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AN OPTIMIZATION MODEL FOR SUBSAMPLING TREES FOR

BIOMASS MEASUREMENT

Tiberius Cunia

Professor of Statistics and Operations Research
SUNY College of Environmental Science & Forestry

Syracuse, NY 13210

when selecting sample trees for biomass tables
construction is customary to estimate their bio-
mass by subsampling rather than measure their
actual values. By this procedure one must work
with estimated rather than actual tree biomass.
One may use an intensive tree subsampling and ob~
tain estimates of the sample tree biomass with high
precision. But this implies that for the same
sampling costs one must reduce the number of sample
trees. On the other hand one may wish to work
with more sample trees and less precise estimates
of their biomass. An approach using mathematical
programming models is shown that optimizes the com—
bination of number of sample trees and intensity
of subsampling.

Introduction

Although not explicitly stated when they are
applied to forest inventory problems, the tree bio-
mass regression functions are not without error.
This error has four main components, each component
being associated with a specific source.

There is first the error due to sample tree
selection. The same sampling method applied on
different occasions results in different sets of
sample trees and, thus, in different biomass re-
gression functions. The size of this error com—
ponent, generally known as the sampling error, is
affected by the sampling design by which the sample
trees are selected, by the number of sample trees,
and by the inherent variation between the biomass
of various trees.

Once the sample trees are selected, they must
be measured for their biomass. The same tree
measured on different occasions may result in dif-
ferent biomass values. We hypothesize the exist-
ence of a constant, fixed value which we shall call
true biomass of a tree (or of some of its compo-
nents). What we call the biomass of a tree is the
measured value that we have obtained by some meas-
urement or subsampling process. The difference
between the true and the measured biomass value
will be known here as the measurement error. This
is the second error component. For variables that
can be measured directly, as for example, the green
weight of some small tree component, the measure-
ment error may be negligibly small. For others,
like the ovendry weight of the entire tree which,
for practical purposes is measured by subsampling,
the error may be quite large.

The third source of error is the statistical
model used in data analysis and estimation of the
biomass regression function. Different statisti-
cians working with the same sample data may arrive
at different biomass regressions. For any given
real world problem, one can construct different
models, each model having its own assumptions.
These assumptions refer to the characteristics of
the tree population and the method by which the
sample trees are selected. If valid statistical
inferences are desired, the assumptions must be
sufficiently well satisfied. But even if they are
satisfied, different, equally good statistical
models would generally yield different biomass re-
gressions. If the models are well selected, how-
ever, the difference between their results are ex-
pected to be small. This component is known as the
error due to statistical modeling. It should not
be confused with what is known as statistical error,
a term used to denote, in general, the error (from
all but subjective sources) associated with the
difference between our inferences and the true
values of the parameters we want estimated.

The fourth error component is due to the appli-
cation of the biomass regression function to a
specific case and may be known as the error due to
application. This is because the regressions are
estimated from trees that are no longer members
of the population from which they were drawn; they
were felled down and destroyed. Furthermore, the
populations of trees are dynamic (they change with
time) and it is quite common to apply biomass re-
gression functions to forest areas other than
those for which the regression functions were cal-
culated. This is generally known as a non-sta-
tistical error component since it can hardly be
evaluated by statistical means. Note that strictly
speaking, this error component is not a part of the
error of the biomass regression; only a component
due to its use.

We shall not be concerned here with the first,
the third or the fourth error component. We shall
assume that (i) the sample trees are selected by
simple random sampling, the usual assumption of
the least squares method, (ii) the statistical
model used in the data analysis is appropriate,
and (iii) the biomass regression function is being
applied to the population for which it was calcu-
lated. We shall only be concerned here with the
second component, the measurement error.

The measurement error itself has three main
subcomponents. There is first the so-called meas-
urement bias due to faulty instruments, to poorly
defined or applied measurement procedures, to poor
subsampling designs or to selection of biased es-
timators. There is also the random error due to
the precision of the measuring devices or the meas-
urement process itself, as for example, the preci-
sion of the weighing scale, caliper or diameter
tape, etc. This last error can be assumed to be
negligibly small, and together with the measure-
ment bias above will be ignored in this discussion.
Our only topic of discussion will be the subcompo-
nent error due to the inherent variation associated
with any subsamplinj process used to determine the
biomass (usually ovendry weight of large tree com-
ponents) of a sample tree. The same subsampling
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procedure, using the same estimators, applied on
various occasions, would normally yield different
results.

Note that there are no statistical estima-
tion problems related to the subsampling error.
As long as (i) the expected value of this error
is zero, that is, the estimator of the biomass of
the sample tree is upnbiased, and (ii) the error
is statistically independent of the error compo-
nent due to sample tree selection, the least
squares method takes it automatically into ac-
count. The only problem is one of efficiency.
Should one select a small number of sample trees
and estimate their biomass by an intensive sub-
sampling or is it better to work with a large num-
ber of sample trees for which the biomass is
poorly measured?

The specific objectives of the present study
are to construct a mathematical model for the
error of tree biomass regression functions. Be-
cause the same error can be obtained from vari-
ous combinations of number of sample trees and
intensity of subsampling, a model is needed to
guide us in the selection of the sample and sub-
sample size. Optimum sample and subsample size
should be sought; those that would minimize the
costs of sampling for desired precision of tree
biomass regressions or those that maximize the
precision for given allowable sampling costs.

The type of model we shall construct is known
as a mathematical programming model. It will con-
sist of either (i) an objective cost function that
should be minimized subject to the side condition
that the error of the biomass regression function
should be smaller than a predetermined value, or
(ii) an objective error function that should be
minimized subject to sampling costs being below a
specified amount. Both cost and error functions
will be expressed explicitly in terms of sample

"size n (of sample trees) and subsample size m (for
the estimation of the biomass of the sample trees).

In constructing this model, we shall assume
that the selection of sample trees and the estima-
tion of their biomass by subsampling is made by
the simple random sampling method. We shall then
extend the model to include the case where the
biomass of the sample trees is estimated by other
sampling methods. We shall not consider, however,
the case where the sample trees themselves are
selected by methods other than simple random sam-
pling. This is because in order to calculate the
regression function, one must then modify the least
squares method of estimation. :

Expressing the Exror of Biomass Regressions

The exror of the biomass regression functions
can be expressed in many ways, each way being ade-
quate for some applications and quite inadequate
for others. It can be expressed as the variance
or standard error of (i) regression estimates of
the biomass of trees of given size, (ii) regres-
sion coefficients, (iii) estimators (of parameters
of interest) obtained when the biomass regressions
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are applied to forest inventory data, etc. It can
also be expressed as confidence intervals (at some
predetermined probability level) of (i) the expect-
ed biomass of trees of given size, (ii) parameters
of interest of the true regression function,

(iii) parameters of interest of some forest tree
population, etc.

We are interested in the application of the
biomass regressions to forest inventory data and
wish to work with an expression of the error that
can be used within this context. Cunia (1986a, b)
has suggested a method to combine the error of the
biomass regression with the error of the sample
plots (of the forest inventory) so that the cal-
culated error of the inventory estimates would
contain the error from both sources. This method
assumes that (i) the true regression function of
tree biomass on diameter, height, species, etc. is
linear, that is, of the form

Y=Bxl+8x ..o+ B x = [B]'[x]
where y = %ree biomass, x, = 17 kX,, i =2, 3, ... p
are tree characteristics Other than biomass and [ ]
denotes a vector or matrix (with [ ]' denoting a

transpose), (ii) the sample plots (where the trees
are measured for attributes other than biomass)

are selected by a variety of sampling designs,

(iii) the sample of plots and the biomass regres-
sion are statistically independent, and (iv) the
forest parameters of interest are average biomass
per tree,average biomass per unit area (acre or hec-
tare), average growth (or growth components of bio=-
mass per unit area, etc.).

To apply Cunia's procedure, one must have an
estimate [b] of the vector [B] of regression coef-
ficients and an estimate [S,, ] of the covariance
matrix [0 . ] of [b]. Becausé [0, ] can be expressed
as a func%gon of (i) the conditidnal variance of y
given [x] and (ii) the sample sizes n and m defined
in the previous section, the error expression we
shall select for our optimization model is that of

[cbb] .

To better see our approach, let us review the
least squares method as applied to biomass regres-
sions. We shall use the following basic assumptions.

(1) The true regression function of y on
x, =1, Xy x3, ooy xpis of the linear form

Y =B,X +B.%X, +...+B X {81'[x1

11 272 PP -
(2) The conditional variance of y given [x],
say o is proportional to some given function

r
of thgyiﬁown tree variables Xyr Xyr ey xp, say

o =g w
yy[x uulv

where ¢ is the unknown factor of proportion-

. ug]v R .

ality and'w is a known function of xl, x2, ceey xp.
(3) The n sets of sample observations y

xkl’ xk  eees for k=1, 2, ..., n are sta-

tlsticafly indepeRdent of each other.

Then, the best linear and unbiased estimator
[b] of [B] is the weighted least squares estimator
calculated as follows.

Step 1 - Calculate the n sets of transformed
sample values = yk//;;; Vis ./K;~, i=1,2,...,p
and k =1, 2, .V., n and conStruct“the Yector [U] and
matrix [V] of these values.



ul Vll V12 cn e le

u v, v PP v,
] = |:%| ana v1 = |:22 22 2P

un an Vn2 ssee Vnp

Step 2 - Calculate the matrices [T] and [P]
of sum of cross~products

[T] = [V]'[V] and [P] =
and the estimator [bl of [B]

[v]'[u]

-1
[b] = [T] " [P]
Step 3 - Calculate the estimator S of
o uu]v
uu|v
= ' -~ ; T -~
Suu[v ([u}' [U] [b1'[P])/ (n~p)
and the estimator [S_, ] of the covariance matrix
[0, ] of [b] bb
bb
[Sbb] = uulv[T]
Remarks

(1) If y is the biomass of the main tree
bole or the total above ground tree biomass, it
has been found empirically that the conditional
variance of y given diameter d or given diameter
d and helght h is approximately proportional to
a* or a*n? respectively. This means that for the
first case u is equal to y/d2 while u is equal to
y/dzh for the second case. Similar definitions
apply to variables v., v., ..., V.. Of course,
for other biomass components the gondltlonal vari-
ance of y given 4 or given 4 and h may be propor-
tional to known values other than d* or d h2 may
be related in a different way to d or @d and h or
may even be homogeneous.

(2) S _ (. is an estimator of the factor of
proportionafl y o which now can also be inter-
preted as the conglllonal variance of u = y/vw
for given [v], or what is the same thing, for
given [x]. This means that the conditional vari-
ance of y given [x] can be estimated by the formula

S = wS
yy|x uu[v
For the biomass 'y of (1) above, we have

= ghs

Syy[x uu|v
or

d%n2s

S
yy[x uu|v

(3) . If the model assumptions stated above are
satisfied, the conditional variance of u given [x]
is homogeneous, that is ¢ is the same for the
trees of all sizes [x]. is has an extremely im-
portant implication. As we shall analyze the con-
ditional variance of y given [x] which varies with
the tree size [x], and because o /w is
constant over the trees of all sgg g [x]yyie can
work with the variance u and then interpret the
conclusions reached later in terms of the variable
y.

For example, if the variable x are all defin-
ed in terms of d aléne, and the conditional vari-
ance of y-'given 4 is proportional to d“, the vari-
able u = y/d2 has a conditional variance which is

homogeneous with respect to d; it is the same for
the trees of any diameter size 4. This means that
if the trees are classified by diameter 4, then the
variance of u within a diameter class is the same
for all diameter classes. Note that u = y/d2 has a
physical meaning; it represents "biomass per square
inch of breast high diameter." As the basal area of
a tree is Hd2/4, and I/4 is a constant value, u is
equivalent to the variable u* = (y/basal area), that
is equivalent to the variable tree biomass per unit
of basal area.

Let us express now the covariance matrix [obb
of [b], defined as

Ol =0

1

17t
uulv
as an explicit function of the number n of sample
trees. If the n sample trees are selected complete-
ly at random, it can be shown that the expected
value of [T] can be written as
[T] = nIT]
where the ij-th element of [T] is the expected value
of the cross product vlv]. As the inverse of [T] is
[T] L = _[T] l/n = [0]/n
where [0] is the inverse of the matrix [T], we can
finally write that, on the average, we expect to
have the approximate relationship

[obb] = (ouulv/n)[O]

A Simple Optimization Model 1

Consider a sample of n trees selected by simple
random sampling from a relatively large population
of N trees. If y is the true biomass of a tree (or
some of its components), we shall assume that ¢ l '
the conditional variance of y given [x] is pro—y
portional to some known value w (usually, but not
necessarily a function of the known tree values

eees X ). As shown in the previous section,
tﬁe Varlable uP= y/%; has a conditional variance for
given [x] that remains constant over all values [x].
We shall denote this variance V.. Note that V. is
defined in terms of true values'y and u = y/ﬁ;.

Because the biomass value y of a given tree is
not generally measured but estimated by subsampling,
let us further assume that a given tree is subdivided
into a large number M of approximately equal parts
dencted here as biomass samples. These samples are
usually, but not necessarily non-overlapping. Assum-
ing non-overlapping biomass samples, let m samples be
selected by gimple random sampling. If

z, = (biomass of sample k)/ﬁ; = variable meas-
ured (without error) on the biomass sample
k
uz = sz/M = u/M = mean of z within a given tree
Gzz = L(z -1 )2/M.= variance of z within a given

tree,

where I is takeh over all samples k =1, 2, ..., M,
then, it is well known that for I taken now over
the subsample values k =1, 2, ..., m, we have

b4

Lz /m = subsample mean of z = estimator

o% L

Szz = I(z —z)2/(m—1) = gsubsample variance of z
estimator of the variance of z
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= Mz = estimator of the true value of the
biomass u of the given tree

o>

Gﬁa = Mzcz /m = variance of U as an estimator
of W of the given tree, and

S~ = M2 /m = estimator of Oan
uu zz uu

Note that for the given tree, the biomass y
is estimated by

¥ = 0w = Mzvr
and the variance of § is estimated by

Sar = WwSan = wM25  /m

vy uu zz
Furthermore, under our subsampling assumptions,
zZ, u, and y are all unbiased and when Gaa, Saax,

and S~~ were defined, the effect of the Fhicd"
population correction factor was ignored.

For convenience, we shall write V. = M%¢ .
This means that o~~ can be written as 6 /m. ﬁg-
call that V. has Been defined as the conditional
variance of u given [x]. As u is not known, we
have to work with its estimator . This implies
that the variance of U about the conditional mean
of u given [x] has two, statistically independent
components; the first component is V. associated
with the variation of u about its conditional mean
and the second component is V_/m associated with
the variation of 4 about the frue value u. Con-
sequently, the conditional variance of u (which in
reality is u) given [x], which in the previous
section was denoted by ouu|v' can now be written
as

V=V + V2/m =

1 cuu]v

As an example of a case where this model can
be applied, consider the biomass y of the main
bole of randomly selected trees and its regres-
sion function on diameter d. Empirical evidence
suggests that the regression function of y on 4
is of the approximate form

= 2 _ = '
y 61+82d+83d 31X1+82X2+83X3 [B1'[x]
and that the conditional variance of y given [x]

is approximately proportional to w = d*. Conse-
quently, the variable u is defined as

u = y/d2 = bole biomass per square inch (of
squared diameter)

Note that y and u are true values of a given tree.

To estimate y and u (of a tree of known 4),
we shall divide the bole into a large number M of
non-overlapping disks. If m disks are selected
by simple random sampling without replacement, then
we can define the following:

z = (disk biomass)/d2 = value measured on
each disk
W, = u/M = true mean of z
o] = variance of z
zz

z = sample mean of the m biomass samples
S = sample variance of the m biomass samples
z = unbiased estimator of uz

f = Mz = unbiased estimator of u
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Orn = Mzozz/m = V_/m = variance of u (as an
estimator of u)

S~ = M25 /m = estimator of g~~
zz uu
y = ud“- = unbiased estimator of y

Oan = 0~+d% = variance of ¥y (as an estimator
Yy uu of v)

San = Sandt
uu

estimator of o~
Yy vy

' Because y and u are not known, we must work
with ¥ and 4. The conditional variance of ¥ about
the regression function of y on [x] (that is, 4) is
assumed proportional to d“, while the conditional
variance of u about its regression function of u on
[vl (that is, d) is homogeneous. Because WU as an
estimate of u is statistically independent of u as
an estimate of the expected value of u given [v]
(or [x] or d), the conditional variance of u given
[vl can be written as

Uuulv = Vl + V2/m
since the conditional variance of u given [v] has
been denoted by V. and the variance of 4 as an es-
timator of u has %een written as Vz/m.

