampling is used to select the sample
trees in order to insure a better representation
of the trees from each stratum.

Procedure 2 - Stratified sampling is as-
sumed, with the trees from one stratum selected
independently from those of another stratum.

- Three biomass regression functions, one for each
stratum, are estimated independently of each
other and each regression is applied to its own
stratum when the estimate of the mean biomass per
acre is calculated. This is the right procedure
to use when the sample trees were selected by the
classical method of stratified random sampling.

Procedure 3 - Same as Procedure 2 but the
three biomass regressions are calculated simul-
taneously by weighted least squares regression
techniques that use dummy variables to (i) test
null hypotheses about similarities between the
regression functions of various strata and (ii)
calculate regression coefficients that are common
to several regressions, when these regression
coefficients are not significantly different from
each other. The least squares with dummy vari-
able techniques are fully described by Cunia
(1973) and the interested reader should refer to
him for more details.

Procedure 4 - The three stratum biomass
regression functions of Procedure 2 are first
calculated as usual, and then, a single biomass
regression function, applicable to all strata is
defined as the weighted regression

a

Y = wlrl + w2r2 + w3r3

where r; is the regression of stratum i and the
weight Wy is defined as the ratio of the total
area of stratum i to the total area of all stra-
ta, for i = 1,2,3.

Procedure 5 - Similar to Procedure 4 but the
weights w; are defined as the ratio of the total
number of trees in stratum i to the total number
of trees in all strata, i =1,2,3.

Procedure 6 - Similar to Procedure 4 but the
three biomass regression functions that were
averaged were calculated by Procedure 3 and not
Procedure 2,

Procedure 7 - Similar to Procedure 6 but the
weights w; are those of Procedure 5 (based on
number of trees) and not those of Procedure 4
(based on stratum areas).

Procedure 8 - A single biomass regression
function is calculated for all three strata by
the weighted least squares method, where the
weights used are defined as functions of (i) area
of stratum, (ii) sample size within a stratum and
(iii) the usual tree values of d or d and h.
More specifically, the weightéd least squares
method was applied as if, for each individual
tree, the conditional variance of the biomass is
(i) proportional to stratum area, (ii) inversely
proportional to sample size within stratum and
(iii) proportional to d” or d*h“ as the case may
be.

Procedure 9 ~ Similar to Procedure 8, but
the weight of each individual tree is made pro-
portional to stratum number of trees rather than
stratum area.

Combining the form of the regression func-
tion (2) with the least squares method (4) and
the procedure to take the tree stratification
into account (9) yields a total of 72 procedures
for the estimation of the biomass regression
functions. This means that, for each simulated
sample, we have calculated a total of 72 biomass
regressions. To simplify the discussion we shall
identify the three criteria of the estimation
procedure as (i) form of regression function (ii)
least squares estimation approach and (iii) pro-
cedure number (to take the tree stratification
into account.

Note that, from among the nine procedures we
have described, the second procedure is one which
is theoretically unbiased, provided of course
that the estimators of the means U, within stra-
tum i are themselves unbiased. Consequently
procedure 2 may be taken as the one to be com~
pared with all of the remaining eight procedures.

Estimation Procedure for the Mean Biomass per
Acre )

To calculate z, the estimate of the overall
mean biomass per acre of the entire population,
we shall use the stratified sampling formula

2 =017y + Q2; + Q325
where, for stratum i = 1,2,3,

Ay

A

area of stratum i (acres)
Ay + Ay + Ay = total area (in acres)
total area (in acres) of the 927 one-
fifth acre plots of our population
Q; = Ai/A = relative size of stratum i, and
i estimate of the mean biomass per acre
%_of stratum i.

]

(]

Let us write now the biomass regression
function of stratum i as

Y =DbjiX; + Dbyyxy + byaxy
where

1 for all trees

X1
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X, = a or a2 for regression function form 1
or 2 respectively, and

X3 = d2 or d%h for regression function form
1 or 2 respectively.

If the totals of the variables y, Xy Xy and
X3 for stratum i are written as

T, = total of tree biomass y in stratum i
Til = total of values x4 in stratum i
= total number of trees in stratum i
TiZ = total of values x, in stratum i
= gum of tree diameters d or squared tree
diameters d“ for regression function
form 1 or 2 respectively, and
Ti3 = total of values x, in stratum i
= sum of squared tree diameters d2 or
crossproducts dzh for regression func-

tion form 1 or 2 respectively,

then, the corresponding averages on a per acre
basis are

Ti/Ai = mean biomass per acre in stratum i

Til/Ai = mean number of trees per acre in
stratum i

Tiz/Ai = mean sum of d or a? per acre as the
case may be and

Ti3/Ai = mean sum of d2 or a2h per acre as
the case may be

Using the above notation it is easy to show
that

(1) the estimate z,

i of ui can be written as

zg = byq(T /R340 5(T59/R;5)+by3(T53/R4)
and

(2) the estimate z of the overall mean y is

z =012y + Qp2Zy + Q323

(1/7R) (011 Ty1+by 571 2+P13T13%P21 70y

+ ... +b33r33)

[B]' (1]

where [ | and [ ]' denotes matrices and transpose
matrices

[B]' = [by; by, bygbyy byy by3 b3y byy bagl

and

[ux]' = [(Tll/A) (le/A) o o o o (t33/A)]
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Because [ux] is known without error, and if
the covariance matrix of [B] is estimated by
[SBB], then, the variance of z is estimated by
the expression

vV = [“x]' [Sppl (M1

If the basic assumptions of the sampling and
estimation procedures are strictly satisfied, z
and V are unbiased estimators. As these assump-
tions are never satisfied, both z and V are
biased. The objectives of this study is to find,

among other things, to what extent z and V are
biased.

Analysis Procedure

Each simulated sample may be viewed as a
random experiment. For a given sampling proce-
dure, sample size and allocation, the 100 simu-
lated samples may also be viewed as 100 random
outcomes, the result of 100, identically defined
and statistically independent random experiments.
Each random experiment generates 72 sets of ran-
dom variables, one set for each estimation proce-
dure. Each set contains (i) two random variables
z and V (as defined in the previous section) that
are taken as estimators of the mean biomass per
acre p and the variance of z (as an estimator of
u) respectively, (ii) two random intervals (z+

tVW), with t = 2.0 and t = 2.6 and (iii) two multi-
nomial random variables that take the values -1,
0 and 1, depending on whether the p falls below,
within or above the two random intervals above.

Because, for each estimation procedure and
sampling method, sample size and allocation we
have 100, identically distributed and statisti-
cally independent random variables z, we can use
their average Z and variance 5,, as estimators of
the mean b, and variance ¢__. As 2z is taken as
an estimator of p, (i) the sample statistic (Z-u)
may be used as an estimator of the bias of z,

(ii) the sample statistic S,, = szz/loo is an
estimator of the variance of the bias (Z-,) of z
(as well as estimator of the variance of Z) and
(iii) t = (E-u)/VE;; can be used as a statistic
to test the null hypothesis that the bias of z is
equal to zero.

The variance of z is also estimated by the
100 sample values V as well as their average v.
This last value would normally be an unbiased
estimator of the true variance of z whenever
all the assumptions of the statistical model used
in the corresponding sampling and estimation
procedure are strictly satisfied. Another esti-
mator of the same true variance of z, this time
unbiased, is the statistic S defined above.
Consequently, the ratio V/Szz, (or its square
root), may be taken as an estimator of the rela-
tive amount by which V underestimates or over-
estimates the variance of z. Another measure of
the goodness of V as an estimator of the variance
of z is provided by the number of times (out of
the 100 times) that the value p fell below, with-
in or above the 95 and 99 percent confidence
intervals.



All of these values for all stratified sam-
ple sizes and estimation procedures considered
in this study are listed in a series of tables by
Arabatzis (1986). As an example, we have shown
in Tables 1, 2, 3, and 4, for populations 1, 2, 3
and 4 respectively and for the 72 estimation
procedures, the statistics Z, (Z-M), JSZ . /V;

Vyszz, t and the number of times p fell below,
within and above the 95 and 99 percent confidence
intervals, for the stratified sampling method
with m1=30, m2=20, m3=10 and p=15 percent.

