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ON THE ERROR OF FOREST INVENTORY ESTIMATES:
STRATIFIED SAMPLING AND DOUBLE SAMPLING FOR
STRATIFICATIONl/

Tiberius Cunia

Professor of Statistics and Operations Research,

SUNY College of Environmental Science and Fores-
try, Syracuse, NY, 13210

When the design of a forest inventory system
is stratified sampling and the stratified sam-
pling formulae are used to calculate the error of
the estimate of the average biomass per acre, it
is common to ignore the error of the biomass
regression function used to estimate the sample
tree and plot biomass. The approach described in
an earlier paper by Cunia to combine the error of
biomass regressions with the error from sample
plots, when estimates of average biomass per acre
are calculated, is extended from simple random to
stratified random sampling. As sometimes the
stratum sizes are not known but estimated by a
second sample we have also considered the double
sampling for stratification design.

Introduction

Cunia (1986a) has proposed an approach to
combine the error of the biomass regression func-
tion with the error of the forest inventory sam-
ple plots (or Bitterlich sample points) when
inferences are made about the reliability of the
biomass estimates per unit area. This approach
requires that the estimators be of the form

W =biz, +byzy + .... + bz = [b]'[z]

where [b] is the vector of the coefficients of the bio-

mass regression and [z] is a vector of statistics calcu-

lated from the data of the sample plots and points.
implicitly assume here that (i) the true regres-

sion function of tree biomass on [x]' = [x1 X
P xm] is of the linear formy = [B]'[x], (ii)
the vector [z] is defined so that,
[Uz], where [Uz] is the expected value of [z],

is close, if not identically equal to the parame-
ter of interest U and (iii) the vectors [b] and
[z] are statistically independent. The variance
of w is estimated by the approximate formula

Sew = [b]'[Szz][b] + [z]'[Sbb][z]

where [szz] and [S,,] are the estimates of the
covariance matrices of [z] and [b] respectively.

l/Paper based on a set of lecture notes "On
the error of biomass estimates in forest inven-
tories: Part 2: The error component from sample
plots”". Faculty of Forestry Miscellaneous Publi-
cation Number 9 (ESF 86-001). SUNY College of
Environmental Science and Forestry, Syracuse, NY.

We

the product [B]"’

In this formula, the first component of Sww may
be viewed as an expression of the error due to
the sample plots and the second component may be
viewed as an expression of the error due to the
biomass regression function.

The definition of [2] depends on (i) the
sampling design by which the plots or points are
selected, (ii) the specific parameter u one
wishes to estimate and (iii) the definition of
the independent variables Xyr Koy seer of the
regression function. In his paper, Cunia (1986a)
makes the assumptions that (i) the sample plots
are selected by simple random sampling (or by a
systematic sampling method that is equivalent to
simple random sampling), (ii) the parameter to
estimate is I = average biomass per acre, and
(iii) the definition of the statistics z is based
on the plot variables S1¢ Sps eeer S defined as
the averages of Xir Roy eeep Xp expressed on a
"per acre" basis.

For example, let us assume that the estimate
of the regression function of the tree biomass y
on the tree diameter d is of the parabolic form

A
Y = by+byd+byd? = byx;+byx,+byxy = [b]*[x]

where the definition of Xq0 X, and x, is obvious.
Then, for I meaning summation over all the trees
of a plot, the plot variables are defined as

s, = (le)/plot area
= number of trees per acre

sy = (sz)/plot area
= sum of diameters per acre, and

Sy = (Zx3)/plot area
= sum of squared diameters per acre.

When, instead of a sample plot we have a Bitter~
lich sample point, there are similar definitions
for the point variables s,, s, and S33 these are
not repeated here. For more details, the inter-
ested reader is referred to Cunia (1986a).

Let us assume now that the plots (or points)
are selected by simple random sampling and the
parameter to estimate is i, the average biomass
per acre. Then, the elements of [z] are defined
as

zq = 51 = Zsl/n = estimate of the average
"number of trees" per acre,

zy = §2 =Is,/n = estimate of the average
"sum of diameters" per acre, and

zy = §3 =Ils3/n = estimate of the average
"sum of squared diameters" per acre

where I means summation over the n plots (or
points) in the sample.

If the sample covariance of s, and sj, i,j =
1,2,3 is defined as usual by the formula

s = z(si-Ei)(sj-Ej)/(n-l)

19
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and the estimate of the covariance matrix of Sqs
S, and Sq is denoted by [Sss]' then, the estimate
of the covariance matrix of [z] is

[S,,] = [Sggl/n

Consequently, the estimate of 1 and that of
its error is

w {b]'(2z] and
Sgw = [b]'[Szz][b] + [Z]'[Sbb][z]

where [Sbb] is the estimate of the covariance
matrix of [b].

It is the objective of this paper to extend
the approach described by Cunia (1986a) from
simple random to stratified random sampling; that
is, to define a stratified sampling estimator of
the average biomass per acre p and to propose a
formula to estimate its error. As sometimes the
stratum size is not known without error we shall
also consider the case where the size of strata
are estimated from a second sample. We shall
assume that the reader is familiar with the pre-
vious paper by . Cunia (1986a) and he understands
the definition of the plot variables Syr Sgpr e
Spe We shall also assume that the reader is
famlllar with the theory of the methods of strat-
ified random sampling and double sampling for
stratification as described, among others, by
Cochran (1977).

Stratified Sampling Applied to Forest Inventory

Consider a forest area subdivided into L
non-overlapping and exhaustive strata, where A, =
area (in acres) of stratum h, A = area of the
entire forest and Qh = Ah/A = relative size of
stratum h. A statistically independent simple
random sample of plots of size nhzz is selected
from each stratum h and, for notational conve-
nience, we shall assume that ny is small with
respect to the size of the stratum h so that, the
effect of the finite population correction factor
can be ignored. 1If, for I meaning summation over
the n, plots of stratum h, we define

Vhk = biomass "per acre" of plot k in
stratum h
Gh = ():vhk)/nh = estimator of the average
biomass per acre of stratum h, and

ghh

Sgv = Z(th-qh)z/(nh—l) = estimator of the

variance of Vhk within stratum h
then, for I meaning summation over the L strata,

v = thvh = stratified sample mean
= estimator of the mean biomass per acre
for the entire forest area, and
Sg5 = zgﬁshh/n
estimator of the variance of ¥

it

When the variance of Vv above is calculated,
the error of the biomass regression function
(used to calculate th) is ignored. To take it
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into account we shall write w as the estimator

w ):Qh‘_’h = EQh(Zth/nh)

IOy (byISqpy + boZSypy +.. .+ BpZsppy)/ny

ZQh(blslh + bySyy el ¥ b smh)

byzy + byzy + ... + bz, = [b]'[z]

where the first ¥ means summation over stratum h,
the second ¥y means summation over the values shk
of plots k within stratum h, and z; = thslh
stratified mean of the variables Sy i=1,2,..., m.

The estimator of the variance of z; is given
by the usual stratified sampling formula

822 = Zths s, /nh
i1 ii
while the estimator of the covariance of z; and
. is a simple extension of the above formula,
tgat is,

Sz_z_ Zths s /nh
1] i3
It is more convenient to express these re-
sults in a matrix notation as

-h _ y= - -
(671" = [y, S, »eve- Syl _
h h h h h h
s s Ss ""'Sss
11 12 1m
gh h ghh gh'h
s_S s s "°°°° “s s
hh A2 22 2 m
[Sss] = . . .
sh b h h h h
S esesss S
L sl A szsm smim
and
[Szz] = EQh l/nh

If the estimates of the average biomass per
acre for stratum h is required, then

= [b]'[zh] = estimator of the average
biomass per acre p, of stra-
tum h

and SWhWh f [b]'[s ][b] + [z ]'[Sbb][z ]
= estlmator of the variance of Wy,
where h h hh hh
2"] = [87] and [s,,] = [Sggl/ny,

If the estimate of the average biomass per
acre for the entire forest area is required then

w = [b]'[z] = estimator of the average
biomass per acre

and S . [b]'{s,,1[b] + [z] ' [, 112]
estimator of the variance of w

when [2] and [Szz] have been defined above.