As a second example of where this model can
be applied is the method of estimating the tree
biomass y by the randomized branch method described
by Valentine, Tritton, and Furnival (1985). Each
application of the method yields an estimate y of
y, and because d is known, an estimate u = v/d2 of
u = y/dz. As one can apply the method infinitely
many times, M is infinite in size. Nevertheless,
we can define the following:

z, = estimate of u based on the k-th applica-
tion of the randomized branch method

z = 4 = estimate of u, since the expected
value 1 of z is equal to u (the method
. <2

is unbiased)

V2/m = ozz/m = variance of z = variance of 1.

Note that with this subsampling procedure (i) the
biomass samples are overlapping, (ii) the m biomass
samples are selected with equal probabilities, even
though various parts of the tree enter in biomass
samples with unequal probabilities, (iii) each value
z is defined so as to be an unbiased estimate of u
and (iv) the variance of u about the regression
function (of u on [v]) can be written as

v = (Vl + V2/m).

Let us define now the sampling costs components,

cs = average costs directly related to the se-
lection and measurement of a biomass sam-
ple, and

c, = average costs of selecting, processing,
and measuring a sample tree for character-
istics other than those directly related
to the measurement of the biomass samples.

For example, the costs of moving to and from the
sample trees, the costs of measuring the tree di-
ameter, height or bole length, the costs of felling,
branching and measuring the green weight of the en-
tire tree bole, the costs of the separation (con-
ceptually if not physically) of the tree bole into

non-overlapping disks, etc. are all included in e



on the other hand, the actual selection of a sample
disk or its location, the measurement of the green
or oven-dry weight of a sample disk, etc. are all
included in g

If the fixed costs of sampling not directly
related to selection and measurement of sample
trees and biomass samples (that is, all costs not
included in ¢, and c_) are ignored, the variable
costs of sampEing ana subsampling a tree for its
biomass can be evaluated, at least approximately,
by the linear cost function

C = nc, + nmc
t s

As an example of some of the fixed sampling costs
are those of training costs of the field crews, the
costs of writing and debugging computer programs,
etc.

It has been shown in the previous section that
the expression of the error of biomass regression
we shall work with is [0 b] = (o v/n)[@]. If the
selection of the sample gree is HgAe by simple ran-
dom sampling, it has been shown that [@] is a pa-
rameter of the tree population of interest. Conse-
quently, it suffices to work only with the expres-
sion (o n) which is a function of both n and m
as the U variables are estimated by the 2 values
determined by subsampling. Thus, the problem re-
duces to that of finding the sample sizes m and n
for which the sampling costs C are minimized and
the variance

0uu|v/n = V/n = (Vl + V2/m)/n

is equal to some desired value K . Or equivalently,
the problem is that of finding moand n for which the
value of the variance K = V/n is minimized for given
costs of sampling C_. More specifically, this opti-
mization problem can be formalized as follows.

Optimization Problem 1. Find m and n that
minimize the cost (objective) function

C = nct + mncs
subject to the side (variance) condition that
+ =
(V1 V2/m)/n Ko

where all parameters c¢_, ¢, V., V_, and K are
positive values and m and h are poSitive integers,
and

Optimization Problem 2. Find m and n that min-
imize the variance (objective) function

K= (Vl + V2/m)/n
subject to the side (cost) condition that

nc, +mnc_ = C
t s [}
where ¢., ¢, V., V., and C_ are all positive and

m and n are positive integers.
By using calculus optimization techniques, one

can easily find the following optimum solutions.

Solution to Problem 1. Nearest positive inte-
ger values

E]
|

= /ctVZ/csVI = (»/ct/cs> “’Vz/"l’

and

j=]
|

(V) +V,/m) /K = (/ctv1 + /csv2> (/Vl/ct)/Ko

Solution to Problem 2.
ger values

m= /étvz/csvl = (/bt/cs)(/vz/vl)

Nearest positive inte-

and

n co(/vl/ct)/(/'ctv1 + /bsvz)

We shall show below the proof to the first
problem; the proof to the second problem follows
the same lines and can beeasily done by the reader.

Proof of Solution to Problem 1. To find the
optimum values m and n, one can use the method of
Lagrange multipliers or the method of substitution.
Using the latter method, we substitute the value
of n from the side condition

= +
n (V1 V2/m)/Ko
for the value of n of the objective function. Then,
the new objective function to minimize becomes
= + +
C (V1 V2/m)(ct mcs)/Ko

Because K > 0 and (V. ct + V_c ) > 0 are both fixed
values, it is equivaient to“work with the objec-
tive function

ok = - = -
o] KOC (ctvl+csv2) (V1+V2/m)(ct+mcs) (ctV

m + ctvz/m

+
1%%72)
= v
Cs'1
To find the optimum solution, we equate to zero
the first derivative of C* with respect to m and
solve for m the resulting equation. Then

* = - 2=
dc*/dm cSV ctV2/m 0

1
and the only admissible solution (m is not allowed
to be negative) is

= Vo V. /c V.
m ctv2/csvl

As the second derivative

aZcr/am? = ZCtV2/m3
is always greater than zero for the positive solu-
tion value of m above, the function C* attains a

minimum. This in turn yields the optimum value of
n as
n = (v1 + V2/m)/Ko
= Y
(v, + c ViV, /e ) /Ry

= (»/V:L/V2 + /cs/ct) (/Vlvz)/Ko

= (/til + /bsvz)(/Vl/ct)/Ko
Remarks

(1) Because m and n can only be positive inte-
gers, the optimum solution above, which in general
will be a non-integer solution, must be rounded-
off to the nearest integer or to the nearest in-
teger above. This is not a critical factor since
the cost values ¢, and ¢_ and variance values Vl

and V2 are only approxima%ely known.
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(2) The optimum subsample size m does not
depend on n but only on the variance components
V, and V_ and the average costs of sampling per
t¥ee and per biomass sample ¢, and ¢_ respectively.
Once the optimum m is determined, the value of n
is then determined as a function of m and the de-
sired precision K or allowable costs C . This
is a very 1mportant finding., It means at we
can optimize the subsampling first and then seek
the value of the sample size n of trees to satisfy
the overall requirements of precision or costs.

(3) At least from an intuitive point of view,
the optimum solution makes sense. As the variance
component V, (between biomass samples within trees)
decreases w1th'respect to the variance component
V., (between true value of tree biomass), and as
long as the costs ¢, and ¢_ remain the same, we
would normally expect m to decrease; we should
spend relatively less money for subsampling. Forx
the limiting case where V_, = 0, we must have the
limiting case m = 1, since this is the positive
integer closest to solution m = 0; only one bio-
mass sample would give us all the necessary in-
formation about the true value u. Similarly, as
the costs ¢_ increase with respect to ¢, and the
variance cofiponents V., and V_, remain theé same, we
would expect m to decYease; we should spend rela-
tively less money for subsampling. For the limit-
ing case where ¢ = », we have the limiting case
m = 1, the positive integer closest to m = O.

(4) We have assumed here implicitly, that
the variance component V_ is the same from tree
to tree. This is obviouSly not true as each
sample tree i = 1, 2, ..., n has its own variance

Because (1) the values V are random vari-
ag es (the trees are selected a% random), (ii) knowl-
edge about the probability distribution of V., is
required, and (iii) to construct an optimization
model where V,_ itself becomes a random variable is
extremely dlf%lcult, we must work with some kind
"of average value V_,, or an estimate of the ex-
pected value of V_ ., which here is denoted simply
as V.. This same remark applies as well to the
costS ¢ and c,_ which are also averages of random
variables ¢ and ¢ In general c increases
with the tree size ?%elllng and proces51ng a large
tree is more expensive than felling and processing
a small tree), even though the variation of ¢
(of the costs per biomasssample), for some tree
components at least may be relatively small. For
practical considerations we must work with the ex-
pected values ¢, and ey of the costs Cey and Cgoy
respectively.

(5) We have assumed here that a fixed number
m of biomass ‘'samples are to be selected from each
sample tree. A better optimization model may be
that which makes m a function of V_, (or diameter
d, if V_ is a function of d), that"is, having an
optimum~solution m, as a function of V2i of the
sample tree i we happen to select. ThIs type of
a model is obviously of much more complexity. How-
ever, due to the usually poor knowledge that one
may have about the costs ¢, and ¢_ or variance
components V. and V_, it is doubt%ul that one may
gain much by constructing such complex models; use
of models based on average values V_, cs and ¢, are
sufficiently good for all practical”purposes.
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Optimization Models 2, 3, 4, and 5

It is relatively easy to extend the usefulness
of the simple optimization model 1 of the previous
section by considering a few more common subsampling
designs or estimators. For convenience these new
models will be known as Models 2, 3, 4, and 5.

Model 2 - Simple Random Subsampling; m is
large with respect to M. When m is too large with
respect to M one cannot ignore the effect of the
finite population correction factor. As the vari-
ance of 4 is equal to

we can write the conditional variance of u for
given [x] as

z)= (M~m) V.,/Mn

uu

vV = Vl

* =
where Vl Vl

+ (M- = V*
(M-m) V,,/Mm Vi 4V, /m
- V2/M.

As the optimization problem of this model is
now identical to that of model 1 of the previous
section, the optimum solution m and n is given by

the same formulae; only VI is substituted for Vl.

Model 3 - Simple Random Subsampling; m is
large relative to M and the estimator of u is of
a ratio type. Assume that an auxiliary variable
g, exists for each biomasssample k and that the
cOrresponding total value G of all M biomass sample
values g is known without error. If the correla-
tion between z, and g, is sufficiently strong, an
efficient estlmator o% u is the well known ratio
estimator

u = Gr
r

where, for I taken over the sample units
k=1, 2, ..., m,

r = sz/ng = z/9
= estimator of the ratio p(=u/G) of the
true value u of the variable of interest

to the true value G of the auxiliary vari-
able.

The estimator u_ is biased, but the bias is
expected to be small when m is sufficiently large.
The size of the bias can be approximated by the
formula

B = (M—m)(pogg-oz )/mu
where U = G/M is the expected value of g , o is
the vargance of g and ¢ is the covariance ggz
and g . The variance of as an estimator of tﬁe
true value u of the given Eree is approximately
equal to

- % =) vgem

where, for L taken over all tree values kx = 1,2,...,M,

kk = M2 - 2 /m=M2 _ 2
V2 M 2(z pg ) ¢/M=M (Uzz 2p0 g+p g )

g9
By using statlstlcs g, r, S S and S calcu~
lated from the m pairs of vafues g and g’ “one can
define similarly estimators of the bias and vari-

ance of u_.
r



To better see the meaning of u , consider the
problem of the estimation of the bole ovendry weight
y of a given tree. We are interested in the re-
gression of y on diameter d and empirical evidence
suggests that the condltlonal variance of y given
d is proportional to at This implies that we
should work with the transformed variable

= y/a? =, the bole biomass (ovendry weight) per

square inch of diameter at breast height. Let

the biomass samples be disks cut from the tree
bole, M be the total number of disks for the given
tree and m be the number of sample disks selected
at random and without replacement. It is known
that the green and ovendry weights are highly cor-
related and that G = total green weight of the en-
tire bole divided by a2 is easy to determine. If
we define now the disk values z, and gk by the

formulae k

z, = (ovendry weight of disk k)/d?
and

9 = (green weight of disk k)/d2

we have the following statistics and estimators

r = E/é = sample ratio of ovendry/green weight
= estimator of the ratio p(=u/G) of the un-
known total ovendry weight u to the known
green weight of the tree bole, and

u = Gr = estimator of u, the total ovendry
weight per square inch of the given tree
bole .

yr = d%u_ = estimator of y, the total ovendry

weight of the given tree bole

We can write now the conditional variance V
of u, given [x] as

v=v +(E§3)(v;*/m) = Vi + Vir/m

where
= - = - - 2

Vi* = Vl V;*/M = Vl M(crzz 2pdzg+p cgg)
Consequently, substitution of V** and V** for v
and V_ of the formulae of the p¥evious Section
model”]l, yields the optimum values m and n for the
pPresent model 3. These formulae may take a differ-
ent form when M = =, the case of infinitely many,
overlapping biomass samples. Then, V** becomes
equal to V., (since V**/M = 0) and the definition
of the varlances and covariance of z, and g, must
change accordingly (in terms of expected vaEues)

1

Model 4 - Stratified Random Subsampling. We
shall assume that (i) the tree is divided into L
large sections known as strata, (ii) each stratum
h=1, 2, ..., L is further subdivided into bio-
mass samples, (iii) 2 2 biomass samples are se-
lected from each str:¥um h by simple random sampling
without replacement, and (iv) the samples from
various strata are statistically independent. As
before, we define y as the biomass of the tree (or
some of its components) and u as (y//§3, the trans-
formed value of y. 1In addition, we shall also de-
fine the following stratum values

yh = biomass of stratum h

W =y //— transformed biomass value of
s%ratum h

z = (biomass of sample k within stratum h)/ﬁ;

“zh = :ean of the Mh values Zpk within stratum
zh = mean of the mh sample values zhk within
stratum h
ozzh = variance of the Mh values zhk within
stratum h
Szzh = variance of the mh sample values zhk

within stratum h

ﬁh = Mhzh = estimator of uh
uh Mh(Mh_mh)(czzh/nh) .
(Mh—mh)(VZh/mh)/Mh = variance of uh
= M2
- Mhozzh
Mh(Mh mh)(sz zh mh) = estimator of the

variance of uh

R»

where V

Using these values, we can define

=0 + U, +.... + 2 = D

ug =8+ 8 T
= stratified sampling estimator of the true
value u of the given tree

Vs = Zcﬁﬁh = ZMh(Mh_mh)(czzh/mh)
= Z(Mh-mh)(Vzh/mh)/Mh = variance of u_

If we define

s .

Vi TVt Ty /)

we can wrlte the conditional variance of u given
[x] as

s
v = Vl + Z(Vzh/mh)
If we further define

c, = average cost of measuring a biomass sample
from stratum h = 1, 2, ..., L

and

the optimization problem can be expressed in the
following two forms

Optimization Problem 1. Find values n, m,_,
M., eeey that minimize the cost (objective)
function

C = nct + anhch
subject to the side (variance) condition that
s -—
(V + Z(VZh/mh) )/n =

where alil parameters c e C, s V , V.., and K are
positive values and the op%lmum sozutlon n, m ,
m,, ..., M are positive integers (greater than

L
two), and

Optimization Problem 2. Find values n, m_,
that minimize the variance (objective)

M.y seey
2 .
function

s
K = (Vl + Z(VZh/mh) )/n
subject to the side (cost) condition that
nct + anhch = CO
where ¢ _, ¢

and n,
than two}

h 1’ V.., and C_are positive values
ooy mL are positive integers (greater

To solve these problems, we shall proceed as
follows. It is known, see Cochran (1977) among
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others, that for a given, overall sample size

m= (m, +m, + .... +m ), the optimum allocation
of the samp%e size within stratum h is propor-
tional to the values VV_ /c, . Note that the ef-
fect of the stratum size that is shown explicit-
ly in Cochran's procedure is included implicitly

?n tye definition of V2h' since V2h = Mﬁozzh' This
implies that

(1)mh=

m/Vzh/ch/Z/G;;/ch

4 /o M 000
(2) thch = chh/VZh/ch/E/Vzh/ch

M2V o Sh 2 Vo0
mZMh‘/ozzhch/EMh‘/czzh/ch

= mC
S

where cs = Im c, /m = average cost of measuring a
biomass sample from the overall popu-
lation of biomass samples when the al-
location 1is optimum, and

(3) T (V2h/mh) = (ZVVZh/ch) I (VZh/v’Vzh/ch) /m
(z/v2h/ch)(z/V"c )/m

2h h
= (M Yo e) (M Vo, o) /D
= V;/m
where s
v, = (z/vzh/ch) (Z/Vthh)

(M o /o) (B Vo, pcp)

Because the cost and variance functions can
now be written as

C = nc, + mnc
t s

and
K

(Vi + Vz/m)/n

respectively, the solution to the two optimization
problems of this section is the same as the solu-
tion of the two optimization problems of the pre-
vious section. Of course, V. and V_ are substi-
tuted for V. and V_ respectively ané the definition
of cg is slightly aifferent.

Remarks

(1) Most of the remarks made in the previous
section for model 1 apply here as well. More spe-
cifically, (i) all and n values are obtained
by the rounding-off (to the nearest or nearest
above) integer of the optimum solution values
and n obtained by the calculus optimization temg—
niques, (ii) the optimum solution makes sense from
an intuitive point of view; m increases with the
increase of V and/or decrease of ¢, and (iii) for
practical con§iderations we have to assume that the
variation within trees is the same from tree to
tree.