The procedure to analyze the tables is to a
large extent subjective. The conclusions were
drawn by an ocular analysis of the values of Z,
(Z-w, Jszz,Jv/szz,etc.as listed in the table
or as plotted in a set of graphs.

Analysis of Results - Part 1

To get an overall view of the type of re~-
sults obtained, we have analyzed first, in rela-
tive detail, one specific stratified sample size
and allocation, the case of m1=30, m,=20 and
m3=10 clusters selected at random from stratum 1,
2 and 3 respectively with 15 percent of their
trees subsampled at random. The statistics Z,
(Z-4), S,p0 V,\/V/Szz, t and the number of
times the confidence intervals fell above, over
and below j, are ljisted by estimation procedure in
Tables 1, 2, 3 and 4 for Populations 1, 2, 3 and
4 respectively. We shall successively analyze
the bias of z, the precision and estimated pre-
cision of z and finally, the confidence intervals
(that include the combined effect of the bias and
estimated precision).

Analysis of the Bias of z

An ocular analysis of the bias (Z-u) of
Population 1 shows that, with the exception of
the ordinary weighted least squares estimates by
the regression form 2, the bias is not signifi-
cantly different from zero; the values t are
small, negative or positive values. And even
when the bias is significant, the significance
level is ordinarily above one percent. This is
to be expected since the difference between the
various strata is very small and any estimation
procedure that gives too much weight to any given
stratum could not unduly affect the bias. This
seems to imply that, whenever the strata are
sufficiently similar, the bias of the estimator z
of U would normally be close to, if not equal to
zero.

The conclusions change, however, with the
other three populations, where the strata were
made, on purpose, to be different from each
other. Starting with Procedure 1 (of a single
unstratified biomass regression) the reader can
verify that the sample bias is high in value and
highly significant. Depending on the population
considered, the bias is about 3, 7 and -5 percent
of U and the value of the test statistic t is
about 10, 20 and -17. Consequently, the evidence
strongly suggests that treating a stratified as
an unstratified sample (when calculating the

biomass regression) is a poor procedure as it may
seriously bias the estimates. This is to be
expected on purely intuitive grounds.

With the Procedure 2 estimates, the results
are different; the bias is small and not signifi-
cantly different from zero. The one exception is
with the estimates by the ordinary weighted least
squares applied to the regression form 2. This
is hard to explain. It may be something inherent
to the way by which the estimates are calculated
by the weighted least squares. It may be due to
some specific (and unidentified) characteristic
of our population. We do not know. But because
(i) the weighted least squares estimates of the
regression form 1 are statistically unbiased (ii)
we expected statistically significant biased
results to occur once in a while even where the
procedure generating them is unbiased, and (iii)
the value of the t-statistic is relatively low,
about -2.34, we conclude that, in general Proce-
dure 2 yields, as intuitively expected, unbiased
results. The procedure estimates the mean M, of
each stratum i separately and independently of
the estimation of the mean ¥4y of any other stra-
tum j and then combines the three estimates z,,
Zq and z3 into a single estimate of the overa%l
mean M by formulae which, from a theoretical
point of view at least are unbiased.

Procedure 3 forces the regressions of the
individual strata (of Procedure 2) to be parallel
or identical for some simulated samples, when it
is indeed known (in our case) that these regres-
sions are not parallel or identical. This is a
possible source of bias. As shown by an ocular
analysis of Tables 2, 3 and 4, the results are
mixed; the bias is not significantly different
from zero for Population 2 but the bias is some-
times significant and sometimes not significant
for the other two populations. This seems to
imply that the third procedure may introduce a
bias in the estimates, even though this bias is,
most of the time relatively small, of the order
of less than one percent of .

Procedures 4, 6 and 8, where a single re-
gression function (common to all strata) is cal-
culated by procedures using weights proportional
to stratum areas (as measures of stratum sizes)
yield high bias values that are significantly
different from zero. Sometimes, the bias value
may happen to be small and not significant. But
this seems to occur at random and one cannot find
a specific form of regression function or a least
squares approach for which the bias would be
consistently small. Things are different, how-
ever, when the measure of the stratum size is
based on the total number of trees it contains.
Then, the results are much better. Proce-

dures 5 and 9 produce consistently small bias

values which only occasionally are significantly
different from zero, while for Procedure 7, the
bias is significantly different from zero in 7
out of 24 cases. This last result is not un-
expected since the single biomass regression used
by Procedure 7 is based on three separate regres-
sions which applied separately to the correspond-
ing strata yield, in several instances, biased
results. All this seems to imply that (i) using

257



TABLE 1: The statistics £, (E-u), JSZZ ,‘JWV', the ratio JV/S z » t and the
number of time p fell below, within or above the 95% and 99% confidence
intervals, as calculated by procedures 1, 2, 3, 4, 5, 6, 7, 8 and 9
for population 1; Sampling method: 15 percent of trees selected from
30, 20 and 10 plots of stratum 1, 2 and 3 respectively.