Example 1 - A forest area of 42336 acres is
subdivided into three strata and we shall assume
that the size of stratum 1, 2 and 3 is known to
be equal, without error, to 17164, 19056 and 6116
acres respectively. Three statistically indepen-



dent samples, one for each stratum, were selected
by simple random sampling. There are 82, 112 and
41 sample plots respectively in the samples of
stratum 1, 2 and 3. To calculate the biomass we
have used the regression function

§ = b +b,d+b,d% = b x +b,Xy+byx; = [b]'[x]

with the obvious definitions for Xy, X, and X3,
where y = above ground biomass (pounds of green
weight) and 4 = tree diameter (inches). The
original data of the 353 sample trees and the
calculations to determine, by weighted least
squares, the vector [b] and covariance matrix
[Sp,] are given in Cunia (1986b). For the conve-
nience of the reader, (b} and [Sbb] are shown in
Table 1.

The use of this biomass regression function
and the fact that the trees are selected in
clusters (plots) require the calculation of the
three plot variables defined as

5y = Exl/a = number of trees per acre
8, = Exz/a = sum of diameters per acre

8y = Ex3/a = sum of squared diameters per
acre

The individual values of the (82 + 112 + 41) =
235 one tenth acre sample plots are given in
Cunia (1986c) and the summary statistics by the
stratum needed here, that is, the vectors (5] of
mean values and covariance matrices [sss] for

h =1, 2, 3 are given in Table 1.

Usinghthe relationships [zh] = [Eh] and
[822] = [Ssgl/nh we can calculate the estimates
wy of the mean biomass per acre and their vari-
ances for each stratum h. For convenience, the
matrices [szz] are shown in Table 1. The reader
can verify that

w, = [b]'[z}] = 37427.300 pounds = estimate
of the mean biomass per acre ul of
stratum 1

w, = [b]'[z?] = 112268.69 pounds = estimate
of the mean biomass per acre Pz of
stratum 2

wy = [b]'[23] = 225726.36 pounds = estimate
of the mean biomass per acre My of
stratum 3

S, w = 1'1silim) + 2t1vas 102t

= 13014675 + 3221354 = 16236029
estimate of the variance of vy

n
]

(6] (5221 (b] + [22)" (51 12°)

13124928 + 12147386 = 25272314
estimate of the variance of Wy

n
L}

o = 10s3310) + 1231180123

53743500 + 49591085 = 103334585
estimate of the variance of Wy

Table 1 - The basic statistics [bl, [S.,], (" =

("), 1z], [Sggls (S3p) and (5,1 of Exan-
ple 1.
[b]* = [5.1818118 -25.653078 12.988357]
8715.8855 -2222.4882  128.69992
(S,,] = | -2222.4882 581.99570 -34.776995
128.69992 -34.776995  2.1744582
(811 = [142.19512 743.47195 4293.2925)
(82] ' = [277.58929 1647.1857 11786.376]
(83) ' = [250.48780 1974.9829 21179.952]
{z]' = [218.78217 1328.1538 10105.533]
L [13753.147 69358.124 384753.02 |
(sil] = | 693s58.124 361014.14 2095548.5
| 384753.02 2095548.5 12995719 |
. [[17946.388 77549.569 234084.91
(s22] = | 77549.569 374176.41 1614218.3
| 234084.91 1614218.3 13563142
15249.756 69057.884 92042.322]
(s331 = | 69057.884 337241.41 973362.91
| 92042.322 973362.91 15624095 |
1 167.72130 845.83078 4692.1100 |
(sll] = |s845.83078 4402.6115 25555.470
| 6492.1100 25555.470 158484.38
" [160.23561 692.40686 2090.0438 |
1s22] = |692.40686 3340.8608 14412.663
| 2090.0438 14412.663 121099.48 |
s 371.94527 1684.3386 2244,9347]
1s331 = |1684.3386 8225, 4001 23740.559
| 2244.9347 23740.559 381075.48
[67.794455 314.46217 1241.5311 |
[S,,] = |{314.46217 1572.1751 7615.9949
1241.5311 7615.9949 58537.684 |

To calculate the estimate of the mean bio-
mass per acre j for the entire forest area, we
must calculate first the relative size of each
stratum h = 1,2,3, that is, to calculate

Q = Al/A = 17164/42336 = .40542328
Qy = A2/A = 19056/42336 = .45011338
Qq = A3/A = 6116/42336 = .14446334

Then, the numerical values of

[2] = @ 1211 + (2% + g4123]
and
[S,,0 = (@) 2Isil1 + (00215221 + (gy)21s3]]

are calculated and shown in Table 1. Note that
_g_Qh)2 denotes here the square of Q.

Finally,
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w = [b]'[z] = 98316.722
= stratified sample estimate of the mean
biomass per acre jy of the entire forest
area, and

Sww = [b1'[S,,11b] + [2]1'[S.;11z2]
5919942.4 + 9837039.2 = 15756982
= estimate of the variance of w.

The common procedure to calculate the strat-
ified mean and its variance is to (i) apply the
tree biomass regression function and calculate
the biomass of each individual tree (ii) add the
biomass of trees from a given sample plot to
obtain the plot biomass, (iii) divide the plot
"biomass by plot area to obtain the plot biomass
per acre V., (iv) calculate_the stratum average
and variangg by the formula Vp = v /nh and S
= Z(vhk - vh) /(nh—l) and finally (v) calculate
the stratified mean and its variance by the for-
mulae V = ZQh\_rhand S35 =ZQ}2'. Sg}‘;/nh. Applied to
our sample data the procedure yields the fol low-
ing statistics

LV, = 3069038.6 for stratum 1

= 12574093.3 for stratum 2

= 9254780.8 for stratum 3

£ (vp,) 2 = 2013092800 for stratum 1
= 1574846091000 for stratum 2

= 2177187330000 for stratum 3

The individual plot values Vg are listed in
Cunia (1986c¢c). Using these sums and sums of
squares, one can calculate

¥, = thk/nh = 37427.300 for stratum 1

= 112268.69 for stratum 2
= 255726.36 for stratum 3

and
s‘;h‘—,h = st/n = 13014675 for stratum 1
= 13124928 for stratum 2
= 53743500 for stratum 3

As the reader can verify these are the same as
the estimates w,, Wy and Wy found before and the
corresponding first variance components, namely
tb1'1s2B ) (b] for =1, 2, 3.

Similarly
v = ZQhGh = 98316.722 = w
and
= 2 o - =
55 = IQ, Sy 5 = 5919942.4
hh
= first component of the variance Surw of
We
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As expected, the variance of the mean bio-
mass per acre is underestimated, when the common
procedure is being applied; the second component
associated with the biomass regression is being
ignored. However, we did not expect to see this
underestimation much more pronounced for the
overall stratified mean. The percent of the
total variance due to the error of biomass regres-
sion function is

(100) {3221354)/(16236029) = 19.84 for stratum 1
(100) (12147386) /(25272314) = 48.07 for stratum 2
(100) (49591085) /(103334585) = 47.99 for stratum 3

and

(100) (9837039)/(15756982) = 62.43 for the over-
all forest area.