(2) It is extremely difficult, if at all pos-
sible, to have good estimates of stratum variances
O, .n' V. or costs ¢, , c¢_. Therefore, one can
wifke assumptions thag would simplify the formulae.
For example, one may assume that c_ = c_ for all

h s
h. Then,

= . S =
mh = mVVZh/ZVVZh, and V

N2
2 = (EWVy)
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Or one may assume that ozz =0 . in addition to
ch = qs for all h, Then, %or Zﬁh = M,

= S 2
m th/M and Vz = M Gzz
Finally, if ME = M/L (equal strata), ¢ =g and
all h

z2z zz
ch = cs for , the formulae becomes h

m = m/L and V° = M2s = L2V
h 2 zZ 2

i = M2 = M2y /1.2
since V, Ouzh M,Uzz/Ls
(3) We have defined V2 as the quantity

s
= Z(VZh/(mh/m))

Vy = mE(Vy/m)
where /m were the optimum allocation ratios. Be-
cause m must be an integer and

mh/m = /Vzh/ch/Z/VZh/ch

is generally a non-integer, in real life Vs, as
given by the formula above, will only be an approxi-
mation to the optimum value V.. This should not

be of any practical concern, however, because

is taken as the nearest integer, and with suffi-
ciently large m, the actual allocation ratios mh/m
are not too far from the optimum ratios.

(4) If instead of the optimum allocation ratio
/m one uses any arbitrary allocation w_ = /m,

one can still use our approach. However, in is
case we define V2 by the formula

s

V2 = Z(Vzh/wh)
Once m is determined by our optimization formulae,
one can apply the allocation ratios w, to obtain
the sample allocations m i that is

mh = (nearest integer 2 2) to mw

h
(5) When for all h =1, 2, ..., L, the stratum
size is large with respect to subsample size ’
one can simplify the model by making (M -m )/M =1

and, thus, by making V. = V_. The same simplifi-
cation occurs when the biomdss samples are over-
lapping and Mh is infinite in size. But then, one
must use the_relative size A, of stratum h to de-
fine V h o ; the factors allow one to go
from tﬁe "per Efomass" sample values z to the "per
stratum” totals uh, that is from uzh to uh = Ahuzh'

Model 5 - Stratified Random Subsampling with
Ratio Estimators Within Strata. With this sub-
sampling method, the procedure to select the
biomass samples is the same as in Model 4 above
but (i) the biomass samples are measured for the
auxiliary variables g in addition to the
variables of interest 2y, (i1) the stratum
totals Gy, of ghk are known for each h, and (iii)
ratio estimators of the form uyy = Gyry ﬁdefined
in Model 3) are used for w, (instead of uh).
Using the procedure and notation of Model 3, we
can write

= T2y /T0y < 2/
= estimator of the ratio p,_ (= ZB/G )} of
the true value u¥ of the variable of

interest to the true value G_ of the
auxiliary variable for stratum h

B = (Mh_mh)(phcggh-czgh)/mhugh
= bias of ratio estimator u of uh,
rh

where 1 = Gh/Mh = mean of auxiliary variable ghk'

gh



[of is the variance of g _,, and o is the co~
gh h%h' zgh
vg iance of zhk and ghk within stratum h; and

"y
g = (Vv /m )
u,u ( o 20’ ™h
variance of u
rh
where Eh

- - 2 jm =2 - o2
VMR PO M (0, 72000, PR T gn

Defing now

as an estimator of

= + oo, + =
us url ur2 urL Zurh

estimator of the true biomass value u
of the given tree

and
= = - *
vs Zcu u Z(Mh mh)(v2h/mh)/Mh
h rh
= varlance of us
If we define
s*
- - *
Vl Vl Z(v2h/Mh)
we can write the conditional variance of Uy given
[x] as
s* -
= +

V=V IV /m)

The optimization problems for this mode%*are
the same as for the pgevious Model 4, with V. and
V* substituted for V. and V respectively.” Con-
séquently, the optimum sample sizes and n can
now be determined by the procedure outlined for
Model 4. We have

m = m/V;h/ch/z/VEh/ch forh=1, 2, ..., L

thch = mcS
= * *
where oy Zvvzhch/ZVVZh/Ch
and
* * %
L (v, /m ) (szZh/ch) (z/vzhch) /m
= V2 /m

Consequently, the cost and variance function can
be written as

= +
C nct mncS
and
S* s*
= +
K (Vl V2 /m)

respectively, and the optimum values m and n are
given by the formulae of Model 1.

Summary Comments

We have considered the problem of optimizing
the size of the subsample used to estimate the
biomass of sample trees. We have assumed that
the n sample trees were selected by simple random
sampling, that each sample tree was subdivided in-
to M biomass samples (small sections of the tree)
and that m biomass samples were selectad by simple
random sampling without replacement and measured
for the biomass variable of interest z and possibly
for a second variable, denoted here as the auxili-
ary variable g, highly correlated with z. The se-
lection of the n sample trees and the n subsamples
(within the n trees) were all assumed to be sta-
tistically independent of each other.

To solve this problem, we have constructed an
optimization model of the mathematical programming
form, having an objective function to minimize and
side conditions to satisfy. The decision variables
are the sample and subsample size n and m, the pa-
rameters of the model are (i) the variance components

V, (due to the variatiom of the true biomass about its

régre551on function), and V., (due to the variation
of the biomass sample valueS within the sample
trees), (ii) the average sampling costs c, per
sample tree and c¢_ per biomass sample, ans (iii)
either a desired pPrecision K of some biomass esti-
mators or an allowable cost of sampling C . We have
considered the two essentially equivalent prob-
lems of (i) minimizing the sampling costs C sub-
ject to the side condition that the precision of
the parameter of interest is equal to K , or

(ii) minimizing the variance of the estgmator

of interest subject to the side condition that

the sampling costs are equal to C . The model had
the additional side condition that the optimum sam-
ple sizes n and m must be positive integers.

After formulating the mathematical models, we
have solved the models by calculus techniques of
optimization. The solution shows that the optimum
size m of the subsample does not depend on the
number n of sample trees; it depends only on the
variance components V. and V_ as well as the cost
parameters ¢, and ¢ .~ Once ghe subsample size m
is determines, then the number n of sample trees
is a function of the total variance function V (of
the form V_+ Vz/m) and either the desired precision
V/n = K o} the allowable costs of sampling
n{c, +mc ) =C .

t s []

Of course, the subsample size m depends also
on the design used to subsample the tree biomass.
We have started with the most simple case where
the subsampling is done by simple random sampling
with replacement or simple random sampling with-
out replacement where the effect of the finite pop-
ulation correction factor can be ignored. We have
then extended this model to include the effect of
the finite population correction factor (when it
cannot be ignored) and consider the case where the
estimator of the tree biomass that uses the sub-
sample average z is replaced by a ratio type esti-
mator. We have further extended the model by re-
placing the simple random by the stratified random
sampling method of selecting the m biomass samples.
We have also considered both estimators of the tree
biomass; the one based on the means of various
strata and the one based on ratio type estimators
of the stratum totals. In all these extensions we
have shown how to change the definition of the
variance components V. and V., so that (i) the new
components are consis%ent wi%h sampling design and
estimator used and (ii) the mathematical model to
optimize does not change and the optimum solution
of m and n remains the same function of the (new)
components Vl and V2.

The application of this approach to real life
problems may present several difficulties or prac-
tical limitations. It is first necessary to obtain
sufficiently good estimates of the average cost
factors c, and c¢_ as well as estimates of the vari-
ance components and V_. And these may be dif-
ficult to obtain.” Some §ensitivity analysis of the
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model may be needed to determine how much varia-
tion in the estimates of ¢,, ¢, V., and V_ can
be tolerated without criticall§ af%ecting %he
optimum solution. Furthermore, to keep the mathe-
matical model sufficiently simple, we had also to
assume that the variance component V_ is the same
(or does not change much) from tree %o tree. Be-
cause (i) V_ refers to the variance of the ratio
u = y/ﬁ; of the total biomass y of some tree com-
ponent to some known weighting factor Yw (a func-
tion of tree size and possibly species), and

(ii) the variance of u is expected to be ap-
proximately homogeneous, it may imply that the
assumption that V_ does not vary much from tree
to tree is not too critical.

For example, let y be the ovendry biomass of
the main tree bole and assume that the conditional
variance of y given diameter d and height h is
approximately proportional to d*h2. Then, the
variable u = y/dzh, which has an approximately
homogeneous variance, has a special meaning that
may imply that the variation of V_ from tree to
tree is expected to be small. This can be ex-
plained as follows. It is known that the bole
volume is approximately equal to some factor k
multiplied by the quantity d?h. Note that Hd2/4h
represents the volume of a cylinder of diameter
d and length h and ka’h represents the volume of
the tree bole as a fraction of the corresponding
cylinder. Consequently, dividing y by da%n is
nothing but expressing the biomass value y on a
"per volume unit" basis. It is not necessary
for the volume unit to be exactly a cubic foot;
any unit would suffice. As (i) z is the M-th part
of the value u of the main bole, and (ii) z, as
a relative value represents "weight per volume
unit," varies little from tree to tree, it seems
reasonable to expect that the variation of o

or V2 = Mzozz, if any, would be small.

2z

The optimization model requires that M be
the same from tree to tree. If m is small rela-
tive to M and the effect of the finite population
correction factor can be ignored, the formulae of
the optimum sample sizes m and n are not a func-
tion of M. This seems to imply that as long as
M remains large with respect to m, one may use
different values of M for different trees. This
may affect slightly the variamce term © and Vv
but it is not expected to affect it cri%%cally.

The approach shown here can be extended to
other methods of subsampling. It suffices to
identify the form that V., and V_, will take with
these methods. The modi%ication of the sampling
technique to select the n sample trees may, how-
ever, change critically the optimization model.
Instead of one sample size n, the model may have
to be written as a function of several sample
sizes n., n., ... . For example, if the sample
trees are sélected by cluster sampling, the sam-
ple sizes may be n. = number of clusters and
n2 = number of treé&s per cluster, assuming that

n2 is the same from cluster to cluster.
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ESTIMATING SAMPLE TREE BIOMASS BY SUBSAMPLING:
SOME EMPIRICAL RESULTS
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A procedure used to measure the green weight
and estimate, by subsampling, the dry weight of
the above ground components of 29 randomly selec-
ted sugar maple trees is described. Foliage and
branch dry weights were determined by direct
measurement. Bole wood and bole bark dry weight
was estimated by stratified subsampling and sub-
sequent application of ratio-type estimators. An
analysis was made of the variation of subsamples
within sample trees and variance components are
calculated and listed for use in later studies.

Introduction

Regression functions of tree biomass on
diameter outside bark at breast height (dbh) are
estimated from samples of trees randomly selected
from some forest population of interest. Once
these trees are selected, their biomass must be
measured, if possible, or estimated by subsam-
pling otherwise. If the biomass is expressed as
green weight, the tree component can be measured
directly as soon as it is separated from the
tree. The only possible error may be due to
faulty measurement instruments or methods. If
the biomass is expressed as dry weight, direct
measurement may be too expensive and time consum-
ing for large tree components. The only practi-
cal alternative is subsampling; small biomass
-samples are selected from the tree component by
some random procedure. Green and ovendry weights
of these samples are determined in the laboratory
and the results extrapolated from biomass samples
to the entire tree component.

Note that we define here the "measurement"
of biomass as the process of direct determination
of the biomass of the entire tree component of
interest and the "estimation" of biomass as the
process of determination of the lyiomass by sub-
sampling. The fresh weight of a component is
measured if the entire component is weighed or
estimated if parts of the component are weighed
and the weights of the parts are extrapolated,
by some computational procedure, to the entire
component. We also define here the measurement
error as the difference between the actual value
as obtained by the measurement or estimation
process and the true value of the parameter of

interest. We shall assume that this error is
negligibly small when the biomass is measured but
is sufficiently large when the biomass is esti-
mated. The measurement error can be evaluated
and expressed in statistical terms if the subsam-
pling procedure is statistical.

The objective of the present paper is to
describe the procedure used to measure and esti-
mate the biomass of the aboveground components of
29 sugar maple (Acer saccharum Marsh.) trees
selected at random from a 21 ha sugar maple stand
on the Green Mountain National Forest in the town
of Bristol, Addison County, Vermont. These trees
were part of a large study designed to evaluate
the effects of whole-tree and tree~length harves-
ting on future site productivity of northern
hardwoods. Additional details of this study are
provided by Briggs (1985). More specifically, we
shall be concerned here with the measurement
error due to the process of determining, by sub-
sampling, the biomass of the sample trees. Dif-
ferent people, applying the same or different
subsampling procedures will generally arrive at
different tree biomass values and thus, arrive at
different regression functions.

Subsampling Procedure for Estimating Tree Biomass

The 29 sugar maple trees were all measured
first for their diameter at breast height (dbh),
total height (h), and merchantable height to a 10
cm minimum top diameter. FEach tree was then
felled down and ten plastic sheets were placed on
the ground surrounding the tree. Beginning at
the base of the crown and working towards the
top, the tree branches with their leaves attached
were removed in groups of ten, so that each
branch in a given group had approximately the
same amount of branchwood and foliage (as esti-
mated ocularly) and came from a similar height in
the crown. One branch from each group was put in
a different pile so that for each tree, ten piles
were obtained; each pile having a similar distri-
bution of branches and foliage with respect to
weight and point of origin from the crown.

For each of the ten piles, all of the fo-
liage was picked from the branches, placed in
paper bags and carried to the truck. The bran-
ches from each pile were tied together in canvas
tarpaulins and carried to the landing. In order
to facilitate transportation and ovendrying, each
pile of branches was processed separately through
a small chipper operated from the PTO (power
take-off) shaft of a farm tractor. The chips
were collected and bagged separately by pile and
transported to the laboratory.

The bole of each sample tree was divided
into three sections of equal length. For each
section, three integers were randomly selected
from 1 to 100. Each of these numbers was multi-
plied (as a percent) by the section length to
obtain the location of a sample disk for the
determination of the fresh and dry weight. For
example, if the random number was 32 and the
section length was 5.0 m, then a disk would be
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located at (.32) X (5.0) = 1.50 m from the base
of that section. FEach disk location was marked
with flagging.

Each of the three bole sections was cut into
logs of various lengths and weighed on a 90 kg
capacity field scale. Disks, approximately 5 cm
in width, were removed from the bole {(at the
marked locations) after each section was com-
pletely weighed, placed in double plastic bags
and carried to the truck. At the end of each
day, the sample disks were weighed in the field
office and transferred to paper bags.

All sample material (foliage, branches,
disks) was transported to the Forest Service
Laboratory in Burlington, Vermont and placed in a
greenhouse. The greenhouse was used as a holding
area which allowed for partial drying, preventing
losses of dry weight due to microbial decomposi-
tion. At the end of the field season, all sample
material was transported to the SUNY College of
Environmental Science and Forestry, Syracuse,

N.Y. Foliage, branches and disks were placed in
forced air kilns at 65° C until constant weight
was obtained. The ovendry weight was determined

individually for each pile of branches and fo-
liage, as well as for each disk of each indi-
vidual sample tree. The bark was removed from
each disk, dried at 65° C and its weight was
recorded.

The measured tree data including dbh, total
height and height to a 10 cm minimum top diame-
ter, total bole length and the green weight (wood
and bark) for each of the three bole sections are
shown in (Table 1) The green and dry weight data
for wood and bark of each of the nine sample
disks per tree can be found in Briggs et al.
(1986). Finally, the mean ovendry weights for
the ten piles of foliage and branches, along with
their variances, are shown in Table 2.

Estimation of Bole Biomass

Determination of the green weight of the
tree bole is made by direct measurement of its
weight. If the loss of humidity between tree
felling and bole weighing is negligibly small and
the weighing scale is accurate, the measurement
error of the bole biomass, expressed as green

Table 1. Morphological data for the 29 sample sugar maple trees.