estimation number of times
model/ 957 997
rocedur z Z- v
procedure z (Z-u) ,/Szz vV ,/v/szz t b wa b wa
1 111 114,988 -0.56 3.569 2.%51 0.71 -1.57 5 8411 2 94 &
2 121 11%5.088 ~-0.45 3,433 2.508 0.73 -1.32 7 85 8 1 95 &
3 131 115.057 -0.48  3.720 3.608 0.97 -1.32 2 8 4 1 86 3
4 141 115.066 -0.48 3.573 3.887 1.09 ~-1.36 0 97 3 O 88 2
5 211 115.770 0.22 2.875 1.887 0.73 0.86 11 84 5 4 83 3
6 221 114,933 -0.61 2.464 1.964 0.80 -2.50 2 8711 2 94 a
7 231 115,745 0.1 2.711 2.663 0.98 0.72 5 92 3 0 99 1
8 241 115.699 0.14 2.401 2.885 1.20 0.62 1 88 1 0100 O
e 112 115.164 -0.38 4.047 2.734 0.8 <-0.95 10 80 10 4 88 8
10 122 115.597 0.04 3.846 2.816 0.73 0.12 7 88 5 2 94 4
11 132 115.138 =0.41 5.108 4.371 0.86 -0.80 3 @2 5 1 87 2
12 142 115.272 =~0.27 4,598 4.782 1.04 -0.60 1 87 2 0 99
13 212 115.724 0.17 2.986 2.022 0.88 0.5 12 81 7 ©& 88 4
14 222 114.880 ~0.65 2.8i4 2.0892 0.74 -2.34 s 87 8 2 83 S
15 232 115.639 0.08 3.384 3.084 0.81 0.27 & 88 3 3 96 1
16 242 115.674 0.12 2.972 3.338 1.12 0.42 3 85 2 0100 ©
17 113 114.968 -0.58 3.873 2.756 0.71 -1.50 6 85 9 3 82 S
18 123 115,348 -0.20 3.476 2.554 0.73 -0.58 7 87 6 1 95 4
18 133 115.184 =-0.36 4.183 3.892 0.83 -0.87 4 92 4 2 95 3
20 143 115.338 -0.21 3.680 3.905 1.06 -0.57 1 98 3 O 98 2
21 213 115.771 0.22 2.934 2.046 0.70 .76 11 ®3 6 7 90 3
22 223 114.870 -0.87 2.614 2.008 0.77 -2.60 & B4 10 2 94 4
23 233 115.848 0.28 2.943 2.773 0.94 1.01 7 80 3 1 98 1
24 243 115.698 0.14 2.505 2.868 1.1%5 0.59 1 88 1 0100 O
26 114 115.282 -0.290 3.93a 2.683 0.8 -0.76 11 7910 6 88 S
26 124 115.684 0.13 3.728 2.764 0.74 0.36 & 87 5 3 84 3
27 134 115.262 =-0.28 4.945 4.300 0.87 -0.58 3 93 4 1 97 2
28 144 115.380 -0.18 4.451 4.583 1.06 -0.38 1 97 2 0 99 1
28 214 115.812 0.26 3.021 2.020 0.87 0.87 13 7710 9 87 a4
30 224 114.856 -0.B9 2.737 2.047. 0.76 -2.53 5 87 8 2 93 S
31 234 115,783 0.23 3.476 3.086 0.89 0.67 g 88 3 2 87 1
32 244 115.648 0.08 2.970 3.279 1.10 0.33 2 86 2 0100 0O
33 115 115.188 ~0.36 4.056 2.73% ©0.87 -0.88 11 7811 4 88 8
34 125 115,590 0.04 3.862 2.813 0.73 0.1 B 87 5 2 94 &
35 135 115.201 ~0.34 5.151 4.378 0.86 -0.68 3 82 & 1 97 2
36 145 115.308 ~0.24 4.645 4.784 1.03 -0.53 1 97 2 0 99 1
37 215 116.073 0.52 3.083 2.032 0.6B 1.70 15 78 7 10 85 S
38 225 115.022 -0.52 2.817 2.992 0.74 -1.87 s a8 * 2 94 4
39 235 116.048 0.49 3.%81 3.124 0.87 1.39 B 88 3 3 97 ©
40 245 115.833 0.28 3.070 3.367 1.10 0.92 3 95 2 04100 O
41 116 115.046 -D.S0 3.765 2.721 0.72 ~-1.34 & 85 g9 S5 82 3
42 126 115,387 -0.15 3.428 2.545 0.74 -0.45 7 87 5 1 95 &
43 136 115.251 -0.28 4,133 3.849 0.83 -0.72 4 82 4 2 95 3
44 146 115.373 -0.17 3.738 3.889 1.04  ~0.47 2 8 3 0 98 P
45 216 115.836 0.28 2.982 2.018 0.67 0.96 14 79 7 8 B8 &
45 226 114.844 =0.70 2.8574 1.887 0.78 -=R.74 s 8510 2 88 &
47 236 115.816 0.26 2.92) 2.737 0.99 0.8 7 80 3 1 98 1
48 246 115.843 0.09 2.487 2.885 1.16 0.38 1 %8 1 0100 0O
48 117 114.988 -0.%55 3.884 2.757 0.71 ~1.42 6 45 9§ 3 92 S
50 127 115.34% -0.20 3.483 2.%53 0.73 ~0.%59 7 88 7 1 95 &
51 137 115,225 ~0.32 4.217 3.88% 0.82 -0.77 4 92 % 2 ©5 3
52 147 115.332 -0.21 3.688 3.908 1.06 -0.58 41 86 3 ©0 88 2
53 217 116.094 0.54 B.047 2,050 0.87 1.79 14 80 B8 8 &8 3
54 227 114.838 -0.61 2.609 2.006 0.77 ~2.34 6 we 1C 2 94 4
5 237 115.980 0.44 3.013 2.768 ©0.82 1.46 e ®89 2 2 97 1
56 247 115.742 0.18 2.501 2.867 1.1% 0.77 1 e 1 0100 0O
57 118 115.651 0.10 3.572 2.508 0.68 0.28 40 83 7 S 81 4
56 128 115.865 0.33 3.6502 2.438 0.&8 0.83 13 83 4 S 91 a
59 138 115.708 0.15 3.858 3.542 0.82 0. 41 4 83 3 2 98 2
60 148 115.72% 0.°7 3.688 3.753 1.02 0.48 2 96 3 O©0 98 2
61 218 115.457 —0.09 2.873 1.883 0.66 -0.32 12 82 € 7 898 a4
62 228 114.683 ~-0.86 2.669 1.878 0.70 -3.24 3 8611 2 81 7
63 238 115.417 =-0.13 2.931 2.852 0.90 -0.45 7 8 3 2 96 2
64 248 115.490 -~0.06 2.584 2.760 1.07 -0.23 %2 94 3 ©0 89 4
65 119 115.583 0.03 3.753 2.%512 0.67 0.08 12 79 ® 5 91 &
86 129 115,783 0.23 3.724 2.446 0,88 0.63 14 Bl 5 S 81 &
67 133 115.651 0.10 3.95¢ 3.546 0.90 0.26 s 92 3 2 96 2
68 149 115.646 0.09 3.811 3.768 0.89 0.25 1 @ 3 0 ®8 2
59 219 115.710 0.16 2.934 1.872 0.64 0.85 16 79 5 & 88 4
70 229 114.843 =-0.70 2.744 1.890 0.69 -2.57 6 85 8 3 82 S
71 239 115.682 0.13 2.980 2.638 0.88 0.44 s 89 3 3 95 2
72 249 115.665 0.11 2.649 2.778 1.05 0.44 4 83 3 0 998 1
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The statistics Z , (Z-u) , \/Szz s ¥V , the ratioy V/Szz » t and the

number of times p fell below, within or above the 95% and 99% confidence
procedures 1, 2, 3, 4, 5, 6, 7, 8, and 9
15 percent of trees selected from

intervals, as calculated by

TABLE 2:
for
30,
estimation
model/
procedure
1111
2 121
3 131
4 141
s 211
6 221
7 231
8 241
9 112
10 122
11 132
12 142
13 212
14 222
15 232
16 242
17 113
18 123
18 133
20 143
21 213
22 223
23 233
24 243
25 114
26 124
27 134
28 144
29 214
30 224
31 234
32 244
33 115
34 125
35 1386
36 145
37 218
38 225
38 235
40 245
41 116
42 126
43 138
44 146
45 216
46 226
47 236
48 246
49 117
50 127
s1 137
52 147
53 217
sS4 227
s5 237
56 247
57 118
58 128
58 138
60 148
61 218
62 228
63 218
64 248
65 1189
66 129
67 139
68 149
68 219
70 228
71 239
72 2489

population 2; Sampling method:

20 and 10 plots of stratum 1, 2 and 3 respectively.