This can be explained by the fact that stratifi-
cation reduces the error due to sample plots but
has no real effect on the error due to biomass
regression functions.

The Case of Strata with Different Regressions

The approach of the previous section re-
quired that the same regression function be used
in all strata. It is possible, however, for each
stratum h to have its own regression., The regres-
sions may or may not be statistically independent.
We shall now present the approach to use when, in
general, the regression functions of various stra-
ta are different and not statistically indepen-
dent.

Let us denote by [bh] and [sgg] the vector
of regression coefficients and the corresponding
covariance matrix of the biomass regression func-
tions of stratum h. Because, for h # k, [b"'] and
[b™] may not be statistically independent, let us
denote their covariance matrix by [sbb]’ In this
covariance matrix, the terms associated with the
regression coefficient b, are found on row i,
while the terms associated with b} are all found

in column j. Of course, when [bh] and [bk] are
independent [Sggl = {0], and when [bh] = [bk], we
hh; _ [<kk
have [Sbb] = [Sbb]
[SKp1 = [sPXI".

= [Sggl. Also, we must have

We shall arrange all vectors [bh] in the
following giant size vector [B] and all covari-
ance matrices [Sbb] in the following giant size
covariance matrix [SBB], both of order mL, or
order (m1 + m, + ... + m.) when the various
regressions have different variables x,

[ 151 (sil tsi2r.....1sgh
L}
[b2) (si21 1s21.....1s30)
[B] = . and [SBB] =| . . .
o™ tsily 1sZky.....1skL

It is outside the scope of this paper to
consider the problem of how to calculate the



covariance matrix [sgg]. Its value depends on
(i) how the sample trees were selected from stra-
tum h and kX and (ii) how the data were analyzed
and the regressions calculated. For the special
case where the sample of trees from the two
strata h and k are statistically independent, and
some of the coefficients of [b"'] and [b"] are
thought to be common, one can use dummy variables
techniques of the type sudggested by Cunia (1973,
1986d). Otherwise, one may have to devise some
generalized least squares techniques not general-
ly available in textbooks or papers.

The estimates of the mean biomass per acre
in stratum h and its variance can be calculated
by the formulae of the previous section, namely

w, = [bP1' (2", and
Supy = (6010 (sh0) (P + (2P 1Py 12

The estimate of the overall forest area mean
biomass per acre uis calculated by the formula

w = Qlw1 + sz2 + ....:rQLwL

= 0 1b11121] + 0, 1b217122] + ...+ o [BT]'(21]
= [B]'[Z]

where the giant size vector [Z] is defined as
(21" =[Q1[zl]' 0,12%1" ..... g 12l ']

Note that the vectors [b] and [z] above have
superscripts, not exponents.

It remains now to show how to calculate the
covariance matrix [SZZJ of [Z], defined here as

11 12 1L, |
sl 1s2) ........o1sih)

(s£21 1822] ...oeon. ISp)

[S5) =| - . .

ir 3L TeLL
[SZZ]' [SZZ]'........ [SZZ]J
We have shown how to calculate the covari-
ance matrix [Szz] of [z']. Then, the covariance

matrix of Qh[zh] is simply the submatrix lsgg] =

(Qh)zlsggl. To evaluate the submatrix [SE%] we

shall have first a close look at the covariance
of 9, z; and Q zi;. As z; and zj are statisti-
cally independent, their covariance is_equal to
zero and, thus, the covariance of Qy z; and Q z:
is also equal to zero. Consequently, for h # k,
we have [SZZ] = [0], the zero matrix of order m.

Lt

The formulae of w and sww follow now as

w = [B]'[2] = estimator of the mean biomass
per acre H for the entire forest area,
and '
Sww = [B1'[Sz51[B] + [2]'[Sgyll2]

= estimator of the variance of w.

Special case 1 - The same regression func-
tion is used in all strata. Then

[[b]' [b]' ... [b]']

[éllzll' 0,12%1" ..., QL[zL]]

(81

[z]

[ 1Spp]  [Sppl ceeveeeeen [Spp)
[Sy)  [Spp] ceveevnees [Sppl
(Spl =| - . .
[Spp]  [Sppl eeveeveess [Spy]
[ 1sil) [0) eveerennnn [0]]
[0] (22] .evverenn. [0
[l [0] weurnnns [S1]

and it can be shown by complex and cumbersome
algebraic manipulations that the formulae

w [B]*'[Z] and

Suw = [B1'[S551(B] + [2]'[Spp] (2]

are identical to those obtained in the previous
section. By using the numerical data of the
illustrative example of the previous section, the
reader can construct the giant size vectors and
matrices defined here and verify that the two
sets of formulae yield the same results.

Special case 2 - The regression functions of
the various strata are all statistically indepen-
dent, that is, for h # k, we have

hk, _
[Spp! = [0]. Then

w = [B]'[Z]

0, 11111211 + 0,16%11[122] +...+ g (BT (2]

Qlw1 +QoWy t el F QLwL = 2Oh%n

and

n
L

ww = [B1'[S55(B] + [2]'[Sppllz]

u%ﬂﬁﬁﬁwﬂﬁwﬁ-+uﬁ'm$n£ﬂ

z( Qh) 2 Swhwh

where Sw is the estimator of the variance of
h¥h

Wy =<[bh]'[zh]. This formula makes sense, since,

for h # k, the estimators wh and wy, are statisti~

cally independent and by definition of w as
IQnWh the variance formula follows immediately.

Double Sampling for Stratification

The approach outlined in the previous sec-
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tions requires that the relative size Qp be known
without error for each stratumh = 1,2,..., L.
When it is not known, it is sometimes advanta-
geous to select another sample for the sole pur-
pose of estimating Q- The procedure is known as
two-phase or double sampling for stratification.

More specifically, a first large sample of
units is selected from the population of interest
by simple random sampling and the units are clas-
sified by the stratum they happened to fall into.
Let n' be the size of this sample and nﬁ be the
number of sample units that happened to fall in
stratum h. We shall assume that n' is both,
sufficiently small with respect to the population
size (so that the effect of the finite population
correction factor can be ignored) and sufficient-
ly large (so that the probability of obtaining nL
= 0, for some h, is approximately equal to zero).
Then, it is known that

o = nﬂ/n' = estimator of the relative size
of stratum h

hh '
SQQ = On(1-Q,)/n’ = estimator of the variance

of ©n
and, for h # k,

Sgs = -Qth/n! = estimator of the covariance
of on and Qk

Note that, for notational convenience we
have used Qn to denote both, statistic and param-
eter.

. A second, stratified sample is then selected
with ny elements selected from each stratum h.
The ny e}ements may be a simple random subsample
of the ny elements of the first sample above, or
may be selected completely independent of them.
The elements of this second sample are measured
for the variables of interest 817 Sys eeer 8y
defined in the previous sections.

If we substitute the estimators Q, for the
corresponding true values in the formulae of the
stratified sampling of the previous section, we
obtain estimators of the mean volume per unit
area, say M and its variance: While the estima-
tor of U is valid, the estimator of its variance
has a major drawback; it assumes that 9 is known
without error and, thus, the error of On is
simply ignored. We shall show now how to take
this error component into account for both cases
(i) when the second phase sample is a subsample
of the first and (ii) when the first and second
samples are statistically independent.