Height Green Weight of Bole
Total to 10 Bole (wood + bark)

Tree Dbh Height cm Top Length Bot Mid Top Total
cm m m m = ——m——ee————- kg---——->--—--

1 25.1 15.7 15.4 14.8 196.8 142.1 76.0 414.9
2 43.4 19.9 14.0 13.9 595.5 493.9 179.3 1268.7
3 33.0 20.7 15.7 15.5 374.4 316.8 174.3 865.5
4 41.9 20.4 15.2 14.7 544.8 415.9 223.5 1184.2
5 17.6 19.5 11.9 11.5 90.1 77.3 50.1 217.5
6 16.7 19.8 12.4 12.1 75.4 52.5 33.0 160.9
7 38.1 23.5 18.2 17.0 526.1 434.0 204.3 1164.4
8 10.2 16.4 4.4 4.1 10.9 9.1 7.9 27.9
9 32.5 23.2 19.9 19.6 475.5 345.2 131.7 952.4
10 38.6 22.6 18.1 17.6 550.3 408.4 164.6 1123.3
11 41.2 23.4 17.6 17.3 603.0 428.8 239.2 1271.0
12 25.4 21.7 15.2 14.9 196.2 133.7 77.9 407.8
13 32.5 22.0 17.4 17.0 426.8 275.0 142.8 844.6
14 9.1 13.0 2.2 2.2 5.0 5.4 5.4 15.8
15 32.5 24.0 17.8 17.4 417.1 340.4 205.9 963.4
16 25.9 22.0 16.3 16.0 238.0 162.7 92.4 493.1
17 9.1 12.4 1.8 1.5 3.8 3.1 2.8 9.7
18 17.2 18.5 10.7 10.4 74.4 47.2 29.9 151.5
19 39.4 21.8 16.4 16.1 597.5 418.4 235.4 1251.3
20 26.2 22.0 15.6 15.3 233.1 164.5 106.4 504.0
21 37.3 23.4 17.4 17.0 508.3 393.9 189.9 1092.1
22 43.9 22.2 20.8 20.4 812.5 567.9 185.4 1565.8
23 38.6 23.5 18.5 18.0 631.6 493.3 244.5 1369.4
24 9.9 13.7 3.5 3.1 11.3 4.1 6.8 22.2
25 26.4 22.8 16.5 16.1 259.1 175.5 106.3 540.9
26 33.0 22.2 17.6 17.3 428.4 317.3 185.4 931.1
27 42.7 25.2 18.4 18.0 768.6 656.6 420.3 1845.5
28 38.9 23.5 18.4 17.9 589.7 435.4 191.5 1216.6
29 42.2 25.4 19.9 19.5 657.0 487.8 314.4 1459.2
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Table 2.

Total and average dry weights for the ten piles of foliage and

branches for each of the 29 sample sugar maple trees.

Foliage Branches

Variance Variance
Between Between

Tree Total Average Piles Total Average Piles

------ e kg2 —-----=-kg------ kg?
1 7.48 0.748 0.014856 81.56 8.156 3.875084
2 24.10 2.410 0.076900 363.98 36.398 16.106596
3 16.09 1.609 0.113369 126.88 12.688 17.074796
4 16.03 1.603 0.149081 204.44 20.444 6.623464
5 3.48 0.348 0.009996 45.09 4,509 1.248909
6 2.89 0.289 0.006409 28.47 2.847 1.610921
7 12.68 1.268 0.044956 208.28 20.828 13.249076
8 0.61 0.061 0.000369 21.77 2,177 0.282821
9 11.07 1.107 0.053941 130.81 13.081 2.884529
10 13.55 1.355 0.090625 176.90 17.690 4.592060
11 14,23 1.423 0.264621 178.37 17.837 17.018581
12 5.83 0.583 0.020241 64.06 6.406 3.130104
13 8.07 0.807 0.033021 110.69 11.069 4.050209
14 0.68 0.068 0.001416 21.30 2.130 0.880420
15 8.56 0.856 0.014764 87.79 8.779 2.467629
16 4.74 0.474 0.018304 67.50 6.750 3.688480
17 0.56 0.056 0.000384 20.30 2.030 0.458400
18 2.41 0.241 0.002629 26.94 2.694 0.246784
19 25.81 2.581 0.228229 335.42 33.542 32.040436
20 6.47 0.647 0.016781 70.14 7.014 2.392004
21 3.81 0.381 0.006669 121.29 12.129 6.776149
22 23.11 2.311 0.056009 295.50 29,550 5.153040
23 11.96 1.196 0.037364 175.85 17.585 21.395305
24 0.73 0.073 0.000641 19.26 1.926 0.793304
25 6.53 0.653 0.023201 87.24 8.724 5.915184
26 14.06 1.406 0.037444 153.75 15,375 1.502325
27 25.47 2.547 0.300041 482,82 48.282 47.007136
28 8.65 0.865 0.040385 163.33 16.333 16.919021
29 8.85 0.885 0.018745 185.29 18.529 15.937229

weight, is equal to zero.

On the other hand, the

ovendry weight of the bole is determined by sub-

sampling.

As the three bole sections can be

considered as strata, and three disks are selec-
ted at random from each section, the method of
disk selection is stratified random sampling.
Because the green weight of the entire bole,
individual sections and disks are known and the
ovendry weight of the sample disks is measured,
one can estimate ovendry weight of the bole by a

stfatified ratio estimator.

Let us show in detail the estimation proce-
dure for the ovendry weight of the bole (wood

plus bark).

The estimation of the ovendry weight

of wood alone or bark alone would follow the same

general lines.

It is then sufficient to show

only which variables are substituted into the

corresponsing formulae.

The following notation

and definitions of estimators are being used:

G =total green weight of the entire

tree bole

Gy, = green weight of section h (1 for
bottom, 2 for middle and 3 for top

section)

9hx = 9reen weight of wood and bark of
disk k =1, 2, 3 in stratum h

mh=3=

number of sample disks in each

hk = ovendry weight of wood and bark of
disk k = 1, 2, 3 in stratum h

section h = 1, 2, 3

= average green weight per sample
disk within stratum h = 1, 2, 3

L9hk/Dn = (91 + 9pp + 9p3)/3
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h = Dpe/ny = (&, + dhz + dp3)/3
= average ovendry weight per sample
disk within stratum h =1, 2, 3

My =G /gh = conceptual number (not
neceesarlly 1nfeger) of disks of
average weight gh that can be made
from section h = size of section h

(Mh—mh)/Mh = finite population correction factor
of section h

de:h = Z(dhk_ah)azm -1) = sample Variapce
of the mh disk values dh with-
in section h

Sgg,h = M9px-Tp)/(my-1) = sample variance
of the my, disk values gy, within
section h

Sag,h = Z(dhk dh)(ghk gh)/(m -1) = sample

covariance of the my pairs of disk
values dhk and 9hk within section h

T, = a /g = estimator of the ratio of
the ovendry weight to the green weight
of section h

Dy = Gyry = Mhah = ratio estimator of
the ovendry weight of section h

B, = (M, -m )(r, S g
h h™ My h
estimator o the blag ofmg h

pp,h = MpMp=mp) Sga,n = 2TnSag,h
+ rZS h)/m
estimator Of the variance of Dy,-

Note that, in the formulae above, the sec-
tion (stratum) size My is a random variable; it
is defined as a function of the random variable
§h. Furthermore the disk material is not selec-
ted with equal probability; the material from the
smaller end diameter of the bole is sampled with
a higher probability. Consequently, our "ratio"
estimator is somewhat different from the classi-
cal ratio estimators as they are commonly defined
in standard textbooks, where M, is fixed and the
sampling is done with equal probability.

Because D,, D, and D5 are statistically
independent random variables, the ovendry weight
of the entire tree bole and its error can be
estimated by the following formulae:

D = ZDh =Dy + D, + Dy = stratified ratio
estimator of the ovendry weight of the
wood and bark of the tree bole

B =‘E§h =B, + B, + By = estimator of the
bias of D

S = 1S

DD DD.h = estimator of the variance of D
r

SDD = JZS D,h = estimator of the standard
error of D, and

thJSDD = approximate 95 percent confidence lim-

its of the ovendry weight of the tree
bole
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If we define now:

dhk w = ovendry weight of the wood of disk k of
! section h, and

dhk b= ovendry weight of the bark of disk k of
! section h, and

if these values are substituted for the variable
dhk of the formulae above, one can define the
estimators D, and D,, the stratified ratio esti-
mators of the ovendry weight of wood and bark,
respectively, of the tree bole, as well as the
corresponding estimators of their biases, vari-~
ances and confidence limits.

In order to conserve space and still provide
the necessary details required to demonstrate the
estimation procedure for sample tree biomass and
its associated error, intermediate statistics are
provided for the bole component of only 3 of the
29 sample trees (1 14, 29). The statistics g,
3 , S . S and S of the
osendgg aelé%% é%e wooglanélbagk tor é%e
bottom, middle and top sections of the bole for
the three selected sample trees are shown in _
Table 3. The summary statistics D, B, SDD’ JSDD
and the approximate 95 percent confidence limits
for the bole are shown for all 29 trees in TFable
4 . The summary statistics for the bolewood and
bolebark ovendry weights are shown in Tables 5
and 6, respectively.

Analysis of Biomass Data and Their Error

This study is concerned with the measurement
of the biomass of tree foliage, branches, bole-
wood, bolebark and bole {(wood + bark). Only the
last tree component was measured for its green
weight. We expect a small loss of humidity, if
any, between the time of tree felling and bole
weighing, as well as a small loss, if any, of
wood or branch material due to bole sectioning
prior to measurement of green weight. We also
expect a sufficiently high accuracy and precision
of the field scale used and we do not expect that
any blunders were made by the field people when
the bole was weighed, (i.e., misreading the scale
or error in recording weights). Consequently, we
should assume here that the green weight of the
main tree bole as shown in Table 1 represents a
true value without any measurement error.

Similarly, we shall also assume that the
ovendry weight of foliage and branches as shown
in Table 2 has no measurement error. This means
that (i) the possible loss of foliage or branch
material from the time that the tree was felled
in the field to the time of meassurement in the
laboratory is negligibly small, (ii) the mea-
suring instruments have high precision and accu-
racy and (iii) no blunders were made when the
ovendry weight was measured and recorded.

Because the foliage and branch material was
divided into ten piles and the biomass of each
pile was measured and recorded separately by
pile, it is possible to make inferences about the



Table 3. The statistics associated with the estimation of the bole ovendry weight for
the three sections of three of the twenty nine sample trees.
Tree dp 9h Saa,hn Sdg,h Sgg,h Th Dp By Spp, h
——————— Kgm=mmmm mmmmmmmmc e cm e kG m—mmkg-———— kg2
Bottom
1 1.13173 1.79877 0.10058230 0.14796983 0.21774336 0.629 123.82 -0.216 2.2534
14 0.22237 0.35087 0.00035754 0.00033079 0.00044217 0.634 3.17 -0.001 0.0062
29 1.48857 2.45100 0.03355816 0.07364185 0.16421700 0.607 399.02 0.941 110.8305
Middle
1 0.77747 1.25107 0.00398492 0.00903385 0.02048281 0.621 88.31 0.109 2.7933
14 0.35707 0.57377 0.01694665 0.02708867 0.04334362 0.622 3.36 0.000 0.0003
29 1.35097 2.15000 0.07199929 0.13392440 0.25207900 0.628 306.51 0.849 54,5814
Top
1 0.47660 0.77373 0.01720093 0.02637653 0.04049172 0.616 46.81 -0.059 0.2181
14 0.22793 0.37467 0.00020024 0.00029754 0.00044804 0.608 3.29 0.000 0.0002
29 0.54330 0.90333 0.18934599 0.32075240 0.54350933 0.601 189.09 0.781 4.9239
Table 4. Summary statistics associated with the calculation of
D = estimate of the ovendry weight for the entire tree
bole (wood + bark) for the 29 sample sugar maple trees.
95% Confidence
o Limits
Tree D Bias Spp J@DD Lower Upper
——————— kg-=m===m kg2 S 7 TS
1 258.94 -0.166 5.2648 2.29 254.36 263.52
2 782.25 -0.189 38.8910 6.24 769.77 794.73
3 563.30 0.321 599.3665 24.48 514.34 612.26
4 716.41 11.652 1633.0545 40.41 635.59 797.23
5 134.28 0.070 1.3178 1.15 131.98 136.58
6 101.92 0.035 1.6132 1.27 99.38 104.46
7 734.93 -1.154 39.3400 6.27 722.39 747.47
8 17.70 0.000 0.0104 0.10 17.50 17.90
9 599.80 1.032 140.7951 11.87 576.06 623.54
10 727.80 -0.030 83.8443 9.16 709.48 746.12
11 809.70 1.022 48.4170 6.96 795.78 823.62
12 254.41 0.033 8.8941 2.98 248.45 260.37
13 575.41 -1.143 44.5967 6.68 562.05 588.77
14 9.82 -0.001 0.0067 0.08 9.66 9.98
15 600.49 -0.931 338.7310 18.40 563.69 637.29
16 318.11 ~-0.065 10.5999 3.26 311.59 324.63
17 6.22 -0.001 0.0007 0.03 6.16 6.28
18 90.27 0.003 0.3705 0.61 89.05 91.49
19 777.32 -0.799 59.1263 7.69 761.94 792.70
20 316.66 0.485 30.1318 5.49 305.68 327.64
2] 714.69 0.341 192.0900 13.86 686.97 742.41
22 994.01 1.104 185.1251 13.61 966.79 1021.23
23 856.00 1.113 45,3786 6.74 842.52 869.48
24 14.06 -0.050 0.0187 0.14 13.78 14.34
25 339.61 0.372 27.6807 5.26 329.09 350.13
26 591.61 1.260 346.5537 18.62 554.37 628.85
27 1158.86 ~1.661 230.1460 15.17 1128.52 1189.20
28 767.45 0.178 140.3759 11.85 743.75 791.15
894,62 2.571 170.3358 13.05 868.52 920.72
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Table 5. Summary statistics associated with the calculation of
D = estimate of tne ovendry weight for the entire tree
bolewood for the 29 sample sugar maple trees.

95% Confidence

Limits

Tree D Bias Spp Spp Lower Upper
------- kg=-==--- kg? Rt it

1 234.80 -0.253 5.8342 2.42 229.96 239.64
2 710.88 -0.998 47.6966 6.91 697.06 724,70
3 506.01 0.314 - 591.9527 24.33 457.35 554.67
4 639.79 8.419 1090.6481 33.02 573.75 705.83
5 122.11 0.028 0.5103 0.71 120.69 123.53
6 90.55 0.020 1.1864 1.09 88.37 92.73
7 647.23 -1.378 46.9841 6.85 633.53 660.93
8 16.08 ~0.001 0.0007 0.03 16.02 16.14
9 545.02 0.153 84.5232 9.19 526.64 563.40
10 659.37 -0.506 29.4932 5.43 648.51 670.23
11 731.39 0.778 42.1788 6.49 718.41 744.37
12 226.39 -0.161 10.4214 3.23 219.93 232.85
13 505.28 -0.594 32.1162 5.67 493.94 516.62
14 8.33 -0.002 0.0054 0.07 8.19 8.47
15 535.40 -1.491 326.4250 18.07 499.26 571.54
16 288.13 -0.182 11.6678 3.42 281.29 294.97
17 5.59 -0.001 0.0007 0.03 5.53 5.65
18 77.99 -0.030 0.7554 0.87 76.25 79.73
19 690.23 -0.548 21.2706 4.61 681.01 699.45
20 287.61 0.306 27.1924 5.21 277.19 298.03
21 630.19 0.072 167.6352 12.95 604.29 656.09
22 904.14 0.876 182.4555 13.51 877.12 931.16
23 768.70 1.241 54,5529 7.39 753.92 783.48
24 12.36 -0.049 0.0188 0.14 12.08 12.64
25 306.27 0.236 25.2890 5.03 296.21 316.33
26 535.29 0.876 266.2677 16.32 502.65 567.93
27 1040.24 -1.599 252.8985 15.90 1008.44 1072.04
28 690.02 -0.212 141.0389 11.88 666.26 713.78
29 799.75 1.767 131.0079 11.45 776.85 822.65

Table 6. Summary statistics associated with the calculation of
D = estimate of the ovendry weight for the entire tree
bolebark for the 29 sample sugar maple trees.

95% Confidence

Limits

Tree D Bias Spp NE Lower Upper
------- kg-====-- kg2 e e Rt

1 24.14 0.087 0.2401 0.49 23.16 25.12
2 71.37 0.809 10.2646 3.20 64.97 77.77
3 57.29 0.008 0.7573 0.87 55.55 59,03
4 76.63 3.232 91.8978 9.59 57.45 95.81
5 12.18 0.041 0.2591 0.51 11.16 13.20
6 11.36 0.015 0.2485 0.50 10.36 12.36
7 87.70 0.226 6.4143 2.53 82.64 92.76
8 1.61 0.001 0.0069 0.08 1.45 1.77
9 54.78 0.880 31.8935 5.65 43.48 66.08
10 68.43 0.477 44.3247 6.66 55.11 81.75
11 78.31 0.244 1.5695 1.25 75.81 80.81
12 28.02 0.194 0.8577 0.93 26.16 29.88
13 70.12 -0.549 60.7034 7.79 54.54 85.70
14 1.49 0.001 0.0001 0.01 ©1.47 1.51
15 65.09 0.560 4.1230 2.03 61.03 69.15
16 29,97 0.116 0.4512 0.67 28.63 31.31
17 0.63 0.000 0.0000 0.00 0.63 0.63
18 12.28 0.033 0.1117 0.33 11.62 12.94
19 87.09 -0.250 18.0980 4.25 78.59 95.59
20 29.06 0.178 0.7317 0.86 27.34 30.78
21 84.50 0.268 1.5386 1.24 82.02 86.98
22 89.87 0.228 10.6607 3.27 83.33 96.41
23 87.31 -0.128 1.2501 1.12 85.07 89.55
24 1.69 0.000 0.0000 0.00 1.69 1.69
25 33.35 0.136 0.9099 0.95 31.45, 35.25
26 56.32 0.385 7.1535 2.67 50.98 61.66
27 118.63 -0.061 11.8567 3.44 111.75 125.51
28 77.43 0.391 4,8309 2.20 73.03 81.83
29 94.87 0.804 7.4899 2.74 89.39 100.35
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measurement error when a few rather than all
piles are being measured. If m < 10 piles are
selected by simple random sampling without re-
placement, the biomass of the tree foliage or
branches can be estimated by Y = 10 ¥, where Y is
the estimate of the tree biomass and ¥ is the
average of the biomass of the m sample piles.