Z
117.689
117.858
117.707
117.783
118.553
116.401
118.477
117.571

113.468
113.901
113. 444
113.577
114.028
113.19%
113.944
113.978

113.430
113.872
114.338
114.168
114.080
113.180
114,197
113.779

114.527
114,959
114,536
114.658
115,087
114.131
118,058
114,823

113.273
113.674
113.284
113.389
114.157
113.1086
114,132
113.917

114,486
114,882
115. 308
114,996
115. 141
114.098
115.141
114,435

113.236
113.689
114,235
114.064
114.217
113.050
114.269
113.714

118,172
115. 485
115,257
115.438
114.985
112.828
114,981
114.070

113.958
114,219
114.094
114.241
114.103
111.685
114.147
112.988

(-Z-‘Ll) 1 4 SZZ

3.83
4,00
3.85
3.92
4.69
2.54
4.62
3.71

-0.38
0.04
~0.41
-0.27
0.17
~0.65
0.08
0.12

-0.42
0.01
0. 48
0.31
0.23

=0.67
0.34

-0.07

0.67
1.10
0.68
0.80
1.23
0.27
1.20
1.06

-0.58
=0.18
~0.58
~0. 46
0.30
~0.74
0.27
0.08

0.83
1,02
1.45
1.14
1.28
0.24
1.28
0.58

-0.61
-0.16
0.38
0.21
0.36
~0.80
0.4}
-0.14

1.31
1.63
1.40
1.58
1.13
-1.02
1.12
0.21

0.10
0.36
0.24
0.38
0.24
=2.16
0.29
=0.86

3.748
3.659
3.861
3.857
2.538
2.842
2.722
2.8085

4,047
3.846
5.108
4,598
2.965
2.814
3.384
2.972

3.937
3.612
4,798
4.270
2.998
2.736
3.335
2,853

3.834
3.725
4,945
4,45
3.021
2.737
3.476
2.870

4,056
3.882
S.151
4.645
3.083
2.817
3.581
3.070

3.828
3.52%
4,556
4,124
3.034
2.663
3.368
2.6808

3.947
3.8624
4.845
4,287
3.103
2.728
3.48S
2.837

3.694
3.635
3.822
3.787
2.830
2.843
2.913
2.870

3.746
3.717
3.810
3.872
2.861
2.969
2.956
3.003

Ve

2.722

2.876

3.965
4,425
2.057
2.643
3.029
3.708

2.734
2.816
4.371
4,782
2.022
2,092
3.084
3.338

2.861
2.728
4.030
4,222
2.062
2.212
2.969
3.165

2.693
2.764
4,300
4.683
2.020
2,047
3.085
3.278

2.736
2.813
4.378
4,784
2.032
2,092
3.124
3.367

2.813
2.691
3.974
4.183
2.031
2.170
2.926
3.119

2.862
2.724
4,032
4,220
2,065
2,208
2.976
3.158

2.891
2.921
3.998
4,488
2.082
2.751
3.157
3.860

2.684
2.947
3.873
4.494
2.064
2.811
3.134
3.911

V/SZZ

0.73
0.79
1.03
1.18
0.81
0.93
1.1%
1.32

0.68
0.73
0.86
1.04
0.68
0.74
0.91
1.12

0.73
0.76
0.84
0.99
0.68
0.81
0.89
1.1

0.68
0.74
0.87
1.05
0.67
0.7%
0.89
1.10

0.87
0.73
6.85
1.03
0.66
0.74
0.87
1.10

0.73
0.76
0.87
1.01
0.67
0.81
0.87
1.11

0.72
0.75
0.83
0.98
0.67
0.81
0.85
1.11

0.73
0.80
1,05
1.19
0.74
0.97
1.08
1.34

0.72
0.78
1.02
1.16
0.72
0.9%
1.06
1.30

number

95%
b w

36 62
36 €63
18 82
12 88
64 36
17 82
36 64
10 90

10 80
88
292
7
81
87
89
95

-
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TABLE 3: The statistics ¥, (Z-u), ‘/szz ﬁ, the ratio VV/Szz , t and the number
of times p fell below, within or above the 95% and 99% confidence
intervals, as calculated by procedures 1, 2, 3, 4, 5, 6, 7, 8 and 9
for population 3; Sampling method : 15 percent of trees selected from
30, 20 and 10 plots of stratum 1 , 2 and 3 respectively.

estimation number o times
model/ P

p— 95% 997
procedure % (Z-u) V/szz \/V_ '/V/Szz t b w b w a

a

1 111 126.759 7.12 3.508 2,758 0.79 20.31 68 32 0 52 48 O
2 121 126.903 7.26 3. 474 3.298 0.985% 20.92 56 44 0 33 67 O
3 131 126.790 7.18 3.738 4,303 1.15 19.14 36 64 0 20 80 O
4 141 126.86% 7.23 3.740 5.182 1.39 19.33 20 80 O 8 92 o
S 211 127.414 7.78 2.687 2.252 0.84 298.18 88 12 0 76 24 0
6 221 125.201% 5.%56 3.187 3.441 1.08 17.47 3 65 0 17 83 0
7 231 127.218 7.58 2,908 3.8258 1.31 26.07 489 61 0 27 73 0
8 241 125.966 6.33 3.387 5.183 1.52 16.70 14 86 O 2 98 o
9 112 119.249 ~-0.38 4,047 2.734 0.68 -0.85 10 80 10 4 B8 8
10 122 119.681 0.04 3.846 2.816 0.73 0.12 7 88 S 2 94 &
11 132 119.224 =0.41 S.108 4,371 0.86 -0.80 3 82 S 1 87 2
12 142 1198.357 -0.27 4.598 4,782 1.04 -0.60 1 87 2 0 99 1
13 212 119.808 0.17 2,968 2.022 0.68 0.59 12 81 7 8 88 4
14 222 118.97% =0.65 2.814 2,092 0.74 ~-2.34 S 87 8 2 83 s
15 232 118.724 0.08 3.384 3.084 0.91 0.27 8 89 3 3 986
16 242 119.7%9 0.12 2.972 3.338 1.12 0.42 3 85 2 0 100 ©
17 113 118.263 -0.37 3.985 2.854 0.72 -0.83 8 83 9 3 92 5
18 123 120.777 1.14 3.736 2.610 0.70 3.06 17 78 4 8 80 2
18 133 118.637 0.00 4.587 4,242 0.982 0.01 6 88 6 3 84 3
20 143 120.818 1.18 3.8886 4.120 1.06 3.08 0 88 2 0 89
21 213 119.830 0.19 2.939 2.062 0.70 0.67 11 83 6 6 81 3
22 223 119.633 0.00 3.028 2.111 0.70 0.00 9 86 S 3 85 2
23 233 118.906 0.27 3.186 2.959 0.83 0.85 4 83 3 1 98 1
24 243 120.994 1.36 2.581 3.016 1.17 5.27 S 95 O 0 100 o
25 114 118.781 -0.85 3.934 2,683 0.68 -2.17 7 82 11 4 S0 6
26 124 118.213 ~0.42 3.72% 2.764 0.74 -1.13 & 88 6 2 893 s
27 134 118.790 -0.84 4,945 4,300 0.87 =-1.71 3 93 a4 1 97 2
28 144 118.9089 =0.72 . 4.48% 4.683 1.05 -1.63 1 95 4 0o 898 1
29 214 119.341 -0.29 3.021 2.020 0.67 =0.97 11 77 12 7 88 4
30 224 118.385 =1.24 2.737 2.047 0.75 -4.56 4 86 10 O 94 s
31 234 119.312 -0.32 3.478 3.098 0.89 -0.83 4 93 3 o 899 1
32 244 119,177 =0.45 2.970 3.279 1.10 -1.54 2 86 2 0 100 o
33 115 118.319 -0.31 4,056 2.736 0.867 -0.78 11 79 10 4 88 8
34 125 118.719 0.08 3.862 2.813 0.73 0.22 8 87 S 3 93 4
35 135 13119.330 =0.30 $.151 4,378 0.8%5 -0.59 3 82 5 1 97 2
36 145 119.435 ~0.18 4.645 4,784 1.03 =0.43 1 97 2 o 99
37 215 120.203 0.56 3.083 2.032 0.66 1.84 15 79 6 10 85 S5
38 225 118.152 -0.48 2.817 2,082 0.74 -1.71 5 88 7 3:93 &
38 235 120.178 0.54 3.581 3.124 0.87 1.852 g 88 2 3 87 o
40 245 119.963 0.32 3.070 3.367 1.10 1.07 3 95 2 0 100 o
41 116 118.796 -0.83 3.882 2.807 0.72 -2.16 s 85 10 4 82 4
42 126 120.18% 0.55 3.632 2,592 0.71 1.52 10 84 B 4 93 3
43 136 119.200 ~0.43 4,492 4.162 0.83 =0.97 5 90 S5 3 84 3
44 146 120,236 0.60 3.841 4,088 1.086 1.57 o 88 2 0o 88 1
45 216 119,320 =0.31 2,999 2.032 0.68 -1.08 8 81 10 6 90 4
46 226 118.968 -0.66 2.912 2,082 0.72 -2.29 6 86 8 2 84 a4
47 236 119.199 -0.43 3.161 2.803 0.82 -1.38 2 94 4 1 97 2
48 246 120.213 0.57 2.497 2.988 1.20 2.32 1 88 1 0 100 o
49 117 118,332 -0.30 3.995 2.855 0.71 -0.76 8 83 @9 4 91 5
50 127 120.787 1.15 3.740 2.608 0.70 3.08. 17 78 4 8 90 2
51 137 119.710 0.07 4,610 4,245 0.982 0.16 6 88 6 3 94 3
52 147 120.817 1.18 3.8892 4.121 1.06 3.04 0 @8 2 0 99 1
S3 217 120.186 0.55% 3.061 2.067 0.68 1.80 14 80 6 8 89 3
S4 227 119.735 0.10 2.986 2.106 0.70 0.34 9 86 S 3 985 2
§8 237 120.103 0.46 3.252 2.953 0.981 1.44 6 92 2 2 97
56 247 121.054 1.42 2,557 3.014 1.18 5.55 5 85 O 0 100 o
57 118 119.261 -0.37 3.791 2.741 0.72 -0.98 8 85 7 4 83 3
58 128 119.466 -0.16 3.773 3.23: 0.86 =0.45 5 91 4 o 98 2
§9 138 119.493 -0.14 3.996 4,305 1.08 -0.35 3 94 3 1 88
60 148 119.539 -0.08 3.942 $.105 1.30 ~0.24 0 88 2 0 98
61 218 118.012 -0.82 3.020 2.254 0.75 -2.06 7 87 6 2 94 4
62 228 116.748 -2.88 3.132 3.3%58 1.07 -8.22 0 82 8 0O 86 a4
63 238 118.082 -0.58 3.119 3.822 1.23 -1.77 2 96 2 0 99 )
B84 248 117.801 -1.83 3.268 5.032 1.54 -5.61 0 100 © 0 100 o
65 119 118.802 0.18 3.873 2.784 0.71 0.43 11 83 & 4 93 3
66 129 119.964 0.33 3.882 3.290 0.8% 0.8% 7 80 3 1 87 2
67 139 120.058 0.42 4.103 4,388 1.06 1.04 3 94 3 1 88 3
68 149 120.085 0.45 4,077 5,203 1.28 1.11 0o 98 2 0o 988 1
69 218 119.850 0.21 3.103 2.273 0.73 0.70 13 82 S S 83 2
70 229 117.313 -2.32 3.284 3.44) 1.05 -7.07 o 93 7 o 87 3
71 238 119.908 0.27 3.238 3.803 1.20 0.84 2 96 2 1 88
72 248 118.358 ~«1.27 3.455 5.184 1.49 -3.69 0 100 O 0 100 ©
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TABLE 4:
estimation
model/
procedure