Case 1: Second Sample Is A Subsample of The First

The double sampling estimator can be written
as
w= [b]'[z] = blz1 + b222 + ... ¥ bz
where .
z; = ZQhEih = double sampling estimator of

the mean of 8y
The estimator zy has been discussed by Cochran

(1977). Using our notation and assuming that (i)
the population size N is so large that the terms
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divided by N can be ignored and (ii) the sample
size n' is small with respect to the population
size N so that we can use the approximation (N-n')
/(N-1) = 1, we can write Cochran's equation
(12.24) of page 333 as

2ch h

szizi = X(Qh) ssisi/nh

+ EQh(Eih-zi)z/n‘

where I is taken over all strata h. This formula
can be extended easily and obtain a formula for
the covariance of z; and zj as
= 2:h h
sziZj = Z(Qh) SSiSj/nh
+ ZQh(sih_zi) (th-zj)/nl'

This is an approximate formula which would suf-
fice in most forest inventory problems. If more
exact formulae are needed, the interested reader
should refer to Cochran (1977).

As the covariance matrix [sz ] is now de-
fined, we can write the usual variance formula

Suw = [D17[S,,1(b] + [2]'[S,,]11z]

Case 2: The Two Samples Are Statistically Inde-
pendent

Let us consider here the more general case
where different, not necessarily independent
volume regression functions may be used in dif-
ferent strata. As in the previous section, we
define the giant size vector

(B]' = [[bll' b2 ...... [bL]']

and
[z]* = [[z]']' 1221 ...... [le']

= [91§11 Q1857 --+ Q8py Q815 +-- QLgmL]

The giant size covariance matrix [SBB] of [B] has
been defined in the previous section. Because on
is no longer known without error, the giant co-
variance matrix [szz] would, however, be dif~-
ferent. To calculate it, we shall use the fol-
lowing result.

If uy and u, are two random variables that
are statistically independent of two other random
variables v,y and Vo then the covariance of z, =
u, vy and Z,; = u,v, is approximately equal to

Szlz2 = uyu,5 + V1V,8

viv2 uu2

Applying this rule to the variables On8in
and Qk§'k and using the formulae of the variances
and covariances of Q.. Q. §ih and §'k given in
this and previous sections, we can slate that
(1) the variance of thih' for any i and h,

2 hh - 2
(Qh) Ssisi/nh + (sih) Qh(l—Qh)/n'

(2) the covariance of thih and thjh for
givenhand i j=1, 2, ..., m is

(o) s*slils:j/nh"* 81n83n On(1-0p)/n'

is



(3) the covariance gf thih and ngjk fo?
h#k=1, 2, wo, Land i, j =1, 2, ooy m, is

(- -s-lhgjk Qth/n')
. hk
since the term Q. 0, SsiSj/nh = 0 due to the

statistical independence between the plots of
different strata.

To calculate [sZZ] it is, however, much more
convenient to use matrix operations. We have
already defined the matrix [322] and we shall now
define the product of the mean vectors

S1n%1k S1n%2k ***°* %1n®mk
$2h®1k SonSa2k **+** S2nSmk
S . . .
[s']1{s™]"' = . . .
Smhslk Sm.hS 2K *ccce smhska

Then, for a given h,
(shB1 = (19 %/ny) 181 + [0, g /m) Bh1iEM
and for given h # k,

(she1 = - (Qth/n') (sP118%)" = (skby

Consequently, the covariance matrix of [Z] can be
written as

- .
11 12 1L
(sil (si2] ..... sz
(si2) [s22] ..... [s2l]
(8yg) = | - . .
[siE1' [S251'..... [Spz]

and finally

[

w = [B]'[Z]
double sampling estimator of 1, the mean

volume per unit area

and

n
L

e = [B1'[Sz511B] + [2]'[Sgyll2]
estimator of the variance of w.

Example 2 - Assume that the stratum sizes of
17164, 19056 and 6116 acres of Example 1 were not
known without error; they were estimated from a
set of photo-points randomly located on aerial
photographs of the forest and analyzed as to the
stratum they happen to fall. More specifically,
let us assume that n' = 1253 randomly selected
photo-points were classified by stratum and r{ =
508, ni = 564 and né = 181 points were found to
_fall within stratum 1, 2, and 3 respectively.
Then, we calculate first the following statis-
tics.

(1)  The relative size of the three strata
are estimated as

Q; = nj/n' = 508/1253 = .40542698

Q, = ny/n' = 564/1253 = ,45011971

.14445331

Q3 né/n' = 181/1253

(2) As the total forest area is known to be
equal to A = 42336 acres, the area of each stra-
tum A, is estimated as

Ani/n' = 17164 acres

1
A, = Anj/n' = 19056 acres
Ay = Ani/n' = 6116 acres

These were the areas assumed known without error
in Example 1

(3) The variances and covariances of Q, and
Qy are estimated as

séé = 0;(1-0;)/n' = .00019238304
séé = =0,0,/n' = -.00014564300
séé = 0,(1-Q,)/n" = .00019753548
séé = -0;0;/n' = -.000046740039
séé = -Q,0,/n' = -.000051892485
Séé = 05(1-Q;)/n' = .000098632524

(4) The giant size vector [B] and covari-
ance matrix [Spgl, both of order 9 are defined in
terms of the subvector [b] and submatrix [Sbb]
shown in Table 1 as

b] [s,p] (sl ISyl

(8] = | 1o} | ana spgl = | ISyl (Sppl  [Sppll

[b) | (Spp]  [Sppl  [Sppl

- (5) The giant size vector [2z] is defined as
izh 0, 1z4] 0,184

(z] = [122)

01221 = | g,15%
1z3) 0;123) 041831

and the giant size covariance matrix [Szz] is
defined as

sih1 1siZ1 1sid

= 124, 22 23,1
(S,,0 = | tst21'  (s221  (sf3)
tsi31r 1s231r (s

where the formulae of the submatrices, for given
h, are

[sha! = ((Qh) 2/“}1) (551 + (Qh(l'Qh)/“') (8" (3%
and for h # k |

shs1 = -(euep/m') BRI = (sgRr
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The numerical values of [Eh] and [sgg] are
those given in Table 1 and the numerical values
of [Zh] and [SZZ] are shown in Table 2.

Consequently we can now write

w = [B]'[Z] = 98315.308
= estimate of the mean biomass per acre
and
Syw = [B1'[S,,1[B] + [2]'[S5112])

6525139.8 + 9836818.8 = 16361958.6
estimate of the variance of w.

As the reader can verify, some of these
results are close, but not identical to those
obtained in Example 1. The two estimates of

u are 98316.722 and 98315.308 and the two variance

components associated with the error of the bio-
mass regression function are 9837039.2 and

9836818.8. The differences are due to round-off
error; in Example 1 the relative sizes of strata
were calculated from the estimated stratum sizes
to the nearest acre. On the other hand the

estimate of the variance component due to sample
plots is somewhat larger in Example 2; 6525139.8

of New York, the United States Department of
Agriculture Forest Service and the Department of
Energy, Grant No. 23-524.
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ON THE ERROR OF FOREST INVENTORY ESTIMATES:
@

TWO-
STAGE SAMPLING OF PLOTS
Tiberius Cunia

Professor of Statistics and Operations Research

SUNY College of Environmental Science and Forestry
Syracuse, NY, 13210

The error of forest blomass estimates has
two main sources, the sample plots where the trees
are measured for diameter only and the regression
functions that are used to estimate the biomass.
Given that the biomass regressions are linear
with known error, an approach is suggested to
combine this error with the error of the sample
plots where the sample plots are selected by a
two-stage cluster sampling design.