The variance of Y can be estimated by the formula

Syy = (10-m) S__,/10 m, where Syy is the
variance of the estimator Y and S is the vari-
ance of the biomass values y of t%% 10 individual
piles. Let us analyze more closely the behavior
of & for both foliage and branch biomass. Be-
cause the piles are formed more or less arbitrar-
ily, and it is natural to expect variation in the
pile biomass from tree to tree, the values S

. . vy
can be viewed as random variables.

Casual examination of the values S for the
foliage and branch biomass of the 29 sample trees
suggests that S and tree size are correlated;
as the tree increases in size, so does its vari-
ance (Tables 1 and 2). This is not surprising
since it is empirically known that large things
tend to vary more than small things. To better
see this pelationship. foliage variance Sy was
plotted against dbh (Figure 1) and against %o—
liage biomass Y (Figure 2). In both cases the
variance S v seems to increase exponentially with
tree size.

It was also felt that the variance between
pile biomass may be proportional to the fourth
power of tree dbh. As this hypothesis is identi~
cal to the hypothesis that the standard deviation
is proportional to squared dbh, Figure 3 shows
the graph of standard deviation against the
squared dbh value. As the reader can verify,
this hypothesis seems to be approximately true; a
straight line passing through the origin of the
two axes seems to be a sufficiently good approxi-
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Figure 1. The variance of the foliage biomass
(ovendry weight) of the ten piles
plotted against the tree diameter.
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Figure 2. The variance of foliage biomass
(ovendry weight) of the ten piles
plotted against the total ovendry
weight of the tree foliage.
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Figure 3. Standard deviation of the foliage

biomass (ovendry weight) of the ten

piles plotted against the squared
value of tree diameter.

mation of this relationship. Similar conclusions

can be drawn from the analysis of the ovendry
weight of branches.

Let us analyze now the variation of the
stratified ratio estimator of the bole ovendry
weight (wood + bark). The variance ranges from
0.0007. to 1633.0545, corresponding to the smal-
lest and largest sample trees, respectively (Ta-
ble 4). As was the case with foliage and branch
biomass, we have plotted the variance of the
estimator of the bole biomass against tree dbh
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Figure 4. The variance of the stratified ratio
estimator of the bole ovendry weight
(wood + bark) plotted against the
tree diameter.
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Figure 5. The variance of the stratified ratio
estimator of the bole ovendry weight

(wood + bark) plotted against
biomass.

(Figure 4) and against bole biomass itself (Fig-
ure 5). The graph of the standard error of the
biomass estimator against the squared value of
dbh (Figure 6) shows that the assumption that the
variance estimator of bole biomass is approxi-
mately proportional to the fourth power of dbh is
reasonable. Similar analyses for the bolewood
and bolebark components lead to the same conclu-
sions.
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Figure 6. The standard error of the bole ovendry
weight (wood + bark) plotted against
the squared value of tree diameter.

It is known that the ratio estimators are
biased. As the estimator of the bole biomass is
based on a sample size of nine disks, we would
expect the bias to be small. Results from Table
4 verify this expectation; with very few excep-
tions the bias is much less than one percent of
the biomass estimate. In terms of the standard
error, however, the estimated bias is about seven
percent for the first tree, about one percent for
the fourteenth tree, and about 20 percent for the
twenty-ninth tree. Whether a bias of this size
can be tolerated is a question for management to
answer. We feel that in terms of the resulting
biomass table we construct, this bias is negligi-
bly small. Similar conclusions can be reached
from the corresponding analyses for the bolewood
and bolebark ovendry weight data.

Concluding Remarks

It is generally expensive and time consuming
to determine the biomass of sample trees by di-
rect measurement. Most of the time, it is suffi-
ciently precise to estimate the biomass by sub-
sampling. This can be done in many ways. We
have described the specific subsampling methods
used in a study designed to evaluate the effects
of some harvesting procedure on future site pro-
ductivity.

The ovendry weight of the tree foliage and
branches was found by direct measurement. All
the material was ovendried and weighed. To fa-
cilitate the handling of this material, but much
more importantly to obtain data that can be used
later in the optimization of the subsampling
method, the foliage and branches were divided
into ten piles and the ovendrying, weighing and



recording were done separately by pile. By con-
sidering the estimation error when m < 10 piles
only are sampled, one can make a decision as to
how many sample piles would be sufficient to
satisfy precision requirements.

The biomass of the main tree hole expressed
as green weight can be determined easily by di-
rect measurement; there is no need for subsam-
pling. It requires the use of a field scale, and
only when the tree is large requires sectioning,
with each section being weighed separately. The
measurement error is expected to be equal to zero
if the weighing is carefully done. The biomass
of the same bole, expressed as ovendry weight, is
however, much more time consuming and expensive
to measure. For this reason it is necessary to
determine ovendry weight by subsampling.

The subsampling method used in this study
was stratified random sampling and the estimator
used was that of the stratified ratio type. The
variance within strata was estimated for both
green and ovendry weight of the subsample units
(disks) as well as their covariance and ratios.
These statistics can be used in later study to
decide the amount of subsampling that one may
need to obtain estimates of the ovendry weight of
the main bole, should one decide to use strati-
fied sampling and ratio estimators of the type
used in this study.

It is in this sense that one must view the
value of this paper. It provides information
about the variation within sample trees. Quanti-
tatively expressed, this information can be used
in later studies to determine the amount of sub-~
sampling needed. Then, optimization models of
the type suggested by Cunia (1986) can be used to
find out at what point one should stop subsam~
pling and add more sample trees so as to obtain
maximum information for given costs of sampling
or to minimize these costs and obtain estimates
of desired precision.
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A three-stage procedure for estimating the
total tree weight in a plot employs discrete
sampling with probability proportional to size,
randomized branch sampling, and importance
sampling--a continuous analogue of sampling with
probability proportional to size. Published
regression functions that predict tree weight
from diameter breast height can be used to
assign probabilities of selection to the trees
for the first-stage sampling.

Introduction

In ecological or forestry research, a need
often arises for an estimate of the total weight
of the trees in a research or survey plot. The
biomass literature is rife with regression
functions that estimate tree weight from
diameter. Consequently, an investigator might
be tempted to measure the diameters of the trees
in a plot, use published regression functions to
estimate their individual weights, and then sum
these weights to obtain the needed estimate of
total tree weight. Unfortunately, the
model-based estimate of total tree weight
obtained by this simple procedure may be biased
if the regression functions do not derive from
the population to which they are applied. Bias
also may arise if the population of current
interest is a subpopulation of the parent
population from which the regression functions
derive. This bias may be large or small and of
either sign, and the absolute magnitude of this
bias does not decrease with increasing sample
size.

In this paper, we describe a procedure that
furnishes a sample-based unbiased estimate of
the total weight of the trees in a plot.
Initially, a sample of trees is selected at
random with probability proportional to size
(PPS). The weights of the trees in this sample
are either measured or unbiasedly estimated in
optional second and third stages of sampling.
The second and third stages employ procedures
for subsampling trees developed by Valentine et
al. (1984).

Published regression functions may be used
in connection with the first-stage PPS sampling.
The probability of selection of a tree in the
plot can be made proportional to weight as
predicted by a regression function. Any
regression function(s) could be used for this
purpose. However, the precision of the PPS
estimator depends on the degree of correlation
between the predicted weights and the actual
weights. Better correlation gives better
precision.

First-Stage Sample

The use of PPS sampling for the estimation
of the total tree weight in a plot has become
feasible with the advent of programmable pocket
calculators and field-worthy portable
microcomputers. To proceed with PPS sampling,
the N trees in a plot are numbered consecutively
as their diameters are measured. Regression
functions that predict tree weight from diameter
are programmed into a calculator or computer and
used to predict the weight of each tree. The
predicted weight of the tree number i (i = 1,
2,+..4N) is denoted by #.. The conventional
model-based estimate of %he total (fresh or dry)
weight of the trees in the plot is obtained by
summing the individual (fresh or dry) predicted
weights. To obtain our sample-based estimate,
we select a sample of n trees at random (with
replacement) with probability proportional to
predicted weight as follows:

The total predicted weight of the trees
number 1 through i (C is accumulated for
12 1,2,000,N:

C =

W i= 1
1 wj i=1,2, ,N (0

G DT e

We also define C.=0. To select the kth of n
trees in our sample, a random number, u, , is
drawn from a uniform [0,1] distribution. The
tree numbered i is selected as the kth tree in
our sample if

Ci-1 <u CN_
We denote the tree (fresh and dry) weight of
this tree numbered i by Wse An unbiased
estimate of the total tres weight in the plot,
based on this kth tree in our sample, is

121,2, «00,N

W= AN (2)
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An unbiased estimate of the total tree weight
based on a sample of n trees is

W=z W /n 3

k

™M

and a sample-based estimator of the variance
(var) of W is

n
var(¥) = I (ﬁk-W)z/[n(n-l)] a>2 (&)
K

Proofs of unbiasedness of PPS estimators can be
found in most sampling texts (e.g., Cochran
1963, Sukhatme and Sukhatme 1970).

By performing PPS sampling as was
described, we take advantage of the information
extant in published regression functions, and we
also can take advantage of a built-in safeguard
against error. If there is a suspiciously large
difference between W and the conventional
model-based estimate, C,,, then we should check
for errors in measurement or entry of data into
the calculator or computer.

There may be occaslons when published
regressions are not available for the species of
interest, in which case other information might
be used to advantage in a PPS sampling. For
example, in 1927, C.D. Murray reported that the
weight of a tree above a given cross section was
proportional to the diameter (d) of that cross
section raised to a power of 2.5. The report
was based on 116 measurements of whole trees,
branches, and leaves from nine tree species. In
1981, J. White cited 50 publications in which
tree weight has been reported as proportional to
diameter breast height (D) raised to a power
(b). With just two exceptions, all values of b
were between 2 and 3. White, like Murray 54
years before, concluded that 2.5 is a reasonable
approximation of b for many tree species. Vhite
a%sg noted that tree volume is correlated with
D°'”. Thus, in the absence of regression
functions, we cou}dssample with probability
proportional to D°°” in pure sEagds, or with
probability proportional to gD” "~ in mixed
stands, where g is an approximation of the
(fresh or dry) weight per unit volume of the
wood for a glven species.

Second-Stage Sample

The PPS estimator furnishes an unbiased
estimate of the total weight of the trees in the
plot from measurements of the true weights of
the trees in the PPS sample. If total fresh
weight is the only parameter of interest, then
the trees in the sample could be felled,
weighed, and forgotten. Often, investigators
are interested not only in total fresh weight
but also in dry weight, mineral content, and
volume. A subsampling procedure developed by
Valentine et al. (198Y4) can be applied to the
trees in the first-stage PPS sample to furnish
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estimates of 211 of these parameters and their
sampling errors. This procedure also eliminates
the laborious task of weighing whole trees.

The subsampling procedure of Valentine et
al. has two stages, the first stage employing
randornized branch sampling (Jessen 1955), and
the second stage employing importance sampling--
a technique of Monte Carlo integration (e.g.,
Rubinstein 1981, Gregoire et al. 1985). The
first and second stages of this subsanmpling
procedure become, respectively, the second and
third stages of the present procedure for
estimating the total weight of the trees in a
plot.

Randomized branch sampling is used to
select a path that consists of connected branch
segments (internodes), starting at the butt and
ending at a terminal shoot of a tree. For
operational purposes, a branch is defined as the
entire stem system that develops from a single
bud (lateral or terminal), whereas a segment is
a part of branch between two consecutive nodes.
We make no operational distinction between the
main stem and side branches.

The first segment of any path extends from
the butt (defined as the first node) to the
second node. The second segment extends fromn
the second node to a third node, and so on to
the last (mth) segment of the path, a terminal
shoot. The number of possible paths in a tree
equals the number of terminal shoots.

Because the first segment of any path is
fixed at the outset, its probability of
selection (denoted by q1) equals 1. To
determine the remainder of our path we select
one of the branches emanating from the second
node at randog gith probability proportional to
size, e.g., d°"7. Selection of a branch fixes
the second segment of the path. Its probability
of selection is denoted by q,. The second
segment is followed to a third node where a
branch (and the third segment of the path) is
selected with probability q,. This procedure
is repeated until a termina§ shoot is selected
with probability qm.

The probability q. (j=1,2,...,m) is the
conditional probability of selecting the jth
segment of the path given that the path has
reached the node to which the jth segment is
attached. The unconditional probability of
selection for the jth segment included in the
path is:

j
Q, =7 ¢q (5)

Suppose that randomized branch sampling has
been used to select a path on a tree numbered i
in the first-stage sample. Denoting the weight
of the jth segment in the path by b,, an
unbiased estimate of the weight of this tree is
(Valentine et al. 1981):



- m
w, =% b.Q, (6)
]

This estimate could be substituted for w, in
(2) to furnish an unbiased estimate of the total
weight of the trees in the plots.

Third-Stage Sample

The reciprocal of the unconditional
probability of selectigq of the jth segment
included in a path, Q, ', is called ag
inflation factor. Thé product, b.Q. ', is
called the inflated weight of thejjeh segment,
and the sum of the inflated weights of the
segments in a path--the unbiased estimator of
tree weight--is called the inflated weight of
the path. To measure the inflated weight of the
path, we must separate and weigh the segments,
some of which could be quite heavy. However, by
employing the importance sampling procedure
developed by Valentine et al. (1984), we can
avoid weighing these segments. In fact, we can
estimate the inflated weight of a path from the
weight of a single disk. We also obtain a
convenient specimen (the disk) for estimation of
the inflated dry weight or mineral content of
the path, which are, respectively, unbiased
estimators of the dry weight or mineral content
of the tree.

Importance sampling is a continuous
analague of PPS sampling and is used for
estimating integrals. The inflated path weight,
Wi, can be defined as the integral:

A
W, =f Y(L)dL 0<L<X (7)
(o]

where Y(L) is the inflated weight per unit
length at point L along the path, and A is the
length of the path. (Any quantity measured at a
point on the jth segment of the path is inflated
by dividing the quantity by Qj‘)

By analogy to discrete PPS sampling, our
task is to select a sample of points along the
path independently and at random with
probability as nearly proportional to inflated
weight per unit length as possible. As was
noted, tree weight is highly correlated with
volume. Therefore, inflated weight per unit
length, Y(L), is highly correlated with inflated
cross-sectional area [A(L)], because cross-
sectional area is volume per unit length.
Although A(L) is unknown, it is easy to build an
ad bhoc proxy function that accurately
approximates kA(L) where k is an arbitrary
constant) .

For example, Valentine et al. (1984)
described how to build a segmented-linear
nction, S(L), that interpolates inflated
d° measured at L=0, L=A , and at arbitrary
points in between. The resultant function,

S(L), approximates 1.27A(L), is positive in the
range 0<L<LA , and integrates to give

A
V() =J‘ S(L)dL (8)
(o]

Selection of the zth of M points along the
path at random with probability proportional to
s(ez) involves finding the root, ez, of

V(Qz)-uZV(x } =0
OS.GZS)\; z=l, 2, v.. oM (9

where u_ is a uniform [0,1] random number. An
unbiaseg estimate of Wy based on a sample of M
points is

M -
W= VOO/M T ¥(e)/s@)  (10)

z=1

Substitution of Gi for w, in (2) gives an
unbiased estimate of total weight of trees in
the plot. .

In application we find that inflated weight
per unit length can not be measured at a point,
ez. Instead, we must measure weight per unit
léngth of a disk centered at 6_, thereby
creating a trivial technical b%as. However, it
is possible to measure inflated cross-sectional
area at @ , and substitution of this quantity
for Y(6_)%in (10) gives an unbiased estimate
of the Yolume of the tree that can be
substituted for w, in (2) to give an unbiased
estimate of the total aboveground woody volume
of the trees in the plot.

The subsampling procedure involving
randomized branch sampling and importance
sampling is described in detail by Valentine et
al. (1984). Results of a field test are
reported by Valentine et al. (1984) and in
somewhat greater detail by Tritton et al.
(1983).