1111
2 121
3 1m
4 141
5 211
6 221
7 231
8 241
9 112
10 122
11 132
12 142
13 212
14 222
15 232
16 242
17 113
18 123
189 133
20 143
21 213
22 223
23 233
24 243
25 114
26 124
27 134
28 144
20 214
30 224
31 234
32 244
33 115
34 125
35 135
36 145
37 218
38 225
38 235
40 245
a1 116
42 126
43 138
a4 148
a5 216
a6 226
47 236
48 246
a8 117
50 127
51 137
§2 147
53 217
sS4 227
855 237
56 247
57 118
58 128
59 138
60 148
61 218
62 228
63 238
B4 248
65 119
65 128
67 139
68 149
6g 218
70 229
71 238
72 249

The statistics Z, (Z-u), Jszz , J$—, the ratio
number of times u fell below, within or above the 9
intervals, as calculated by procedures 1, 2, 3, 4, 5, 6, 7, 8 and 9

for population 4; Sampling method: 15 percent of trees selected from

Vi/s

§

30, 20 and 10 plots of stratum 1, 2 and 3 respectively.

z

131.543
131.730
131.850
131.738
132.291
131.374
132.231
132.169

137.162
137.594
137.137
137.270
137.722
136.888
137.636
137.671

137.12%
136.604
137,135
136.740
137.763
136. 447
137.805
136. 858

135.279
138.711
135.288
135. 407
135.838
134,883
135.810
135.675

137.230
137.630
137.241
137.346
136.114
137.063
138.089
137.874

135,248
134,907
135.315
135,041
135.842
134.514
135.726
134.963

137.1980
136.609
137.197
136.740
138.119
136.549
138.021
136.928

135.568
135.9289
13%.560
135.670
135. 404
135. 056
135.301
135.810

137.477
137.820
137.426
137.8518
137.620
137.267
137.452
138.005

=6.00
-5.81
-S.89
-5.80
-5.25
-6.17
-5.31
-5.37

-0.38
0.04
=0.41
=0.27
0.17
~0.68
0.09
0.12

=0.42
-0.94
-0.41
=0.80

0.21
-1.10

0.25
~0.68

~2.26
-1.83
~2.25
-2.13
-1.70
-2.66
-1.73
-1.87

=0.31
0.08
=0.30
~0.20
0.56
~0.48
0.54
0.32

-2.29
~2.63
-2.23
-2.50
-1.70
-3.03
-1.82

. =2.58

~0.35
=-0.93
-0.35
~0.80

0.%7
-0.88

0.47
-0.61

-1.87
-1.861
-1.98
-1.87
=2.14
=2.48
-2.24
-1.73

-0.07
0.27
-0.12
-0.02
0.07
-0.28
-0.09
0. 45

3.877
3. 405
3.888
3.699
2.874
3.076
3.094
3.018

4,047
3.846
S.108
4,598
2.965
2.814
3.384
2.972

3.944
3.73
10.377
6.686
2,979
2.828
3.338
2.651

3.834
3.72%
4,945
4,451
3.021
2.737
3.476
2.970

4,056
3.862
5.151
4,645
3.083
2.817
3.581
3.070

3.837
3.614
8.781
6.396
3.027
2.699
3.390
2.572

3.953
3.738
10.386
6.651
3.084
2.845
3.479
2.680

3.819
3.744
4.217
4,108
3.036
3.425
3.201
3.165

3.883
3.864
4.274
4,186
3.091
3.431
3.249
3.158

2.747
3.107
4,251
5.003
2.202
2.994
3.637
4.621

2.734
2.816
4.371
4,782
2.022
2.092
3.084
3.338

2.85%
2.625
6.385
5.178
2,063
2.132
2.976
3.021

2.693
2.764
4,300
4,683
2.020
2,047
3.085
3.279

2,736
2.813
4.378
4.784
2.032
2,082
3.124
3.367

2.808
2.6086
6.094
5.039
2.033
2.101
2.931
2.986

2,856
2.623
6.381
5.176
2,068
2.126
2,982
3.028

2.793
3.236
4.453
5.283
2.281
3.132
3.871
4.844

2.778
3.188
4,401
5.207
2,252
3.052
3.780
4,721

& Vs, V¥ Vs,

0.77
0.91
1.08
1.35
0.77
0.97
1.18
1.83

0.68
0.73
0.86
1.04
0.68
0.74
0.91
1.12

0.72
0.70
0.62
0.77
0.68
0.75
0.89
1.14

0.68
0.74
0.87
1.05
0.67
0.7%
0.89
1.10

0.67
0.73
0.85
1.03
0.66
0.74
0.87
1.10

0.73
0.72
0.82
0.79
0.67
0.78
0.86
1.17

0.72
0.70
0.61
0.78
0.67
0.75
0.86
1.13

0.73
0.86
1.06
1.29
0.7%
0.91
1.21
1.83

0.71
0.83
1.03
1.24
0.73
0.89
1.16
1.49

t

-16.78
-17.08
~-15.17
-186.70
—-18.28
=20.07
-17.18
-17.81%

-0.85
0.12
-0.80
-0.60
0.58
~2.34
0.27
0.42

-1.07
-2,83
~0.40
=-1.21

0.73
-3.89

0.77
-2.60

-5.76
=4.93
-4.57
-4.81
-5.65
~8.73
-5.00
-6.30

~0.78
0.22
-0.59
=0.43
1.84
-1.72
1.51
1.06

-5.89
=7.30
-2.28
-3.82
-5.63
-11.24
-5.37
-10.05

-0.80
-2.51
=0.34
-1.21

1.86
=3.51

1.36
-2.31

-5.18
-4.32
-~4.71
—~4.57
-7.06
=7.27
-7.02
-5.49

-0.18
0.71
-0.28
~0.07
0.24
=0.82
=0.28
1.45
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Table 5:

Precision /S

of estimates z by (i) form of regression function,

(ii) least squares estimation approach (iii) procedure for taking
into account the stratum effect and (1v)populat10n.