Introduction

It is common to have forest inventory designs
consisting of trees selected in two phases. In
the first phase the trees of a sample of plots
(or)Bitterlich relascope points) are measured for
diameter, species and possibly other atttibutes but
not measured for biomass. In the second phase a
sample of trees is measured for biomass in addition
to diameter, species and possibly other attributes.
The trees of the second phase are then used to es-
timate the regression function of tree biomass on
diaméter (and possibly other attributes), which
applied to trees of the first phase yields estimates
of the'average biomass per acre. The error of the
estimates has two main components, @éne component
associated with each of the two sampling phases
above. However, it is common to ignore the second
error component (due to the biomass regression fun-
tion) when the error of the average biomass per
acre estimate is calculated. .

An approach proposed by Cunia (1965, 1986a)
can be used to combine the error from the first
phase sample plots with the error from the second
phase sample trees. This approach requires that
the estimators be of the form

W = byzq + byzp + ...+ byzy ={b]' [z]

where (i) [b] is the second phase sample estimator
of the vector of coefficients of the regression

of biomass on %7, x5, ..., (functions of

various tree attributes other than biomass) asssumed
to be of the linear form

. (1l/paper based on a set of lecture notes "On
the error of biomass estimates in forest inventory:
Part 2: the error component from sample plots.
Faculty of Forestry Miscellaneous Publication
Number 9 (ESF 86-001). SUNY College of Environ-
mental Science and Forestry, Syracuse, NY.

= B1X] + BoXg + ... + Bpx =[B]'[x]
and (i1) [z] is a vector of statistics calculated
from the data of the first phase sample plots.
The two vectors [b] and [z] are assumed to be
statistically independent and the variance of w
can be estimated by the approximate formula

- ] \
Sww = [b] [Szz][b] + [2] [Sbb][ZJ
Note that in this formula [S b] denotes the co-
variance matrix of [b] and tBat the right hand

side of the equation has two terms; the first

term is the varlance component associated with the
error of the sample plots (of the first phase) and
the second term is the variance component associated
with the sample trees, or biomass regression (of

the second phase).

The definition of the vector [z] depends on
(1) the sampling design of the first phase, (ii)
the parameter p one wishes to estimate and (iii)
the type of variables x used in the biomass re-
gression function. 1In his paper, Cunia (1986a)
assumes that (1) the sample plots of the first
phase are selected by simple random sampling and
(ii) the parameter p is the mean biomass per acre.
Given a biomass regression function of the form

y = blxl + b2x2 + ...

+ b x = [b]"'[x]

m m
the statistics z,, z,, ..., 2 are then defined
as the averages %f tﬁe samplemplot variables
8y = (in)/a, i=1, 2, ., m, where a is the
plot area (in acres) and I is taken over the trees
of a given sample plot. Note that sj is the sum
of the variables x; of the trees from within a
given plot, expressed on a per acre basis. For
example, if x3 = 1 and X, = d (diameter), then

s, = number of trees per acre of a given plot,
and s9 = sum of diameters per acre of a given plot

If, for n = number of sample plots, the sample
means, variances and covariances of the plot vari-
ables sy are denoted by

§i = (¢s4)/n , and

Ssisj = Z(si —si)(sj —sj)/(n—l)
where 1, j =1, 2, ..., m and 5 1is taken over the
n sample plots, then

=%, and § =85 /n
i i zizj Sisj

Assuning now that [b] and IS, 1 are given,
‘the estimates w of 1 and S . of the variance of w
are given by the formulae above. ‘

z

The objective of the present paper is to de-
fine the vector [z] of statistics when (i) the
sample plots are selected by a two-stage cluster
sampling design and (ii) the parameter y of
interest is the average biomass per acre. We shall
also show how to calculate [S,,] an estimator of
the covariance matrix of [z]. We shall assume that
the biomass regression function is of the linear
form and that we are given the vector [b] of re-
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gression coefficients and the covariance matrix
[Spp] of [bl. For a description of the methodo-
logy to calculate [b] and [Sp}] the reader is
referred to Cunia (1986b, ¢) among others.

We shall also assume that the reader is
familiar with the two-stage cluster sampling theory
as described in standard textbooks as, for example,
that by Cochran (1977). If not familiar with the
approach to combine the error from sample plots
and biomass regressions, the reader is strongly
advised to read the Cunia (1986a) paper. In par-
ticular, he should understand well the definition
of the plot variables sj,sy, ..., sy for both
sample plots of fixed area and relascope sample
points. To facilitate the discussion we shall
often use sample plots to denote both cases, of
plots and points.

Two-stage Cluster Sampling Applied to Forest
Inventory

The clusters of trees previously defined as
sample plots of fixed area (or Bitterlich sample
points) can be grouped into clusters of higher
order (clusters of plots) and the sampling can
be done in two stages. Iet us denote the clusters
of plots as primary sampling units and the plots
themselves as secondary units. Within this con-
text, the trees constitute the tertiary units.
For example, a large forest area (an entire
country or one of its political or administrative
subdivisions) can be divided first into blocks,
divisions or homogeneous stands (the primary
units) and each block, division or stand can be
further subdivided into a certain number of sam-
ple plots (the secondary units). The trees of
the original forest population are the tertiary
sampling units.

The general two-stage sampling design
consists of (i) a first stage where a sample of
primary units is selected by some random procedure
and (ii) a second stage where a separate subsample
of secondary units is selected at random from each
of the primary units selected in the first stage.
When the units of the original population (the
tertiary units) found in all the sample units of
the second stage are measured for the variables
of interest we have the method of two-stage sam-
pling. But when each secondary unit of the sample
of the second stage is subsampled for the tertiary
units we have a three-stage sampling design.

Note that strictly speaking, two-stage sam-
pling refers to the selection of the secondary
units which are completely measured for the terti-
ary units found within them. The estimates are
calculated for the parameters of the population of
secondary units. When the estimates refer to the
population of tertiary units one may wish to denote
the sampling method as three-stage. It is only a
matter of terminology.

To introduce the necessary terminology, nota-
tion and formulae, let us assume that (i) the forest
area is dit®ided into M homogeneous stands, (the
primary units), (ii) each stand h has a known area
of Ah acres, h = 1, 2, ..., M and can be subdivided
either into a finite number Nj of non-overlapping
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plots of fixed area "a" acres (the secondary
units) or into infinitely many overlapping plots
of fixed area or Bitterlich sample points of
given basal area factor "c", (iii) each sample
plot or point k of the stand h contains npy trees
(the tertiary units), k =1,2, ..., Ny, (or in-
finity) and (iw¥) the diameter of the g-th tree
in the k-th plot (or point) of the h-th stand

is denoted by dhkg- Then, the two-stage random
sampling design considered here can be described
as follows.

In the first stage, m stands are selected
by simple random sampling without replacement.
Each selected stand of known area of Ay acres is
subdivided (at least conceptually) into Np, non-
overlapping sample plots of "a" acres each, or
infinitely many overlapping plots of fixed area
or Bitterlich sample points. In the second
stage, np sample plots or points are selected
from each sample stand h =1, 2, ..., m by sim-
ple random sampling without replacement (or an
equivalent systematic sampling design). All Ny
trees of the selected hk~-th plot or point,
k=1, 2, ..., ny, are measured for their diameters
dhkg’”g = 1, 2, ooy nhk.