Di ;

Our procedure for estimation of total tree
weight on a plot requires some on-site
calculations, but very little office work. We
have attempted to design a procedure whereby an
investigator can enter a plot with a
programmable calculator or portable computer and
leave with an essentially unbiased estimate of
fresh weight (or volume) and an estimate of
sampling error, if desired. If the parameter of
interest is dry weight or chemical constituency,
then an investigator can leave the plot with
specimens for drying or analysis and their
respective inflation factors.

Invariably, complications arise in any

forest sampling. In a randomized branch
sampling of a broad-leaved tree, we may have to
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deal with epicormic branches. If there are not
too many, they can be removed and weighed
separately. If there are a lot, we can ignore
them while selecting the path by randomized
branch sampling. An estimate of the weight of
the epicormic branches on the tree can be
calculated as the sum of the inflated weights of
the epicormic branches on the segments of the
path. Dead branches can be treated the same
way.

In a randomized branch sampling of a
coniferous tree, we may find a whorl containing
a large number of small side branches at the jth
node on the main stem. Consequently, assignment
of selection probabilities based on diameter
measurements becomes tedious. We can attempt to
avoid measuring these small branches by
performing the selection of the path segment in
two stages. Let da and d, denote,
respectively, the main-stem diameter above and
below the jth node. Basedzog Murray's (1927)
observations, the sug gf d°°" for the branches
in the whorl plus da : sEogld be
approximately equal“to d,""". If d, < 4
as expected, we can randomly selec& ghe main
stem with probability q, = (da/db) *? or
the side Brgnches colleétively with probability
1-(d /db) *“. The side branches need not
be mgasured if the main stem is selected. If
the collection of side branches is selected, we
select one of the side branches at random with
probability g' whence q, =
a'[1-(d_/d,)2-3]. .

The techniques of importance sampling
should be applicable for estimation of many
quantities of interest to foresters and
ecologists. Since its seminal use in a forestry
problem by Valentine et al. (198l), importance
sampling has been employed in procedures for
estimation of bole volume (Gregoire et al. 1985,
1986), bole-volume increment (Valentine et al.
1986), and log volume (Furnival et al. 1986).
Each of these procedures eliminates the bias
that arises when a volume formula is used for
estimation in a population other than that from
which the formula derives.
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MEASUREMENT ERRORS IN FOREST
BIOMASS ESTIMATION
Daniel AUCLAIR
INRA, Centre de Recherches d'Orléans,

Station de Sylviculture
ARDON -~ 45160 OLIVET (France)

When sampling for biomass regressions, one source
of error can come from the error made on the
independent variables. The order of magnitude of
this error has been estimated on several varia-

bles : girth at breast height, tree height,
relative water content of samples, volume of sam-
ples, ... Their contribution to the error on the

estimation is discussed.

Introduction

For estimating biomass of sample ftrees, to
be subsequently applied to regressions in order
to determine prediction equations, many proce-
dures have been developed by various forest
scientists. These have been well described by
YOUNG (1976), PARDE (1980), SATOO and MADGWICK
(1982), and one of the annual meetings of IUFRO's
$4,01-00 subject group on "Mensuration, Growth
and Yield" was devoted to '"Problems in forest
biomass mensuration and growth and yield studies"
(AUCLAIR, 1983).

Most methods use diameter (or girth) at
breast height, or tree height, or a combination
of both, as independent variables for biomass
regressions. The weight of sample trees can be
estimated by several methods, including either a
conversion factor from fresh weight to dry weight
or a conversion factor from volume to dry weight.
This estimation can be done on the whole tree, or
if it is too big on subsamples (branches) which
may be used once more for establishing regres-
sions for individual tree biomass estimation.

At each of the steps in the process of
determining biomass regression equations, some
measurement errors occur. These may be random
errors, often assumed to be normal, or systematic
errors.

In order to obtain the best possible
estimations, the present study was undertaken to
determine the various contributions of measure-
ment errors in the procedures used in our
laboratory for estimating biomass. The practical
aim was to minimize the most important errors, at
a "reasonable'" cost.

Most of our studies concern trees treated
as coppice traditional coppice with 20- to
30-year rotations, or short-rotation coppice
going down to annual rotations. These are there-
fore small trees, whose biomass can be determined

by estimating the fresh weight of the whole tree,
most often seperated in several components,and
collecting samples for water content.

However 1in some cases we have also
estimated biomass of larger trees, from tradi-
tional high forest or coppice with standards,
where the stem volume was estimated geome-
trically, and samples were collected to convert
volume into dry weight.

This paper concerns estimations of measu-
rement errors on

- girth at breast height

- total tree height

- water content of samples

- weight of samples

- volume of samples

- the use of basic density for biomass
estimation.

The data comes either from original mensu-
rations collected especially for this purpose, or
from other studies by AUCLAIR and METAYER (1980)
or by BISCH (1985).

1 - Girth and Tree Height

a - Method On twenty Chestnut trees
(Castanea sativa Mill.) situated in a traditional
coppice stand of the INRA estate, aged from four
to thirty five years, the girth at breast height
was measured, using a metal tape graduated in
millimetres. Fifteen different persons, forest
research professionals, technical staff, and also
some non-professionals, measured the same trees,
giving the girth with an accuracy of 1 cm.

On the same trees the total tree height was
estimated

1) with a graduated rod on trees smaller
than 8 m., with an accuracy of 1 cm.

2) with a Blume-Leiss hypsometer for trees
8 to 15 m heigh, with a 10 cm accuracy. On these
trees a possible bias was estimated by one single
measurement with the graduated rod.

To verify whether or not there was any
large difference between operators, we used the
non-parametric test of Kendall's coefficient of
concordance. In all cases it showed no diffe-
rence, at a very high degree of significance,
both for girth and height measurements.

b — Results : The coefficients of variation
and the bias for height measurements are shown in
Figures 1 to 3, plotted against the mean of
either girth-at-breast-height, or total height.

The two high values of the coefficient of
variation for smaller girths (Fig. 1) can be
explained by the data collected by one operator
who overestimated the girth by 2 cm compared to
the mean. These figures however still remain
around 0.10 if this operator is excluded, but
this corresponds to absolute differences of
+1 cm.
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Figures 1 to 3 coefficient of variation of
girth or height plotted against girth (cm) or
height (m), and percentage of bias for tree
height.

The very high value- for the smallest tree
in Figure 2 comes from an error in transcription
of the data where a tree 1.00 m high was noted
0.30 m. If this data is excluded the coefficient
of variation becomes 0.09, which corresponds to
an absolute difference of * 15 cm.

In Figure 1, after 20 cm the coefficient of
variation for girth smooths out at a value under
0.02, whereas that for height (Fig. 2) seems to
increase slightly with increasing height, but
remains around 0.05.
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The bias estimated on height measurements (Fig.
3) seems to increase with height, but it is much
more correlated with the fact that the crown of a
tree is more or less visible : a 'visibility
index" was applied to each of the measured trees,
and the coefficient of variation and bias for
height were compared to this index :

Visibility Coef-var (%) bias (%)
good 5.7 - 0.3
medium 3.6 + 0.7
poor 7.2 + 5.4

The height of poorly visible trees seems to
be overestimated, but no conclusion can be
reached about the coefficient of variation.

¢ - Conclusions The variation in girth
and height measurements is quite high for very
small trees, however their contribution to the
total biomass of a stand is usually rather small.
The variation for girth levels out quickly for
larger trees, but variations in height measure-
ment remain at quite a high value, and may
increase for the bigger trees.

Height measurements are very time-
consuming, and it would be rather costly to try
to increase precision by improving the accuracy
of these measurements for all the trees. We
therefore suggest to focus on accurate '"top
height" measurements and use the "top height" of
a stand as an independent variable for biomass
regressions. This improves the precision compared
to regressions with girth or diameter as the only
independent variable (PAGES, 1985).

The bias which was estimated here may seem
unimportant, as the same bias should be obtained
when establishing the regression and when using
it for prediction. However the sampling should
take into account the fact that the tree crown is
more or less visible, as a '"poor" visibility
seems to provoke an overestimation.

2 - Water content of samples

a - Variation within a tree : In a previous
report, AUCLAIR and METAYER (1980) studied the
water content of three series of samples on trees
aged 25 to 40 (Birch, Oak, and Hornbeam) divided
in five diameter classes 0-2.5 cm, 2.5-4 cn,
4-7 cm, 7-1%5 cm, + 15 cm. The results (Fig. 4)
show that the water content increases in the
smaller components.

Several authors have tried to use only one
single mean sample for estimating total dry
biomass, but as the proportion of different
components varies between species, or between
trees (Fig. 5), it seems most important to apply
the appropriate conversion factor to each of the
components.



Vater content

component

Figure 4 : Water content (percent fresh weight)
for four components in Birch, Oak, and Hornbeam.
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b - Drying temperature : For drying samples
to estimate water content, the usual procedure is
to leave them in an oven until their apparent
weight becomes constant. This usually lasts two
to five days.

However, some authors suggest using an oven
temperature of 60 or 65 degrees C., others 85 de-

grees, and others 105 degrees. The lowest
temperature is used mostly for drying leaves, or
when nutrients are analyzed ; at the highest
temperature all the water evaporates but some
volatile compounds may also disappear.

On a series of samples, divided in four
diameter classes, we tested the relative diffe-
rence in apparent dry weight after drying at 65,
85, or 105 degrees

: W65-W85 w85-W105
Diameter WES % W85 %
0-2.5 cm 3.9 1.3
2.5-4 cm 4.5 2.4
4-7 cm 4.7 6.4
+ 7 cm 3 8

In all cases the samples still loose some
weight between 85° and 105°. The smaller diameter
classes (<4 cm) loose less than 2.5 percent, but
the larger ones loose between 5 and 10 percent.

It therefore seems quite difficult to give
a single conversion factor from the dry weight at
one oven temperature to the dry weight at
another, for the same reason as above, as the
distribution of diameter classes inside each tree
is most variable.

c - Water loss of samples : In the process
of biomass estimation, it is often impossible to
estimate the fresh weight of samples immediately
at the same time as the whole tree or compartment
biomass estimation. The type of balance used is
often not sufficiently precise for weighing small
samples. If the fresh weight is to be estimated
at the laboratory, we often keep the samples in
hermetically closed plastic bags.

To estimate a possible error due to this
practice, we measured the fresh weight of samples
in the field, and after keeping them in plastic
bags for 1, 2, 3, or 10 days. Figure 6 shows the
distribution of relative differences at the four
sampling dates.

After one day, most samples lose 1 or 2
percent of their fresh weight, but after two or
three days the weight loss can reach 6 percent.
After ten days the distribution of error smooths
out, the weight loss varies from 1 to 8 percent,
and in one case 10 percent.

As in the study concerning different drying
temperatures, it is not possible here to give a
single correction factor due to the delay in
weighing samples. However, if the samples are
weighed inside the plastic bag still hermetically
closed, their weight loss is compensated by water
kept inside the bag, and the error is negligible.
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Figure 6 : Histogram of water loss of samples
left in plastic bag for :

a : 1 day

b : 2 days

c : 3 days

d : 10 days

3 -~ Weight of samples

For biomass estimation in the field, we
usually weigh tree compartments on a very precise
balance, whose scale is graduated every 20 grams,
up to 60 kg.

Although this balance is sent every year to

have a complete check-up, we have verified in
various occasions the values indicated. One exam-
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ple is given in figure 7. It shows the absolute
value of relative error, plotted against total
weight. All through the scale there is a slight
underestimation. For lower values the underesti-
mation is 40 g, and for higher values it can
reach 80 g. This leads to quite a small relative
error, less than one percent, but it is however
possible to give a correction factor for this
systematic bias if such curves as that in figure
7 are regularly verified.
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Figure 7 : Relative error (x 100) of balance used
for biomass estimation.

4 - Volume of samples

For estimating biomass of very large trees,
a method often applied is to estimate the bole
volume, and use a conversion factor estimated
from a sample, or several samples taken from
various levels on the bole.

Such a study was undertaken by BISCH
(1986), who showed that there is often a bias in
the estimation of the volume of disks, due to the
fact that the Archimedean principle is often
incorrectly used. The fact that the quantity of
water absorbed by a sample during its immersion
is not taken into account, produces a systemati-
cal underestimation of the volume. On oak disks
he showed that the mean bias was above 1 percent,
and can reach 2 percent. This seems highly
correlated with the bark volume of the samples.

However, as the bole volume of a tree is
estimated geometrically, it seems more important
to also estimate geometrically the volume of
samples. This was done by measuring the disk
girth and the disk width as a mean of four diffe-
rent measurements, with a metal tape.

The geometric volume gives an overesti-
mation compared to '"real volume" estimated by
weight of water displacement. The relative bias
is 5 percent 0.4 percent, estimated on 74 disks
from two different oak species (Q. robur and Q.
petraea). The author noticed no difference
between species, nor between silvicultural treat-
ments.

5 - The use of basic density

In his study of biomass distribution, BISCH
(1985) estimated bole volume with two different
methods, and estimated wood basic density on four



disks from the base of the tree, 4 m, 8 m, and
12 m upwards.

Volume 1 is estimated with the traditional
method of the french national forest survey,
dividing the bole in two parts : under, and above
2.6 m, and measuring the girth at the middle of
each of these sections.

Volume 2 is .estimated by measuring diame-
ters every meter along the bole.

Four different total stem biomass esti-~
mations were made :

Bl : volume 1 and a mean of the basic den-
sities of the four samples ;

B2 : volume 2 and a mean basic density ;

B3 : volume 1, and basic density from the
base of the tree being applied to the
first section, a mean of the others to

the above section ;

B4 : volume 2, divided in four compart-
ments, O-1 m, 1-6 m, 6-10 m, > 10 m.

The mean differences are the following :

Bl - B4

BA x 100 = - 2.13
B2 - B4
—Ba x 100 = + 0.59
B3 - B4
~g2 X 100 = - 2.53

The use of the "traditional" forest survey
volume underestimates the total stem biomass. The
basic density varies up the stem (Fig. 8), and
using the mean of four disks seems to give a
reasonably good estimation. The use of one single
sample for basic density estimation seems insuf-
ficient.
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Figure 8 : Mean basic density of samples of Oak
at different levels in the stem. Horizontal bars
indicate confidence intervals at 5 % :
standards from coppice with standards
———-— trees from high forest

Conclusions

In our studies on biomass estimation, we
have attempted to minimize measurement errors,
and especially bias. Several phases in the pro-
cess of biomass estimation have been studied
here, and sugestions can be given to improve the
accuracy of measurements. However, the quality/
cost ratio may in some cases become very low, and
some errors are difficult to minimize.

The same type of study has already been
undertaken for volume estimation (SCHMID-HAAS et
al., 1980 ; WINZELER, 1986) suggesting the best
type of material to use or measurements to be
done. The present study brings a contribution to
measurement errors on biomass estimation.

The effect of various types of error on the
results of regression utilization has been
studied by GERTNER and DZIALOWY (1984) and
GERTNER (1985), who showed that for example a
10 % bias in DBH may cause a 25 % error in
predicted basal area.

This type of bias is quite in the same
order of magnitude as the data presented here. It
must however be outlined that the present study
concerns mostly <traditional coppice, with very
bad stem form, most often on very old root
systems. In other cases, for example conifers who
have much straighter stems, or with more homo-
geneous plant material, as genetically controlled
plantations, the errors may be reduced.
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BIOMASS-DIMENSION RELATIONSHIPS OF
UNDERSTORY VEGETATION IN RELATION TO SITE
AND STAND AGE.

Paul B. Alaback
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Pacific Northwest Research Station,
Forestry Sciences Laboratory, P.O. Box 909,
Juneau, AK 929802.

Three woody shrubs, two ferns, and
three herb species in a wide range of stand
types in southeast Alaska and the Pacific
Northwest were examined. Biomass
regression equations were developed for
each of the species in recent clearcuts,
mature second growth forests, old growth,
and, for one species, in three thinning
treatments. All but one of the fern
equations were significantly different
between age classes (P < .05). Herb
biomass per unit cover was greatest in
clearcuts and least in second growth and
old growth. Woody biomass per stem size-
class of shrubs was greatest in clearcuts
and least in old growth. ILeaf and twig
production had the opposite relation.
Differences between shrub biomass equations
were generally related to shrub density and
openness of the overstory canopy; changes
in herb biomass were mostly related to
openness of overstory canopy. Thinning
experiments confirmed these basic patterns
of change in biomass-dimension relations
with overstory density. Use of eguations
from other regions gave significant errors
in estimates of biomass compared with
estimates made from equations developed in
southeast Alaska. Equations developed for
the same species in geographic regions with
similar overstory or climate gave no more
accurate estimates of biomass for southeast
Alaska than equations developed in distant
regions or from regions with contrasting
climates. Developing equations for local
populations or for specific stand
structures is recommended for forest
understory species.