==POPULATION ls=====

iLeast |Regre-: Procedure number H
isquaresi.saion ! - ——— ——— :
imethod !form | 1+ 2 ¢+ 3 ¢+ 4 + 5 ¢+ 6 ¢+ 7 + 8 1+ 8 E
i OLS H 1 13.57! 4.05! 3.87! 3.93! 4.06! 3.76! 3.88! 3.67! 3.75!
i OWLS | 1 13.431 3.85! 3.48! 3.73! 3.86! 3.43! 3.48: 3.60! 3.72:
{ HMLS H 1 13.72) S.11! 4.19 4.94! 5.15! 4,13! 4.22! 3.86! 3.86!
i MVLS | 1 13.57! 4.60! 3.69! 4.45! 4.65! 3.74! 3.69! 3.698! 3.81:
¢ OLS 2 12.57! 2.96! 2.93! 3.02! 3.08! 2.99! 3.05! 2.87! 2.83!
t OWLS ¢ 2 12.46! 2.81! 2.61! 2.74! 2.82} 2.57! 2.61} 2.67! 2.74!
i NMLS Vo2 12.71% 3.381 2.94% 3.48! 3.58! 2.92! 3.01% 2.93! 2.99!
tMVLSs @ 2 12.40: 2.97! 2.50! 2.97! 3.07! 2.47! 2.50! 2.58! 2.65!
1 =POPULATION 2=cmr==c=sosScSESEIESIX=STZsESSD == H
i OLS : 1 13.751 4.05! 3.94! 3.83! 4.06: 3.83! 3.95! 3.69! 3.75:
{ OWLS ! 1 13.661 3.85! 3.61! 3.73! 3.86! 3.53! 3.62! 3.64! 3.72!
! MLS H 1 13.861 5.11! 4.80! 4.94! 5.15! 4.56! 4.84! 3.82! 3.981:
¢t MULS ! 1 13.86! 4,60 4.27! 4.45! 4.65) 4.12! 4.30! 3.79! 3.87!
¢ OLS P2 12.541 2.96! 3.00: 3.02! 3.08! 3.03! 3.10! 2.83! 2.86!
i OWLs | 2 12.841 2.81! 2.74! 2.74% 2.82% 2.66! 2.731 2.841 2.97}
! MLS P2 12.720 3.38! 3.34! 3.48: 3.58! 3.37! 3.49! 2.891! 2.96!
i MVLS | 2 12,801 2.97! 2.85! 2.97! 3.07! 2.811 2.84! 2.87: 3.00!
1 =POPULATION 3= rssssR===S=SSS=SS=SSSSSSRESESR mEsEmessR H
i OLS Pl 13.511 4,05 3.99! 2.94! 4.06! 3.88! 4.00: 3.79! 3.87!
P gyLs ¢ 1 13.47! 3.85! 3.74:! 3.03! 3.86! 3.63! 3.74: 3.77! 3.89!
{ MLS : 1 13.74) 5,11 4.59! 3.19! 5.15! 4.49! 4.61! 4.00! 4.10;
P MVLS 1 13.74) 4,60 3.89! 2.58! 4.65! 3.84! 3.88! 3.94! 4.08!
{ OLS 2 12.67 2.86! 2.94! 3,931 3.08! 3.00! 3.06:! 3.02:! 3.10:
t OWLS ¢ 2 13,191 2.81! 3.03! 3.73% 2.81!% 2.,91! 3.00! 3.13! 3.28!
{ NMLS P2 12,91 3.38! 3.19! 4.94! 3.58! 3.16! 3.25! 3.12! 3.24!
P MULS 1 2 13.39! 2.87! 2.58! 4.45) 3.07! 2.50! 2.56! 3.27! 3.46!
{=POPULATION 4======= =x=== EZ=gS==s=s =}
i OLS LI ¢ 13.58! 4,.05! 3.94! 3.93! 4.06! 3.84:! 3.95! 3.82! 3.89!
tgyLs ¢ 1 13,40 3.85! 3.73% 3.73! 3.86! 3.61! 3.74! 3.74! 3.86!
i MLS H 1 13.89! 5.11:110.38! 4.94! 5.15! 8.78110.39! 4.22! 4.27!
P MULS | 1 13.70! 4.B0! 6.68! 4.45! 4.65! 6.40! 6.65! 4.10! 4.18!
i OLS 2 12.87! 2.86! 2.98! 3.02! 3.08! 3.03! 3.08! 3.04! 3.09!
v gwLs ¢ 2 13.081 2.81! 2.83! 2.74! 2.82! 2.70! 2.8B4i 3.42! 3.43!
i HNLS P2 13.09! 3.38! 3.34:! 3.48: 3.58! 3.39! 3.48! 3.20! 3.25!
P MULs 1 2 13.02! 2.97! 2.65! 2.97! 3.07: 2.57! 2.68! 3.16! 3.16!
F $ 3 3 3 * 2 2 32 3 1 3 2 3 2 2 3 2 2 3 2322+ 332 3 1323 3 1 £ 7 ==

weighted regressions with weights based on area
as a measure of stratum size is not a good proce-
dure and (ii) using weighted regression with
weights based on number of trees as a measure of
stratum size may lead, although not always, to

unbiased results.

To summarize the above discussion it appears

that (i) Procedure 2 is always unbiased,

(ii)

Procedure 3 is almost always unbiased and (iii)
if single biomass regressions applicable to all
strata are desired, the individual stratum data
(Procedures 8 and 9) or regressions (Procedures
4, 5, 6 and 7) should be weighted by number of

trees,

not area of the strata.

Analysis of Precision Vszz and Accuracy of z

To analyze the precision of z we could have

used Tables 1, 2, 3 and 4.

The analysis is

facilitated, however, when all the estimates JS
of the precision of z are rearranged in a sepa-
rate Table 5 by least squares estimation ap-
proach, regression function form, procedure num-

ber and population.
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Because Procedure 2 is the standard against
which the other procedures are usually compared,
let us start with its analysis. An ocular scan
of the results in Table 5 shows that, as expec-
ted, (i) the weighted least squares estimators
are slightly more precise than the least squares
ones, (ii) the modified estimators are less pre-
cise than the ordinary ones and (iii) the estima~
tors based on diameter and height (regression
form 2) are much more precise than the ones based
on diameter alone (regression form 1). These
conclusions seem to hold approximately true for
the other procedures as well, although sometimes,
the weighted least squares estimators turn out to
be less precise, than the corresponding least squares.

A look at the precision of the estimators
calculated by Procedure 1 (using a single biomass
regression function for all strata) shows that it
is higher (that is, the value of J-—- is lower)
than that of the estimators calculated by Proce-
dure 2 (using a different biomass regression for
each stratum). This seems surprising until we
realize that the estimates of the single regres-
sion function are based on a much larger number
of sample trees and, thus are much more precise



than the estimates of the three individual re-
gressions of Procedure 2. On the other hand the
estimators of Procedure 1 are less accurate. If
we measure the accuracy by the mean square error
expression (Szz + (z-W“), and because the bias
by Procedure 2 is generally smaller, the mean
square error of the estimators by Procedure 1
turns out to be higher in value, and, thus, the
estimators turn out to have a lower accuracy.

The estimates based on Procedure 3 (where
parallel or identical regressions are used when-
ever warranted by the results of the significance
tests) are generally more precise than those
based on Procedure 2. Occasionally, however,
they are much less precise. For example, the
precision of the MLS estimators using regression
form 1 of population 4 is extremely low. This
inconsistency is hard to explain. Furthermore,
the bias of the estimators by Procedure 3 is, in
some instances, relatively large and significant-
ly different from zero. Consequently, the esti-
mators calculated by Procedure 2 seem to be more
consistent and, on the average more accurate than
those calculated by Procedure 3.

The precision of the estimators derived by
Procedures 4 and 5 is very close to that of Pro-
cedure 2, and the precision of the estimators
derived by Procedures 6 and 7 is very close to
that of Procedure 3. This seems to imply that it
does not matter whether we use separate regres-—
sions, one for each stratum, or a single regres-
sion for all strata, the weighted average of
these separate regressions. However, because (i)
there is always a real possibility of introducing
a large bias when using Procedures 4 and 6 and
(ii) it is questionable whether good estimators
of the number of trees by strata (used as
weights) can ever be obtained, Procedures 2 and 3
are to be preferred to Procedures 4, 5, 6 and 7.

Finally, the estimates based on Procedures 8
and 9 seem to have relatively good precision for
population 1. For the other three populations
the results seem to be mixed. As the estimates
based on Procedure 8 are biased and the ones
based on Procedure 9 require the knowledge of the
total number of trees contained in each stratum,
there seems to be no advantage in using them in
preference to those generated by Procedure 2.

Analysis of the Estimated Precision JV of z

The sample based estimator of the precision
of z is the sample variance V, or its square
root, the standard error /V. Because S,, is an
unbiased estimator of the variance of z (which is
independent of the assumptions of the estimation

model), the ratio V/Szz or its square root\/v/szz

can be used as a measure of the goodness of the
estimator V. We shall use the square root. And
to facilitate the analysis, the values of the
ratios VVSZZ of Tables 1, 2, 3 and 4 were re-
arranged in Table 6 by population, regression
function form, procedure number and least squares
estimation approach.