To intreoduce the necessary formulae, let us
assume that the k-th plot or point of the h-th
sample stand is measured for its value Yhk = bio-
mass per acre. Then, two-stage cluster sampling
theory tells us that, for sufficiently large
samples, a slightly biased, but efficient estimator
of ¥ , the average biomass per acre for the entire
forest area, is the ratio estimator

w

g =

I Z

( Nth)/( Nh)

where ¥, is the estimator of the average biomass
per acre of stand h, say uh' calculated by the
formula

yh = (yhl + yh2 + ... + yhnh)/nh

and I means summation over the sample stands
h=1, 2, ..., m. When N is equal to infinity,
the case of the overlapping sample plots of fixed
area or Bitterlich sample points, the formula
becomes

w=g. = (BAF)/()

The variance of ?R can be estimated by the
formula

s 2 o2 2
s)_,RyR —(D_'I;I_m)( mx:nl) (ZNh(yh yR) )/(z Nh)
2 hh
ofm)e (20 ) M8y on )
M Nh nh

where y means again summation over h =1, 2, ..., m
sample stands and Shg‘is an estimate of the variance
within the sample s%and h, that is the sample
variance of the ny plot values y ke k=1, 2,

s npand h =1, 2, ..., m. WRen M is large

with respect to m, one can make (M-m)/M = 1.

Also, when m is sufficiently large, one can make
m/(m~-1) = 1., If, for a given h, N, is large
relative to ny the factor (Nh'nh)/ﬁh can be made .



equal to 1. Finally, when N is infinitely large,
as the case may be with overlapping sample plots
of fixed area or relascope sample points, one can
substitute Ap for Np. If all four conditions
above are satisfied, one can use the following
approximate but simpler formula
2 - 2_hh 2
- = =1 (§ -~ + mIA IA

syRyR (h(yh YR) mIA, S /M"h) (za)

Sometimes the variation within the stands
as measured by Shh is relatively small compared
to the variance getween stand means as represented
by the squared differences (yh—? }2. Then, the
effect of the second variance component

mZAZShh/Mn ()2
can be 1gnored and the variance of g can be
estimated by the formula

2 - .2 2
S - = (P -F /()
yRyR h'"h R h

All the above formulae of the variance of
?R ignore the error of the biomass regression
function used for the calculation of the plot
values ypx. We shall now show how to include the
error of the regression function into the error
of the estimate ?R of ¥ . We shall consider
first the case of a single biomass regression
applied to all trees of all stands and then ex-
tend the results to the case of different regres-
sions applied to different stands. To facilitate
our discussion, ye shall gssume that the biomass

regression function is of the form
2

A
+ +
¥=b, +bd+bd

=b.x + b _x 6 + b Xx

1%1 ¥ PyXp * bgXy = [bI'Ix]

where d is the tree diameter and the definition
of [x] is obvious.

Case 1 - Same biomass regression function
applied to all stands

The biomass per acre of the hk-th plot or
point can be defined by the usual formula as

= +
Yhk = P11k * P2%onk t P3%ank

where
s1hk = number of trees per acre of the hk-th
plot or point
Sth = average sum of tree diameters per acre
of the hk~th plot or point
Sapk = average sum of squared diameters per

acre of the hk-th plot or point
If we write

$§ =b 5. +b 5., +b.S
¥y = 2150 * PaSon * P33y
where Slh' 52h' and S3h are the averages of the
n sample values s + Sahkr and S3hk respectively
of the sample stand h, we can write the estimate
of 1, the average biomass per acre, as

= - '
w blz + b2z2 + b3z3 [b]'[2z]

where, for I meaning summation over the m sample
stands h,

2y = E'Ah§1h/ZAh = ZNh§1h/ZNh

z, = BpSon/MA) = IN S5 /IN

Each 2z, value, i = 1, 2, 3, is a ratio estimator
of the type ¥y defined above. Its variance for-
mula has been given above. Extending this for-

mula, we can write the covariance of z, and z. as
M-m - 2
Szizj _(T)( =) )ZN (sih—ziXs_—z,_)/(ZN )

o) = (B (k) o

where I is taken over the m sample stands and S?h

is the sample covariance of the nj, pairs of
values Sihk and S3hk of the sample stand h, that is

hh
5i3 ink~%in) 5mk” 85p)/ 0y -1

where now I means summation within the stand h
over plot k =1, 2, ..., . When we can approx-
imate the values (M-mM, m/(m-1) and (Np-n,)/Ny
by 1, and if N, is infinitely large for all
h=1, 2, ..., m, the formula above simplifies to

szizj (ZAh(sih-z )(s:,h z,) + mza2 s /M%)/(ZA )

Finally, when the covariance within clusters is
small relative to the covariance between cluster
means, one can use the formula

= I(s,

2
zizj h-zj)/(EAh)
Case 2 - Different biomass regression functions

applied to different stands

2
S = zAh(gih_zi)(gj

Many times, the various stands are defined in
termg of forest type or site for which the trees
are of a different shape,and thus, different
regression functions have been constructed for
different stands. Then, let us assume that

1 =

[b ] [blh 2h b3h]
is the regression applied to stand h, that the
covariance matrix of [b ] is as usually denoted
as [S b], and that the m vectors of regression
coefficients [bM] have been calculated by a least
squares technique (or some of its extensions)
such that the covariance matrix of [bh] with (bX]
denoted here as [SPK] can be calculated. If we
define the giant size vector [B] as

(B]' = [ [bY1' [3)' ... ™" ]

then, the covariance matrix of [B] can be written
as
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11 12 1m, |
[Sbb] [Sbb]' e [Sbb]
12, .22 2m
N (S h S RPN v
Spn? = | - ) :
im 1] ém [] . I;lm
Esbb] [(sZmt ... sp |

For the special case where the same regression
function is applied to stands h and k, then
hh oKk hk
[Sbb] = [Sbb] = [Sbb]
while for ﬁhe case of statistically independent
vectors [b'] and [bk], we have [Sgg] = [0].

The biomass per acre of the hk-th plot or
point can be defined as

P3hS3nk

Yhk = P1pSink * PonSonk *
where sypy., Sopks and S3pk are defined as in
Case 1 above. Also, the average biomass per acre
of stand h is estimated by

- - - - h -h
= + + = '

¥y = P1nSin * PonSon * PapSan = P 17Is )

where Sjy, §2h’ and §3p, are again defined as in

Case 1 above. Then, the two-stage sampling

estimator of U can be written as

w o= (Aly1 + A2y2 + ... + Amym)/(Al + A2
= B/ ) (by18); * byySyy * byySyy)
+ (A2/2Ak) (b,.,s.. +Db + b

12512 22522 )

32532
e

+
1m°1m

+ (Am/mk)(b b2m52m + b3ms3m)
= [B]1'I[Z]

where

[z1' [A1[§l]' A2[§2]' ces Am[sm]'IZAk

[zl 1281 Lo 12 )

with ZAk = Al + A2 + ...+ Am, and
h,, _ - - -

[z7] = (Ah/ZAk)[slh 5 s3h]

The covariance matrix of [zl] is calculated
as in Case 1 above and denoted as [SMh]., Aas the
sample plots or points of stand h are selected
independently of the sample plots or points of
stand k, the covariance matrix of [zD'] with [zK]
is equal to zerq; that is[S§§]= [0] when h # k.
Consequently

$ww = [B]'[SZZ][B] + [2]'[s 1 12]

An.Illustrative Example

To better see how the formulae of the previous
section apply to an actual set of sample data, let
us consider the following numerical example.
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Example - Assume that a forest area of
A = 42336 acres is divided into 140 blocks of
sizes varying from about 100 to about 500 acres

.each. We are given that (i) m = 16 blocks are

selected by simple random sampling without replace-
ment from the M = 140 population blocks, (ii) each
block so selected is measured for its area, say
Ap in acres, (iii) n;, one-tenth acre sample plots
are selected by simple random sampling without
replacement from the h-th sample block, with the
sample size ny being approximately proportional

to A, , and (iv) the total sample size is n = 235.
It is implicitly assumed that the blocks and plots
are non-overlapping. The values Ay and ny are
shown by block in Table 1.