Introduction

Understory biomass has been used to
contrast plant community habitat types, to
distinguish subtleties in forest
microclimate, and to indicate quality of
wildlife habitat. For more than two
decades, regression equations have been
used to predict understory bicmass,
principally for production, nutrient
cycling, and studies of wildlife habitat
(Alaback 1982, Ohmann and Grigal 1985,
Tappeiner and John 1973, Whittaker 1961,
Yarie 1980). Almost all of the equations
developed were based on sampling from one
study area or from several study plots

within a general study area. Most authors
stressed the requirement that their
equations be used on similar sites, but
equations are often used in sites
significantly different from the original
sampling areas because of poor
documentation of the original site
conditions and locations.

Improper use of biomass equations
developed from dimension analysis has been
furthered by compilations of libraries of
regression equations, usually with little
information on how they were developed,
what their limitations are, how they might
be best applied, and what magnitude of
error or bias is likely if they are applied
to different sites (Gholz et al. 1979,
Smith and Brand 1983, Stanek and State
1978). Some users of these libraries
suggest an average of coefficients be used
where more than one equation is available
for a species, which may compound problems
of potential error and bias (Chmann and
Grigal 1985, Pastor et al. 1984).

In this study, equations are
presented for understory species growing in
different sites in southeast Alaska and in
comparable forest types in British
Columbia, Montana, Minnesota, and Oregon.
Objectives were: (1) to estimate the
magnitude of bias in biomass estimates
arising from using equations developed from
different stand age-classes and overstory
structures in southeast Alaska (2) to
document the general pattern of variation
in biomass-dimension relations for a given
species across a gradient of overstory
density and understory productivity (3) to
examine the bias in biomass estimates made
from equations developed in other
geographic regions for a given species.

Methods

Sites with relatively homogeneous
overstory structure, gently sloping
terrain, and well-drained to relatively
wel l-drained soils were selected in
southeast Alaska (Alaback 1982, 1986). In
each site, samples were randomly selected
by plant size-class so that samples were
more or less equally distributed across the
full range of plant-size classes. Sampling
was originally done during the summers of
1977, 1978 and 1979 coincident with a
large-scale study of postlogging succession
(Alaback 1982). Sampling was done between
July 1 and September 1 of each year when
all species had attained peak biomass
(Alaback 1986). In the summers of 1982 to
1984 additional sampling was done to
develop equations for new species, and to
provide for sufficient samples in each of
three stand-age classes to allow for direct
comparison of eguations. In addition, one
site that had been precommerically thinned
4 years before biomass sampling was
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studied. Biomass samples were taken from
three of the thinning treatments (control,
8-foot spacing, and 16-foot spacing
(Alaback 1984)).

Non-destructive measurements were
taken on individual plants before
destructive sampling. Samples were
-separated into components in the field,
then ovendried at 70 C for 24-48 hours.
Samples were weighed to the nearest 0.001
gram. Independent variables that were easy
to measure in the field and were thought to
bear a precise relation to biomass were
selected: for shrubs, basal diameteg; for
herbs, percent ground cover on 0.1 m
plots; for ferns, frond length was used.
Both In-ln transformed and untransformed
linear models were applied to the data for
each species and biomass component. Models
with the highest correlation coefficient
and the least mean square error were
selected as the best fit. Correction for
bias was used for the 1ln-1ln transformed

data (Baskerville 1972).

Equations were compared by use of
successive analyses of covariance with
dummy variables (Cunia 1973). For each
species, a regression model that included
slopes and intercepts for all sites and
treatments was used. All possible
equations for a species were tested for
differences in slopes and intercepts. If
differences were significant then all
possible pairs of equations were compared
to determine which were significantly
different. Pairs of equations with
calculated F statistics greater than F at P
= 0.05 were judged to be significantly
different. Equations between regions for
which original data were not always
available were compared by calculating
biomass estimates at an arbitrary value of
the independent variable, usually at the
upper limit of sampling where the greatest
differences occurred.

Nomenclature for trees, shrubs, and
herbs follows Hulten (1968).

Results and discussion

Herbs

Equations for specific age-classes or
stand types tended had coefficients of
determination and mean squared error within
the range of or better than regional
biomass equations (Alaback 1986, Table 1).
Herb cover equations were the most precise;
shrub foliage and twig production were
general ly least precise. The independent
variable for fern equations was frond
length rather than percent ground cover
because of the large variation in frond
orientation with frond size or plant age.
For both Athyrium and Dryopteris,
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regression coefficients for open clearcuts
and old growth were similar and are
probably consistent over a wide geographic
range. The primitive growth form and the
lack of variation in branching or canopy
structure probably contribute to the
relative site independence of these
equations.

For each of the three herb species,
equations based on percent cover gave
similar magnitudes and direction of bias
for stand age-class (Figures 1-3). In
recent clearcuts, herbs are general ly
taller and have denser foliage. In closed
forests where light and temperature may be
limiting factors, herb biomass is as little
as 20-25 percent of biomass per unit cover
in clearcuts at maximum cover values.
Plants in closed forests are generally
shorter with sparser canopies. The biomass
equations also predict that plants growing
in second-growth forests have slightly less
biomass per unit cover than plants in old
growth (P < 0.05, Table 2), consistent with
the hypothesis of light limitation.

Shrubs

All three shrub species showed a
similar pattern of change.in biomass-
dimension relations across the three age-
classes (Table 1). In clearcuts, woody
biomass was much greater per unit stem
diameter than in the closed forest types
(Figure 4). Leaf and twig production per
unit stem diameter was much less than in
the old-growth sites (Figure 5). Although
the largest differences were between
equations for recent clearcuts and closed
forest types, significant differences were
detected between biomass equations for old-
and second-growth sites (Table 2).

In general, wood production per unit
stem diameter was proportional to solar
radiation, plant vigor, and shrub density,
but leaf and twig production per unit stem
diameter responded inversely to shrub
density and incident radiation. Shrubs
growing in open areas with plenty of light
thus put more energy into height growth and
stem development than shrubs growing in
closed forests, which presumably had less
competition with other understory plants
and more need for expanded leaf area and
canopy development to capture limited
incident solar radiation (Gholz 1978).
Equations from second-growth stands were
probably influenced by the low vigor of
residual plants, slowly being shaded out by
overstory species (Alaback 1982). Many of
these plants were tall with sparse canopies
and were restricted to growing in small
gaps in the overstory canopy. The dramatic
change in absolute biomass of each
component and proportional allocation
between components argues strongly for
reporting shrub biomass by component rather
than simply as total aboveground biomass,
which confounds these differences.



Table 1. Biomass equations for species in southeast Alaska growing in

different stand types or age classes.

different-at P <.05 using the techniques of Cunia (1973).

All equations are significantly

Species a b r? mse n model™” range
HERBS TOTAL BIOMASS
Athyrium felix-femina: "
Clearcut -3.226 0.047 .967 0.061 18 1L, 18-105
Second growth -2.568 0.034 .902 0.200 15 1L 32-147
Cornus canadensis:
Clearcut -2.665 1.278 .951 0.188 8 Ic  2-100
Second growth (1) -3.694 1.183 .834 0.205 17 C 3-60
Second growth (2) 0.020 0.050 .820 0.145 17 C 3-60
Coptis aspleniifolia:
Clearcut -2.567 0.293 .731 31.202 11 C 2-95
Second growth -0.060 0.049 .955 0.009 8 C 2-25
0ld growth 0.054 0.032 .972 0.006 7 C 5-40
Dryopteris austriaca:
Clearcut -9.036 2.286 .766 0.545 25 IL 9-95
Second growth -8.841 2.178 .942 0.182 109 1L 4-95
Rubus pedatus:
Clearcut -0.578 0.100 .963 0.182 11 C 5~-68
Second growth 0.103 0.028 .939 0.038 13 C 1-90
01d growth 0.244 0.011 .674 0.033 10 C 1-60
SHRUBS TWIG AND LEAF BIOMASS
Oplopanax horridum: ***
Clearcut -6.314 3.684 .969 0.121 5 D  4-27
Secord growth -3.205 2.128 .639 0.639 11 ID 5-30
01d growth -5.488 3,579 .957 0.116 10 ID 5-20
Rubus spectabilis:
Control -3.754 2.842 .791 0.466 20 D 2-15
Light thinning -2.141 2.122 .690 0.322 11 ID 4-15
Heavy thinning -1.114 1.923 .450 0.602 19 ID 6-25
Vaccinium alaskaense:
Clearcut -2.684 1.820 .660 0.816 82 1D 1-26
Second growth -2.961 1.841 .810 0.433 75 D 1-22
01d growth -4.301 2.803 .730 1.262 7 LD 4-23
SHRUBS WOODY BIOMASS
R. spectabilis:
Control -6.710 4.523 .914 0.295 10 LD 2-15
Light thinning -2.680 2.636 .919 0.102 10 LD  4-15
Heavy thinning -3.632 2.930 .733 0.402 20 ID 6-25
V. alaskaense: .
Clearcut =2.247 2.553 .519 2.132 52 ID 1-26
Second growth -1.612 1.701 .561 1.194 40 D 1-22
0ld growth =3.231 3.210 .793 1.164 7 LD 4-23
clearcut = 0-25 years after logging, second-growth = 26-200

years, old growth > 200 years.

*%
LL: Y = exp(atb*1n(length,cm))

C: Y (g/1000 cm®) = a+b* (percent cover}

IC: Y =exp(at+b*1n(percent cover))

1D: Y =exp(atb*1n(basal stem diameter,mm))

* %
total above ground biomass
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Vaccinium alaskaense in relation to stand
age.

1600 ¢ Vaccinium alaskaense

TWIG AND LEAF PRODUCTION
SOUTHEAST ALASKA

1400 +
1200+

10004
--- CLEARCUT

~~ SECOND-
GROWTH

— OLD--
GROWTH

|
400 + !;7777 |

|
6004 ‘

ksl

I
(’) 5 1’0 175 20 25 31‘0
BASAL STEM DIAMETER, MM

Figure 5. Twig and leaf production
equations for Vaccinium alaskaense in
relation to stand age.

Effects of thinning

Results from experimental
manipulations of overstory canopy density
generally agreed with results from site
age-class comparisons. Thinning resulted
in increased vigor of Rubus spectabilis
reflected in the equations for woody
biomass per unit stem diameter (Table 1,
Figure 6). Twig and foliage production
decreased per unit stem diameter in
response to thinning (Figure 7). The
pattern, therefore, generally agreed with
that observed for biomass equations from
other shrub species across the gradient of
overstory canopy openness and shrub
density. The largest difference was
between the unthinned (control) and the
thinned plots equations.




Table 2. Comparisons of biomass equations using F statistics from analyses
of covariance for southeast Alaska sites.

. ., *kKk
F statistics

Comparison Species slopes intercepts
Clearcut vs second growth vs old growth: ok

C. aspleniifolia «-304 -0.950

C. canadensis % 4-780 xx—1.655

0. horrida 74.530 -8.220

R. pedatus wx 44030 +x 0-655

V. alaskaense 11.550 23.160
Second growth vs old growth: * -

C. aspleniifolia -4.770 xx—16.730

0. horrida % 2-040 -18.700

R. pedatus xx —2-990 «x 14170

V. alaskaense =12.770 -55.980
Clearcut vs second growth:

A. felix-femina 2.110 £2-620

C. aspleniifolia %2330 xa D+230

C. canadensis wx 8-010 ax J2.360

D. austriaca %2119.100 »x121.370

0. horrida «718.416 *x—20.819

V. alaskaense 58.366 -82.153
Control vs light thinning vs heavy thinning: - .

R. spectabilis -32.500 -13.800
Control vs light thinning: X% -

R. spectabilis -37.100 -39.100
Light vs heavy thinning: - "

R. spectabilis -58.600 -30.700

significant at P < 0.95

* significant at P < 0.99

*kx . NP, cas . . .

F values significantly greater than the critical value indicate in column 1 that
slopes are significantly different or in column 2 intercepts are significantly
different.
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Figure 7. Leaf and twig production
equations for Rubus spectabilis in relation
to thinning

Figure 6. Woody biomass equations flor '
Rubus spectabilis in relation to thinning.
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If woody biomass accumulation per unit
stem diameter were proportional to shrub
density and light intensity, the heavy
thinning rather than the light thinning
would be expected to yield the highest
biomass estimates. The fact that both
light and heavy thinning produced generally
similar equations compared with the control
(Figure 7) suggests that the effect of
thinning on biomass dimension relations may
not operate over the restricted range of
light and shrub-density values tested, or
that other site factors may be involved.
For example, although the heavy thinning
resulted in 14 times the biomass of the
control, and the light thinning resulted in
only 1.5 times the biomass of the control
for a stem of 25 mm, R. spectabilis
growing on the lightly thinned site had the
highest proportion of woody biomass per
unit stem diameter - (Alaback 1980). On the
lightly thinned site the second most
abundant species V. alaskaense was 17
times more productive than on the heavily
thinned site, perhaps offering less
competition for canopy development of R.
spectabilis because of its more open shade-
tolerant canopy than the dense shade-
intolerant canopy of R. spectabilis in the
heavily thinned site (Alaback 1980). Thus,
the balance between woody and canopy
components of biomass in shrubs could be a
function of light, soils, and competitive
interactions with other species.

Regional comparisons

In contrast to many overstory species,
most forest understory species are
relatively restricted in geographic range
so that comparisons between regions are
usually difficult to make. Biomass
equations were found for some of the
species studied in low-elevation Tsuga

heterophyl la forests in Alaska in Tsuga
mertensiana forests in southwest British
Columbia (Yarie 1980), in Picea sitchensis-
Tsuga heterophylla forests in coastal
Oregon and Pseudotsuga menziesii forests
in the Western Cascades (Gholz et al.

1979) mixed conifer forests in northern
Idaho and western Montana (Brown 1976),
subalpine conifer forests in Glacier
National Park, Montana (Gholz et al.
and mixed hardwood-conifer forests in
northern Minnesota (Ohmann et al. 1981).
Although original data from these other
studies were not available for direct
statistical comparisons, most biomass
estimates from these equations had biases
at least as large between regions as was
found in this study between age-classes
within southeast Alaska, and were therefore
assumed to be significantly different.

1979)

Only in southwest British Columbia and
northern Minnesota were biomass equations
developed for herbaceous species found in
southeast Alaska. The equations for
British Columbia were pooled from three
habitat types, which were not significantly
different (P < 0.05) (Yarie 1980). The
data from Minnesota were also based on
several habitat types. Only the biomass
predictions for the fern Gymnocarpium
dryopteris were within 10% of the
predictions that used the southeast Alaska
equations at a cover value of 50% (Table
3). Although the sites in British Columbia
were geographically closer and were also
growing in a cool, maritime climate, the
biomass equations for those areas were no
more similiar to those in southeast Alaska
than the equations from sites in the
extreme continental climate of northern
Minnesota. In both regions, equations were
found that overestimated biomass for some
species and underestimated biomass for
others, generally with equal magnitude.

Table 3. Comparisons of biomass equation estimates at 50% cover for herbs
from three geographic regions.

Species

. *
Northern Minnesota

% of estimate from southeast Alaska -—====--

southwest British Columbia**

Cornus canadensis

Gymnocarpium dryopteris

Maianthemum dilatata

Rubus pedatus

Streptopus roseus

Tiarella trifoliata

+14.8

+268.4

-30.1

+199.0

+225.8

*Ohmann et al. (1981)

**Yarie (1980)
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Equations for biomass components of
woody shrub species from other geographic
regions gave more consistent bias compared
with equetions from southeast Alaska than
did equations for the herbs (Figures 8 and
9). Equatiorns from the northern Rocky
Mountains uncerestimated total biomass for
both the riparian species Oplopanax
horridum and the upland forest species
Menziesia ferruginea. Biomass equations
from Oregon and British Columbia predicted
double or more the woody biomass of Rubus
spectabilis and Vaccinium alaskaense.
Prediction of twig and foliar biomass from
Oregon and British Columbia equations
general ly underestimated biomass in
southeast Alaska for R. spectabilis and V.
alaskaense. The only exception was twig
and foliar production of V. alaskaense in
Oregon, which overestimated biomass
relative to the equations from southeast
Alaska. The increased biomass and vigor of
shrubs from lower latitudes should not be
too surprising because these forests are
more open and generally grow on better
drained, more productive sites (Gholz 1982,
Grier and Logan 1977, Yarie 1980).
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Figure 8. Woody biomass equations for
Vaccinium alaskaense from different
geographic regions.
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Figure 9. Total aboveground biomass
equations for Oplopanax horridum

Conclusions

The dimension analysis technique has
been widely accepted as the most efficient
and precise means for estimating biomass of
both trees and understory vegetation, but
more attention needs to be focused on the
potential errors of its application.
Because understory plants are responsive to
short-term changes in microclimate and
localized site conditions, a much larger
effort is needed in expanding existing
libraries of biomass equations to include
more site-specific equations. Some of
these difficulties with site-specific or
area-specific equations could be alleviated
by using more precise independent
variables, and multiple independent
variables such as height x cover, canopy
volume, or vigor. In places such as
southeast Alaska, however, where understory
shrubs often form dense thickets and have
highly irregular canopy shapes, estimates
of these other variables would likely make
the regression technique much less
efficient and useful. The simplest and
most straightforward approach is to develop
new equations for habitat types, age
classes, or stand structures that will be
the subject of intensive nondestructive
sampling. Much of the existing data may
also benefit from re-analysis, especially
if it can be re-aggregated according to
logical ecosystem groups or productivity
classes. If more precision in biomass
estimation equations is developed, more may
be learned of the variation in vigor and
structure of understory plants in response
to environmental gradients, and more
accurate and sensitive analyses of
variation in understory growth and
abundance will be possible. This increased
precision will be of valuable inwildlife
habitat assessment and process-oriented
ecosystem studies.
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BIOMASS ESTIMATES FOR NONTIMBER VEGETATION IN THE

TANANA RIVER BASIN OF INTERIOR ALASKA
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Vegetation on sample inventory plots in the
Tanana River basin was described using horizontal-
vertical profile descriptor techniques to show
percentage of foliar cover and average height by
species. These profiles were used in conjunction
with species biomass equations to develop total
biomass estimates for each plot. Equations were
previously developed for all major species in the
area, minor plants were grouped into lifeforms,
and the most similar major species equation was
applied for weight estimation. Sample weight
profiles and a preliminary biomass summary by
vegetation type are given. Usefulness of such
biomass information for wildlife habitat analysis
is discussed.