As the reader can verify by an ocular analy-

sis of the results listed in Table 6, the ratio
V/Szz is consistently much lower in value than 1
for all ordinary least and weighted least squares
estimators, with slightly lower values for the
least than weighted least squares. This shows
that V is a gross underestimate of the variance
of z. On the average, the value of the ratio is
about .70 for the OLS and about .78 for the OWLS
estimators of all procedures. The statistic V of
the modified least squares is also an underesti-
mate of the variance of z; on the average, the
value of the ratio is about .90. On the other
hand, the ratio for the modified weighted least
squares estimators is over 1; this means that the
variance of the MWLS estimators is somewhat over-
estimated by V. i

Analysis of the Confidence Intervals of u

The confidence intervals are a good expres-
sion of the combined effect of precision and
bias; and for the layman, a much more intuitive
and meaningful measure of the validity and accu-
racy of the estimators. A look at the number of
times the 95 and 99 percent confidence intervals
fall above, over or below u leads to the conclu-
sion that the confidence intervals are (i) badly
off when the estimation procedures are based on
the ordinary least and weighted least squares and
(ii) relatively all right when the estimates are
calculated by the modified procedures. It
should be noted here that the proportion of times
the confidence interval statements were found to
be right is significantly different from the
expected 95 or 99 times for the ordinary but not
significantly different for the modified tech-
niques.

Analysis of Results - Part 2

In the previous section we have made a de-
tailed analysis of the results obtained when the
stratified sample was of a specific size and
allocation. The objective of the present section
is to analyze other sample sizes and allocations
and see whether the main calculations reached in
the previous section apply in these cases as
well; or, to see what changes, if any, should we
make to our conclusions when the percentage p of
trees selected from a sample cluster changes from
the value p=15 used, and the number of clusters
selected per stratum 1, 2, and 3 is different
from that of 30, 20 and 10 respectively of the
previous section.

To facilitate our discussion we shall define
a sampling method as consisting of a specific
percent p and a specific number of sample clus-
ters my, m, and m,., Because of the limitations
due to computer time and costs, we have (i)
selected 21 specific sampling methods (in addi-
tion to the one analyzed in the previous section)
and (ii) eliminated the estimators by Procedures
3,%, and 7 that required an extremely long
computer time and did not seem to present any
real advantage over Procedures 2, 4 and 5:respec-
tively. The 22 sampling methods analyzed in this
study are listed in Table 7. Note that the
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Table 6 - The sample values of the ratio VV/S 2z arranged by population, regression
equation form, procedure number and least squares estimation approach.

Estimation Form of Population Procedure Number
Approach Regression 1 2 3 4 5 6 7 8 9
OLS 1 1 .71 .68 .71 .68 .67 .72 .71 .68 .67
2 .73 .68 .73 .68 .67 .73 .72 .73 .72
3 .79 .68 .72 .68 .67 .72 .71 .72 .71
4 .77 .68 .72 .68 .67 .73 .72 .73 .71
2 1 .73 .68 .70 .67 .66 .67 .67 .66 .64
2 .81 .68 .69 .67 .66 .67 .67 .74 .72
3 .84 .68 .70 .67 .66 .68 .68 .75 .73
4 .77 .68 .69 .67 .66 .67 .67 .75 .73
OWLS 1 1 .73 .73 .73 .74 .73 .74 .73 .68 .66
2 .79 .73 .76 .74 .73 .76 .75 .80 .79
3 .95 .73 .70 .74 .73 .71 .70 .80 .85
4 .91 .73 .70 .74 .73 .72 .70 .86 .83
2 1 .80 .74 .74 .75 .74 .78 .77 .70 .69
2 .93 .74 .81 .75 .74 .81 .81 .97 .95
3 1.08 .74 .70 .75 .74 .72 .70 1.07 1.05
4 .97 .74 .75 .75 .74 .78 .75 .91 .89
MLS 1 1 .97 .86 .93 .87 .85 .93 .92 .92 .90
2 1.03 .86 .84 .87 .85 .83 .83 1.05 1.02
3 1.15 .86 .92 .87 .85 .92 .92 1.08 1.06
4 1.09 .86 .62 .87 .85 .61 .61 1.06 1.03
2 1 .98 .91 .94 .89 .87 .94 .92 .90 .80
2 1.11 .91 .89 .89 .87 .85 .85 1.08 1.06
3 1.31 .91 .93 .89 .87 .91 .91 1.23 1.20
4 1.18 .91 .89 .89 .87 .86 .86 1.21 1.16
MWLS 1 1 1.09 1.04 1.06 1.05 1.03 1.04 1.06 1.02 .99
2 1.15 1.04 .99 1.05 1.03 1.01 .98 1.19 1.16
3 1.39 1.04 1.06 1.05 1.03 1.06 1.06 1.30 1.28
4 1.35 1.04 .77 1.05 1.03 .79 .78 1.29 1.24
2 1 1.20 1.12 1.1%5 1.10 1.10 1.16 1.15 1.07 1.05
2 1.32 1.12 1.11 1.10 1.10 1.11 1.11 1.34 1.30
3 1.52 1.12 1.17 1.10 1.10 1.20 1.18 1.54 1.49
4 1.53 1.12 1.14 1.10 1.10 1.17 1.13 1.53 1.49

sampling method 11 is the method considered in
the previous section.

For each population and each sampling method
we have calculated the same set of basic statis-
tics as that shown in Table 1. To facilitate the
analysis, however, the statistics from the vari-
ous tables were arranged and rearranged several
times in order to answer specific questions or
verify specific conclusions reached in the analy-
sis of the previous section. All these tables
are listed in Arabatzis (1986).

To better see how the conclusions of the
previous section change, we have summarized them
all as a set of five main conclusions. Each
conclusion will be stated separately and its
erality analyzed in view of the new information
provided by the results of the 21 additional
sampling methods.

264

Conclusion 1 - (sampling method 11). The
estimators by all procedures are unbiased for
population 1, the only population for which the
differences among strata are negligibly small.
There is one exception, however, that of the OWLS
estimators of the regression form 2; but their
bias is thought to be due to sampling error. For
the other three populations, only the procedures
2, 5, and 9 yield unbiased estimators; the proce-
dure 2 that is expected to be unbiased on theo~
retical considerations, and the two procedure 5
(derived from procedure 2) and 9 that use weights
based on stratum total number of trees. Proce-
dures 3 and 7 yield mixed results; the least )
squares but not the weighted least squares esti-
mators are generally unbiased. Procedure 1
(which ignores the effect of stratification) and
procedures 4, 6 and 8 (that are all based on
weights defined in terms of stratum areas) yield
biased results.



Table 7 - The number of clusters m,, m., and m, of
stratum 1, 2 and 3 respectively and the
percent p of trees subsampled for the
twenty~two stratified sampling methods
considered in this study

Sampling Sampling
Method m; om, 3 p Method m m, m, P
1 5 5 5 15 12 30 30 30 15
2 5 10 20 15 13 5 5 5 5
3 5 15 30 15 14 15 15 15 5
4 10 20 30 15 15 30 20 10 5
5 15 15 15 15 16 300 30 30 5
6 15 20 5 15 17 30 15 5 5
7 15 30 5 15 18 5 5 5 60
8 20 10 5 15 19 15 15 15 60
9 20 30 10 15 20 30 20 10 80
10 30 15 5 15 21 30 30 30 60
11 30 20 10 15 22 30 15 5 60

The analysis of the bias of the entire set
of 22 sampling methods shows similar results. We
still have the estimators of population 1 un-
biased, except for the OWLS estimators by regres-
sion form 2. For the other populations, proce-
dures 2 and 5 yield unbiased estimators; but now,
some of the results by the procedure 9 are
biased. And as before, the bias of the estima-
tors calculated by the procedures 1, 4 and 8 is
significantly different from zero with many of
the values t being very large.

Conclusion 2 - (sampling method 11). Within
a given procedure (i) the weighted least squares
estimators are, more often than not, more pre-
cise, but not by much, than the least squares
ones, (ii) the ordinary least and weighted least
squares approaches yield always more precise
estimators than the modified ones and (iii) the
estimators based on the regression of biomass on
diameter and height are always more precise than
those based on the regression of biomass on di-
ameter alone.