To calculate the biomass we shall use the
regression function already used by Cunia (1986a).
This regression is assumed to be of the linear
(parabolic) form

~

2
v Bl + gzd + B3d

ByX) * ByXy ¥ By¥y = [81'[x]

where y = tree biomass and d = tree diameter, with
obvious definitions for X],%¥9 and x3. The estimates
[b] of [B] and [Sp,] of the covariance matrix of

[b] are shown in the Cunia (1986a) paper, and, for
convenience they are also given below

[b]' = [5.1818118 -25.653078 12.988357
and
8715.8855 -2222.4882  128.69992
[s.. ]=|-2222.4882 581.99570 -34.776995
bb™ | 128.69992 -34.776995  2.1744582

This regression function implies that the plot
variables are defined as

s, = le/.lO = 10Z(1)

= number of trees per acre

s, = Exz/.lO = 10Id

= gum of diameters per acre, and

s, = 2x3/.10 = 102d2

= sum of squared diameters per acre,

where I means summation over the trees of a given
plot.

Consider now the sample of plots. The values
sy, sz and s, are calculated for each plot separ-
ately. The individual plot values are listed by
Cunia (1986d, Tables 1 and 2) and are not repeated
here. For the purpose of this example, the 235
plots are distributed arbitrarily among the 16
blocks, according to the number ny, of plots that
they should contain. More specifically, the first
n; = 13 plots were assigned to block 1, the next
n, = 15 plots were assigned to block 2, etc. with
the last N = 18 plots assigned to the last block
16.

Using the terminology and notation of the
previous section, the secondary units are the



Table 1 -~ The area Ay (acres), the number ny of sample plots, the averages of s, S5 (inches), s3 (squared

inches) and y (pounds) and the variance V of y within blocks by block number h

-

h Ay n 89 s, S5 y \

1 280 13 210.76923 1243.5154 8765.4079 83040.42 4949333039
2 302 15 200.66667 1175.9533 8444.4321 80552.29 3840381639
3 452 22 245.45455 1403.3682 9800.8083 92567.58 5702946485
4 216 10 149.00000 1010.4200 8361.1126 83448.82 6457081439
5 384 18 205.55556 1323.7056 11052.1138 110656.83 6406414888
6 290 14 173.57143 1380.9929 15067.3455 161172.76 4858967459
7 242 12 279.16667 1588.3583 11129.5609 105255.02 3023986664
8 315 15 230.66667 1448.6333 12156.5293 121926.71 7706768567
9 344 17 232.35294 1289.7118 8270.5904 75540.31 2658394967
10 287 14 166.42857 958.6500 6639.4076 62505.07 4666270466
11 472 23 226.52174 1320.5826 9660.5531 92771.50 3502826347
12 130 6 218.33333 1552.1833 13833.9085 140992.82 7053833420
13 212 - 10 264.00000 1801.9300 16101.5319 164275.39 8978786810
14 274 13 251.53846 1753.6385 15748.0664 ' 160858.71 3564467131
15 319 15 271.33333 1504.5600 9355.6103 84323.41 2743051584
16 382 18 258.88889 1626.2444 12780.5912 125622.22 7090217424

sample plots and the primary units are the blocks. zy = h 3h/ZA = 53080603/4901 = 10830.566

There is a total of N = 423360 possible one-tenth
acre plots and M = 140 blocks. The first stage
sample size is m = 16 sample blocks and the second
stage sample size is n = 235 sample plots. The
total area of the 16 sample blocks is

Ay = Ay +RAy + e t A16 = 280 + 302
+ .... + 382 = 4901 acres

The first step is the calculation of the
averages of the variables s; = number of trees per
acre, 52 = gum of tree diameters per acre, and
s3 = sum of squared tree diameters per acre for
each sample block h = 1 2, veer 16 separately.
The 16 sets of values slh' s oh’ and S3h are
listed in Table 1. .

We continue with the calculation.of the
vector [z] defined as

zy 225.58049
[z] = z, =11390.1177
23 10830.566

where, for £ meaning summation over the sample
blocks h =1, 2, ..., 16

z, = IA S /ZAh = 110570/4901 = 225.58049

- 71 h™1h
= two stage sampling estimate of the
average number of trees per acre of
the entire forest area

z. = YA S_ /IA

5 hS2n = $£812966.8/4901 =

1390.1177

h

= two stage sampling estimate of the
average sum of tree diameters per acre
‘of the entire forest area, and

two stage sampling estimate of the
average sum of squared tree diameters
per acre of the entire forest area

The ij-th element of the covariance matrix
[ 1 of [z] can be calculated by the formula,
say Main Formula

M~-m - e 2
Sz.z. = ('FT) (m-])ZA ¢, 1)(sjh_zj)/(zAh)
i3 .
2_hh
10A£nh hoij // 2
IA.)
M lOAh nh

where I is taken over h = 1, 2, ..., 16 sample
clusters, and N, = 10A . This requires the cal-
culation of 16 covariance matrices of the variables
S1s Sgr and s, within blocks, say [Shh], with its
ij-th elements defined by the formula

L(s,, -s, )(

ihg Sih )/ {n, -1)

jhg Jh
for i, j = 1, 2, 3, where I is taken over the n
sample values sj ihg and s, of sample plots

=1, 2, ..., n, within"sample block h. The ij-th
element of the covariance matrix of [z] can also
be calculated by any of the following alternative
formulae.

Short-cut Formula 1

2
szizj = mZA (s -z )(s]h—zj)/(m—l)(ZAh)
' 2_hh 2
+ mZAhSij/nhM(ZAh)

Short -cut Formula 2

2 -
Sp.z.” MBSy

—zi)(g‘
ij J

h‘zj)/(m~1)(2Ah)2, and

Short- cut Formula 3

S ZA (s
z.Z

i3

% )(si -z )/(ZA )2
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It is more convenient, however, to define the
covariance matrix [s,,] directly by matrix oper-

ations.

For this we define first the 16 by 3

matrix of weighted differences

. . ]
Ay(5p72) R (Sy7E) Ay (8yym2y)
. A& - A 5 -

W] = By(E107) A (5,,73)) 2(8357%3)
216 51,167%1"%16 52,16 7%2) P16 (53,1672 |
-4147.1529 -41048.644  -578244.24
-7523.9750  -64677.634  -720612.42

- . . .
12723.808  90200.423 744909.67

and then, the weighted sum of 16 matrices [SE;],

say

[s

S8

1

102 n

2
z(lqAE“h ) Ap ) s
- sSs
h h

V4 t t JE;;

(106179 + 15858) pounds

95 percent confidence limits of p

Using now Short-cut Formula 1 we obtain the
values

[s 1

. _ 2 2
m[v]'[V]/(m-1) @A)+ m[S"ss]/M(ZAh)

2Z
83.874242 406.46033 1765.2882
=1406.46033 2997.9220 28877.038
1765.2882 28877.038 446493.73
'Sww = 58183864 + 11063125 = 69246988
and

W+ t\/sww = (106179 + 16643) pounds

for an overestimation of the confidence interval
of

(100) (16643 - 15858)/(15858) = 4.95 percent

Using Short-cut Formula 2, we obtain

2012834975 10315563210 54028872200
10315563210 60558424930 424677708600
54028872200 424677708600 4484694027000

= 1 - 2
[Szz] = m[V] ' [V]/(m-1) (ZAh)

74.251111 357.14324 1506.9885

or the corresponding matrix for the short-cut
formulae

[S;s]

]

2 hh
L@, /m)Is ]