Introduction

The research unit, Forest Inventory and
Analysis for Alaska, USDA Forest Service, has been
describing and evaluating all vegetation (timber
and nontimber) on inventory plots since 1978. We
no longer sample timber to the exclusion of other
vegetation resources. This makes good sense for
Alaska as much of interior Alaska is curréntly
only marginal in producing wood products; the main
economic value of the land may be as fish and
wildlife habitat and for oil and mineral
production. Identifying areas of good wildlife
habitat for a particular animal requires
sufficient knowledge of the vegetation to quantify
preferred plants in its composition and to
identify beneficial patterns of vegetation
layering. Monitoring change caused by oil and
mineral production requires good baseline
vegetation data to adequately assess the impact
on the surrounding environment. Also, air
pollution originating in industrialized cities in
the Soviet Union and Europe is a concern in arctic
areas. Plant composition and total biomass
changes in various communities may be good
indicators of changes created by pollution,

Two of Alaska's first large-area inventories
that included nontree vegetation, were done in the
3.6-million-hectare (9-million-acre) Porcupine
River basin and the 6.4-million-hectare
(16-million-acre) Susitna River basin from 1978 to
1980. Measurement of nontimber vegetation in the
Susitna River basin was directed toward estimating
annual production of herbage and browse rather
than estimating biomass.  Annual production was
estimated by a double-sampling clip and weigh
technique at each sample plot (USDA 1976).
Recorded weights were related to foliar cover
estimates to project the amount of browse and
herbage production for each plot (USDA In press).
It became clear that these plot-by-plot weight
estimates of annual growth were varying more
because of the date of sampling than for any real
differences in site productivity.

The problem of obtaining good estimates of
productivity is magnified by the short, compressed
growing season in Alaska and the elevational
differences encountered in large-area river basin
inventories. River basin sauple units always
include extremes of elevation from river bed to
surrounding mountainous terrain, whereas
conventional timber inventories are generally
restricted to the more productive lowlands of
Alaska. Attempts were made to adjust the timing
of sampling in an already short field season so
that plots were measured near the peak of their
vegetative development; however, the costs
incurred in returning to remote areas to pick up a
few isolated high-elevation plots later in the
season quickly precluded this as a reasonable
solution. The cost of access to much of the
sample area also precluded a separate phenological
development study whereby subsampled plots would
be visited repeatedly to monitor and adjust for
observed seasonal differences in phenology.
Because of these problems, we concluded that
estimates of current annual growth on nontree
vegetation were of questionable value. A more
appropriate assessment of vegetation seemed to be
to describe composition and plant biomass, Data

‘on plant biomass may also be more meaningful for

wildlife habitat assessments, which examine total
cover and total available browse. Future studies
nay be able to correlate a site's annual
productivity with its biomass and related site
factors, such as elevation and aspect.

Biomass estimates have an advantage over
browse inventories because the former describe the
total resource. No subjective judgments are made,
on what is available, based on height and twig
size considerations, because these vary with
yearly snow depth and with differences in use by
individual animals, Biomass estimates do not
eliminate the sampling problems associated with
phenological development but they do minimize
them, Estimates are made from percent cover
values and applied to equations which were
constructed by sampling at sites with maximum
seasonal developument. Cover estimates on
inventory sites which have not reached their full
seasonal development are more accurately adjusted
than are weight samples of annual growth.
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The decision to estimate herbaceous and
shrub biomass on our inventory plots was made at
the same time we were totally revising our
sampling system. We changed from sampling
0.4-hectare (1-acre) homogeneous plots to
8-hectare (20-acre) heterogenous ground plots,
which could include several forest and nonforest
vegetation types in each 8-hectare sample. The
large plots allowed for collection of more
information at a site and were determined to
achieve better sampling of edge conditions. It
was also more cost effective to sample multiple
conditions at fewer sites in a remote area that
required helicopter access. We adapted the
horizontal-vertical vegetation profile technique
developed by the Southeastern Forest Research
Station (Cost 1979) as part of the new sample
design. This technique, describes vegetation in
vertical layers and gives a more complete picture
of total browse under a variety of snow
conditions; and, it is more descriptive of
vegetation in general.

It was against this background that a
cooperative study was initiated between FIA and
the University of Alaska to develop biomass
equations for the Tanana River basin--an area
equivalent in size to the States of New York and
Connecticut (13.8 million hectares, 34.5 million
acres) and with an elevation range from 120
meters (400 feet) at the confluence of the Tanane
and Yukon Rivers to 6,096 meters (20,320 feet) at
the top of Mount McKinley. See figure 1.

TANANA RIVER BASIN

ALASKA

Figure 1. Map of the Alaska showing location of
the Tanana River basin.

Methods

Ten of the most common vegetation types in
the Tanana River basin were selected to represent
the range in vegetation from closed forest to
more open shrubland and grassland. Sample
locations were selected randomly among the
inventory plots that contained these vegetation
types. Two transects were located in each
sampling location. The first began at a random
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starting point. Each transect was 120 meters
(400 feet) long; the second line was 50 meters
(165 feet) from the first and ran parallel to

‘it. Rectangular biomass sampling plots 0.91 by

0.61 meters (2 by 3 feet) were positioned along
the transects every 20 meters (66 feet). A
vertical profile was defined by hanging ropes
from an aluminum ladder in a technique similar to
that described by Harcombe and Marks (1977). The
ropes were color coded to delineate 0.3-meters (1
foot) vertical segments.

The ground layer was sampled using a
0.093-square-meter (0.102-square yards) subplot.
This sample included all mosses and lichens and
any other small plant not exceeding 2.5
centimeters (1.0 inch) in height when fully
grown. Once the entire plot was established, the
percentage of cover was estimated within each
vertical segment starting at 5.3 m (16 feet) and
progressing to the ground layer. The material
hanging within each segment was clipped. The
samples were oven dried and the weight of leaves
and twigs determined separately. Frequent checks
were made between field crews obtaining biomass
information and those working on horizontal-
vertical profile plots to determine if
significant bias in estimating the percentage of
cover was occurring. Results demonstrated
repeatibility within 10 percent with some of the
variation caused by minor differences in vertical
layer breaks.

Equations of the form, biomass for 10 cm
layer = percent cover multiplied by regression
coefficient, were developed from these data by
using a conditioned linear regression equation to
define the relationship between the percentage of
cover and the biomass. Equations were developed
for 58 species.

Biomass estimates were made for each
inventory plot by using the percentage of cover
and height estimates taken on horizontal-vertical
profile plots and applying the equations
developed for that plant species or by matching
its lifeform (as determined by its average size,
shape, and weight) to the most similar species
for which an equation was available. These data
can be summarized in numerous ways: by vegetation
types, by natural layers, by arbitrary height
classes, or by lifeform grouping.

‘Discussion

By sampling all the plants in each major
vegetation type in the river basin, we were able
to develop equations for the most commmon plants
and the plants significant to major wildlife
species. Some groups of plants, such as ferns
and tall forbs, were missed using this sampling
procedure and additional work is needed to
develop equations for those lifeforms.
Additional study is also needed on shrub biomass
of stems and twigs larger than 5 millimeters in
diameter. Biomass of these components is highly



variable in relation to the percentage of cover;
therefore, they were not included in the initial
studies., Estimates of percentage of cover of
larger stems and twigs is highly dependent on twig
orientation, and biomass of these components uay
be more accurately assessed by stem size counts.

Tables 1 and 2 show typical plot summaries
charted by plant species and by layer. They
provide very detailed species-level weight data,
which are useful in quantifying occurrence of
preferred plant species in wildlife habitats. For
example, fruticose and squamulose lichens such as
Cetraria and Cladonia are common forage for
caribou (Rangifer tarandus) because of the high
carbohydrate content and easy digestibility.
Other lichens, however, are seldom eaten by
caribou. Moose (Alces alces) supplement their
browse diets, which consist primarily of willow
(Salix sp.) and birch (Betula sp.), with foliose
lichens such as Peltigera as well as a variety of
other plants. Small mammals, such as snowshoe
hare (Lepus americanus), are also known to
selectively browse low shrubs and have a strong
preference for Vaccinium uliginosum and Ledum
groenlandicum. Vaccinium vitis-idaea is an
important forage supplement for moose and grizzly
bear (Ursus arctos). Although not appearing in
the sample

profiles presented, an example of a preferred and
less abundant plant in grizzly bear habitat may be
Hedysarum whose roots provide essential forage in
early spring and late fall. Boykinia is another
sumner forage plant important to the grizzly bear
(United States Departument of Interior 1980).

Further summarization of plots within
vegetation types is shown in Table 3. Lichens
appear to be a common source of forage among all
vegetation types. Willow and birch shrubs, which
are favored by moose, also represent a substantial
bortion of the biomass depicted. Preliminary
willow and birch biomass estimates for the Tanana
River basin are considerably higher than annual
browse production figures reported in other
studies. This difference is accounted for in
older material that is not part of the current
year's growth. This second- and possibly
third-year material may not be as palatable for
moose but is within the twig size reportedly used
(up to 4.0 millimeters) (Wolff 1976). Average
total biomass estimates from our study appear
reasonable when compared with figures of total
annual growth reported by Hanley (1984) of 3,266
kilogram/hectare (3,952 pounds/acre) in the
‘understory of an old-growth coniferous forest in
Washington.

Table 1. Biomass profile for a single plot in a closed deciduous forest, by

plant species and layer.

Ground Layer 2 Layer 3 Layer U
(vertical extent of layer in decimeters)
Species 0 0 -1 1 -4 4 -2
(kilograms/hectare)
Mosses:
Brachythecium spp. 118 - - -
Hylocomium spiendens 144 - - -
Pleurozium schreberi 347 - - -
Polytrichum spp. 322 - - -
Ptilium crista-castrensis 69 - - -
Grasses: a/
Calamagrostis canadensis = T 133 -
Poa alpigena t t 33 -
Shrubs:gj
Linnea borealis 30 30 - -
Ledum groenlandicum t t 395 -
Rosa acicularis L t 35 -
Vaccinium vitis-idaea t 461 - -
Trees:Q/
Alnus grispa - — T2 450
Betula papyriferia - - 73 -
Picea mariana - - 141 1,411

8/ Species occurs at trace amounts (<1 kg/ha) with no significant biomass in

these layers.

b/ Does not include woody material >5 mm in diameter or above 5 meters high.
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Table 2. Biomass profile for a single plot in open deciduous forest, by plant
species and layer.

Ground Layer 2 Layer 3 Layer 4 Layer 5
(vertical extent of layer in decineters)

Species 0 0 -2 2 -4 ¥y - 11 11 -50
(kilograms/hectare)
‘Lichens:
Cladina spp. 121 - —-— - -
Cladonia spp. 216 - - - -
Mosses:
Mniua spp. 26 - - - -
Polytrichum spp. 129 - - - -
Clubmoss:
Lycopodium annotinum 48 - - - -
Forbs: . a/
Epilobium angustifolium t= 14 14 - -
Mertensia paniculata t 23 - - -
Polygonum spp. t 17 - - -
Shrubs:pf
Betula occidentalis t 216 198 1,323 3,510
Betula papyrifera t 18 37 321 -
Ledun groenlandicua t 329 691 - -
Ledum palustre t 185 83 - -
Rosa acicularis t 18 y - -
Salix glauca t 52 35 426 -
Spiraea Beauverdiana t 1 1 - -
Vaceinium vitis-idaea t 146 - - -

a/ Species occurs at trace amounts (21‘kg/ha) with no significant biomass in

these layers.

b/ Does not include woody material >5 mm in diameter or above 5 meters high.

Table 3. Average biomass by plant grouping and vegetation type for sixteen
sanple plots.

-

Tall Low Dwarf
Forest Serub Shrub Shrub Shrub Herbaceous
- (kilograms/hectare)
Lichen 926 993 425 1,167 2,006 572
Moss 1,057 1,524 593 1,197 1,276 870
Grass 164 222 359 283 - 138 1,209
Forbs 124 60 204 69 62 272
Low shrub a/ 384 333 108 216 234 89
Willoysbireh™ 2,396 1,172 4,914 3,390 894 960
Alder— a/ 1,682 T66 1,899 212 -—— 309
Tree seedlings— 5,892 11,066 1,350 778 - 396
TOTAL 12,625 16,136 9,552 7,312 4,610 4,677
Nuuwber of plots 127 23 23 25 7 17

EY Does not include woody material >5 mm in diameter or above 5 meters high.
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Biomass estimates for the river basin
provide a good starting point for further
wildlife habitat analysis. For instance, willow
and birch shrubs occur in most vegetation types;
however further characterization shows some of
this biomass is above or below browsing reach, of
insufficient density, or in areas where terrain
or snow depth would prevent utilization. The
remaining areas can be evaluated based on
knowledge of moose consumption requirements.
Studies have shown moose consumption at
approximately 5 kilograms per day whereas willow
and birch biomass in the Tanana ranges from
100-2,500 kilogram/hectare, depending on the
'vegetation type. Canadian estimates over
extensive areas indicate actual utilization may
be in the range of 5-10 percent of the estimated
total browse (Telfer 1981). Applying those
estimates to the Tanana basin, a productive
hectare might provide up to 50 days of browse for
moose. However, year-round densities of moose
over large areas seldom exceed 12-15 per 1000
hectare (2,500 acres) and are more commonly in
the range of 4-6. Because low-protein content
limits digestibility of browse, large biomasses
may not be food unless additional high-protein
forage is also obtainable (Telfer 1981). Our
plant species profiles within individual
vegetation types will aid in identifying those
areas with high-protein forage and with
sufficient browse.

The examples given above are not intended to
oversimplfy the complex task of deseribing good
habitat for a wildlife species. Vegetation
descriptions by themselves cannot describe
preferred habitats but used in conjunction with
terrain descriptions of slope, elevation, and
aspect and with snow surveys, they further
describe areas likely to provide suitable
habitat. Amount of hiding cover, interspersion
of forest/nonforest edge, and distance to water;
data which are obtained from our photo sampling,
will further refine our area estimates of good
habitat. This should allow us to assign each
plot with wildlife habitat value ratings for
several important wildlife species. These value
ratings, when tied to vegetation types and other
site descriptors, will enable us to produce broad
estimates of area of suitable and unsuitable
habitat for a particular animal. Further
saupling of good habitat areas by interested
cooperators would allow them to make estimates of
carrying capacity for each wildlife species of
interest.

This large data-base of vegetation data
could also be applied to the study of habitat
requirements of the animals themselves. Very
little information is known about the habitat
requirenents of Alaska's major wildlife species
with the possible exception of moose. Analytical
study of vegetation and other factors in
preferred habitats could :dentify the important
factors in habitat selection and lead to further
understanding of the animals themselves.

Conclusions

Biomass and cover estimates provide a useful
way to quantify and deseribe Alaska's
vegetation. This presents the new challenge of
identifyying the vegetation biomass requirements
of various wildlife species. These could be
expressed as: amount of browse or forage
required, amount of preferred plants needed, or
as some desirable form of vegetative layering and
composition, depending on the wildlife species

‘being studied. This will allow us to make more

refined assessments of wildlife habitat than were
previously possible. This work has only begun
but promises big payoffs in the future.
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