The analysis of the results from the entire
set of 22 sampling methods shows that, with the
exception of two special cases that extend them,
these conclusions are verified. The two excep-
tions refer to (i) the case of small number of
sample clusters per stratum (m=5 results in modi-
fied least and weighted least squares regressions
having only two degrees of freedom) where the
estimators by the modified procedures are much
less precise than those by the ordinary proce-
dures and (ii) the case of small number of sample
trees per cluster (when p=5, the average number
of trees per cluster is less than 2) where the
precision of the modified least squares method
approaches that of the ordinary least squares.
This seems to imply that the MLS and MWLS estima-
tors should only be used when there are at least
ten sample clusters per stratum.

Conclusion 3 - (sampling method 11). With
the possible exception of population 1 (where the
strata are very similar), it seems that, although

the estimators by procedure 2 are less precise
than those by procedures 1 and 3, they are usual-
ly more accurate. Similarly, procedures 5 and 9
may yield slightly better estimators than proce-
dures 2 but they require the knowledge of the
total number of trees contained in each stratum.
Finally, all of the remaining procedures may be
more precise but, because their bias is generally
large and, sometimes, they are inconsistent,
their accuracy is low.

These conclusions are all verified by the
analysis of the results from the additional 21
sampling methods.

Conclusion 4 - (sampling method 11). The
sample-based statistic V grossly underestimates
the variance of z when the ordinary least or
weighted least squares techniques are used; the
underestimation is much smaller with the modified
least squares approach and for the modified
weighted least squares, V overestimates the vari-

ance of z by a relatively small amount.

The analysis of the other 21 additional
sampling methods show that, with some exceptions
that may be viewed more as extensions, these
conclusions hold true. When the number of sample
trees per cluster is small (the case of p=5 which
results in an average of less than 2 trees per
cluster) the underestimation of the variance of z
becomes smaller, and for the case of OWLS estima-
tors it becomes negligibly small. When the num-
ber of sample trees per cluster increases to
about 20 (the case of p=60) the underestimation
of the precision of the OLS and OWLS estimators
becomes much larger; often, the standard devia-
tion of z is estimated to less than 50 percent of
its value. As far as the modified least and
weighted least squares methods are concerned,
there seems to be no effect of p on the under-
estimation or overestimation of the precision.

Conclusion 5 - (sampling method 11). Taking
into consideration the bias, precision and esti-
mated precision, it seems that the best overall
estimation procedure is procedure 2; it is un-
biased, generally less precise but more accurate
than procedures 5 and ¢ which, although they may
yield about equally good results, would require
the additional knowledge of stratum size expres-
sed as total number of trees. This conclusion
holds true for the additional 21 sampling methods
as well.

Summary Comments

We have described a specific stratified,
two-stage sampling method of tree selection for
construction of tree biomass tables for use with
forest resource inventory. This method consists
of (i) a first stage sample of m,, m, and m
clusters (plots) selected from stratum 1, 2 and 3
respectively of a given forest population and
(ii) a second stage subsample of p percent of the
trees contained in each sample cluster of the
first stage. The selection procedure in both
stages is simple random sampling without replace-
ment. To facilitate the discussion, we have
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defined a sampling method as consisting of a
specific sample size and allocation, that is, a
specific set of sampling parameters my, My, Mg
"and p.

Using simulation techniques, these sampling
methods were then repeatedly applied to a given
forest population of 22,723 trees distributed in
927 one-fifth acre sample plots. These plots
were part of the New York State forest inventory
system carried out by the Northeastern Forest
Experiment Station. The trees were measured in
the field for their diameter and merchantable
height, but not measured for their total height
and biomass (green weight above ground); these
were generated by a Monte Carlo process that
preserved the effect (on the simulated value of
the tree height and biomass) of such factors as
species, diameter, merchantable height, site,
geographical region, plot and inherent random
variation. Although artificially constructed,
this population of trees is expected to imitate,
with sufficient accuracy, a natural forest; that
is, is expected to have all of the basic charac-
teristics of forest populations as found in na-
ture. The forest population so constructed was
then divided, somewhat arbitrarily into three
geographical regions called strata. As the bio-
mass regressions of the three resulting strata
were quite similar, we have constructed three
additional forest populations with biomass re-
gression functions that were made to vary greatly
from stratum to stratum.

The computer simulation process of sampling
was repeated one hundred times and, thus, for
each sampling method we have obtained one hundred
different samples of trees. The tree biomass
regression function of each sample was then esti-
mated with the use of seventy-two statistical
models, the combinations of four estimation ap~
proaches (OLS, OWLS, MLS and MWLS), two regres-
sion function forms (1 and 2) and nine procedures

that took the stratum effect into account; proce-
dure 1 that ignores the stratum effect and calcu-
lates one regression function for all strata,
procedure 2 that calculates independent regres-
sions for each stratum separately, procedure 3,
similar to procedure 2, that uses dummy variables
techniques to calculate individual stratum re-
gressions that are not statistically independent
of, each other and the remaining six procedures
that calculate single regressions for use in all
strata by either (i) appropriately averaging the
individual regressions of procedures 2 and 3 or
(ii) appropriately weighing the information from
sample tree data when the weighted least squares
method is being applied.

The seventy-two regression functions of each
sample of a representative set of sampling meth-
ods were then applied to the tree data of the
four populations to calculate estimators z of
(the average biomass per acre) and estimators S
and V of the variance of z. The estimator S is
calculated from the one hundred, identically
distributed values z of the same sampling and
estimation procedure, and the estimator V is
calculated from the data of a single sample,
under the assumptions of the statistical model
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used. V is the only estimator of the variance of
z that one can obtain in real 1life, but this
estimator is generally biased as the assumptions
of the model are rarely satisfied. On the other
hand, Szz is an unbiased estimator of the vari-
ance of z but it is seldom, if ever, known in
real life. Of course, we can calculate S,, by
deliberately sampling the same population several
times by the same sampling method, or we can
deliberately split the sample data into several
parts and use the variation between the estimates
z of the parts as the basis for the calculation
of 5,5

Because the true value uis known and we
have one hundred, statistically independent and
identically distributed sets of random variables
z, V and (z+tyV), we are able to study the proba-
bility behavior of these variables for any given
combination of sampling method and estimation
procedure. In particular we can estimate the

bias of z by the quantity (z-u) and the accuracy of z

by the mean square error defined as the sum of
the variance S,, and squared bias (Z-1}“. We can
also test the null hypothesis that the bias of z
is equal to zero, see whether V is a valid esti~
mator of the variance of 2z, or whether the confi~
dence intervals based on V are valid statistical
inferences. Finally, the variance Szz, the cor-
responding mean square (Szz+(2—u) ) or their
square roots can be used to compare the efficien-
¢y of various combinations of sampling methods
and estimation procedures.

The analysis of the simulation results led
to the several important conclusions listed in
the previous section. 1In particular one should
note that (i) the ordinary least squares method
is almost as good as the ordinary weighted least
squares but they both underestimate the error of
the estimators; the only exception being the case
of p=5 (less than two trees, on the average per
cluster) where the error of the OWLS (but not
that of the OLS) estimators is properly evaluated
by Vv, (ii) the modified least and weighted least
squares estimators are somewhat less precise than
the corresponding ordinary ones, when the number
of sample clusters within a given stratum is
sufficiently large, say greater than ten; the
modified estimation approaches should never be
used, however, when the number of sample clusters
is small, say less than ten, (iii) the usual
procedure of calculating the biomass regression
function by combining the data of the trees from
all strata (procedure 1) is dangerous; it may
become an important source of bias, (iv) the best
overall procedure in terms of bias and accuracy
is that of constructing biomass regressions sepa-
rately by stratum (procedure 2) and then applying
the usual stratified sampling formulae to derive
estimators and their error.

The surprising conclusion about the equal
efficiency of least and weighted least squares
method should be properly interpreted. They are
equally good in terms of the bias and the pre-
cision of the estimator of the average biomass
per unit area. If one wishes to calculate a
biomass regression function with valid estimates
of its precision (confidence and prediction in-



tervals) one must use the weighted least squares
method.
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