2022524766 10365134370 54287700110

Using the Main Formula above, the covariance
matrix [Szz] is calculated as

. M—n‘ m . 2 m 2
S = =] {— ' =
[ zz] (M ) (m_l) vi [V]/(ZAh) + (M)[Sss]/(ZAh)
75.342297 365.40810 1591.8295
= | 365.40810 2687.0073 25799.155
1591,8295 25799.155 397813.92
Consequently,
w = [b]'[z] = 106179.37 pounds
= two-stage cluster sampling estimate of u,
the average biomass per acre for the
entire forest area
s = 1 1
- [b] [Szz][b] + [z] [Sbb][z]

i

51805483 + 11063125 = 62868608
estimate of the variance of w
7928.9727

estimate of the standard error of w

and using a value t = 2,
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10365134370 60849065330 426712725100
54287700110 426712725100 4506190215000

357.14324 2708.4035 26846.747
1506.9885 26846.747 425053.37

Sww = 55707438 + 11063125 = 66770563
and
+ = (1 79 + 4 d
v+ t‘/sww (106179 + 16343) pounds
for an overestimation of the confidence interval of

(100) (16343 - 15858)/(15858) = 3.06 percent

Finally, using Short-cut Formula 3, we obtain

2

s 1= v1'ivl/iza,)
zz

69.610416 334.82178 1412.8017

334.82178 2539.1282 25168.826

1412.8017 25168.826 398487.54

s = 52225723 + 11063125 = 63288848
and
w + t\/sww = (106179 + 15911) pounds
for an overestimation of only
(100) (15911 - 15858)/(15858) = .33 percent

We shall now consider the common procedure
of calculating (1) the biomass of each tree by
the regression function, (2) the biomass of the
plot hk (k-th plot of h-th sample block) by
summing up the biomass of all trees within plots,
(3) the biomass per acre of plot hk, say vy by
dividing the plot biomass by the plot areahﬁone—
tenth of an acre), (4) the average biomass per
acre for each sample block h =1, 2, ..., m, say



?h = I¥phg/Nyr Where I means summation over plot
k=1, 2, ..., within block h and finally, (5)
the estimate w o ¥ and the cstimate of the
variance of w by the formulae

w=IA¥ /By

and

M-m i} 2,- 2 2
Sww = (-m—) (E;E) ZAh(yh—w) /(ZAh)
1

M
2_hh
NEAE: R\ [ PrSyy //(ZAh)z
M lOAh n

h

where

hh - 2
Syy = z(yhk yh) /(nh 1)
of course, L of S means summation over h = 1,

2, ..., 16 sample BY¥ocks and I of shh means

summation over plots k =1, 2, ..., h within
block h.
Because the hk-th plot values Syy; s Sopgs

and S3hk have already been calculated, there is
no need to calculate the individual tree biomass.
We simply calculate the biomass per acre Yix of
plot hk by the formula

= b.s + b

Yok = P1%1nk b

25omk * P3Sank T 1 Isy!
These values are listed by Cunia (1986d, Tables
7,8) and are not given here. Taking into
account the classification of these plots into
the 16 blocks, we continue with the calculation
of the block average biomass per acre vy, and the
sample variance within block shh by the formulae

above. These are listed in Table 1.

Finally, using these block values of means
and variances, the reader can verify that

w = (ZAhih)/(ZAh) = 520385103/4901 = 106179.37

and, by the formula above,
Sww = 49340874 + 2464609 = 51805483

As the reader can verify, the estimate w of
the average biomass per acre remains the same,
while the estimate of the variance of w is equal
only to the error component due to sample plots;
the error component due to the biomass regression
has been ignored. The variance is, thus, under-
estimated by

(100) (11063125)/(62868608) = 17.60 percent

or in terms of standard errors

(100) (V62868608 -+/51805483)/(V62868608) = 9.22 percent
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ON THE ERROR OF FOREST INVENTORY ESTIMATES:
DOUBLE SAMPLING WITH REGRESSIONl/

Tiberius Cunia

Professor of Statistics and Operations Research,

SUNY College of Environmental Science and Fores-
try, Syracuse, NY 13210

The error of biomass estimates in forest
inventory contains a component due to the sample
plots and another component due to the biomass
regressions. A method is shown to estimate the
error of the sample plots when they are selected
by a double or two-phase sampling design. The
error of the biomass regression function is as-
sumed given.

Introduction

Most of the sampling designs for forest
inventory consist of a relatively large sample of
trees selected in clusters defined as trees grow-
ing within plots of fixed area or counted by a
relascope at a Bitterlich sample point. These
trees are measured for diameter, species and
possibly other attributes other than biomass; and
their biomass is estimated by means of previously
determined regression functions. Using the esti-
mated tree biomass one can then calculate esti-
mates of the average biomass per unit area (by
tree or stand classes). When the error of these
estimates is calculated, however, the error of
the biomass regressions is commonly ignored; only
the error of the sample plots (or points) is
taken into account.

An approach to combine the error of the
biomass regression with that of the sample plots
(or points) was proposed by Cunia (1965, 1986a).
This approach requires that the true biomass
regression function be of the form

¢ = 61"1 + Byxy + .o+ Boxe = [B8]'[x]

where y is the tree biomass, [x] is the vector of
known tree attributes other than biomass and [B]
is the vector of unknown regression coefficients.
Note that [] and [])' denote vectors or matrices
and their transposes respectively. The vector
[B] is estimated from a sample of trees measured
for biomass y and variables [x] and we shall use
the notation [b] and [sbb] to denote the estima-
tor of [B] and covariance matrix of [b] respec~
tively.

l/Paper based on a set of lecture notes: "On
the error of biomass estimates in forest inven-
tory: Part 2: the error component from sample
plots". Faculty of Forestry Miscellaneous Publi-
cation Number 9 (86~001). SUNY College of Envi-
ronmental Science and Forestry, Syracuse, NY.

The approach also requires that the parame-
ter 1 of interest be expressed as the product of
two vectors, that is,

B = [B]'[}Jz] = ]Jluzl + ]-121122 + .. + umpzm
where Pz. is the expected value (mean) of a
i

function of the variable Xi0 i=1, 2, «., M.
If p is the average biomass per acre, then M,
i

represents the expected values of Xy expressed on
a per acre basis. For example, if Xy is the tree
diameter 4, the'uz, is (i) the average tree

i

diameter, when p is defined as the mean biomass

per tree or (ii) average sum of tree diameters

per acre, when u is defined as mean biomass per

acre. Similarly, when X = 1, then y, =1lory,,
Z Z2j

= mean number of trees per acre depending on
whether nis the mean biomass per tree or per acre
respectively.

It is assumed that the sample plots (or
points) provide estimates z; of Mg and estimates
i

S,.z. Of the covariance of z; and Zy, fori, j=1,
193
2, .., M. Using the matrix notation, we define
the vector (z], the estimate of [uz] and the
matrix [sz }, the estimate of the covariance ma-
trix of [zf. Then, for the case where [b] and [z]
are statistically independent, Cunia (1965, 1986a)
has shown that

w = [b]'[z] = estimator of y
and

Sww = [P1'1S,,1[b] + [z]'[Sp,1(z]
estimator of the variance of w

Note how the variance of w can be viewed as having
two additive components; one due to the error of
the sample plots, the other due to the biomass
regression.

The definition of the vector [z] depends on
(i) the sampling design by which the sample plots
(or points) are selected, (ii) the parameter y one
wishes to estimate and (iii) the variables X4 used
in the biomass regression. In his paper, Cunia
(1986a) assumes that (i) the sample plots (or
points) are selected by simple random sampling (or
by a systematic sampling procedure that is equiva-
lent to simple random sampling) and (ii) the param-
eter u1 to estimate is the average biomass per
plot., If the regression function used to calcu-
late the tree biomass is § = [b]'[x] then, the
estimators z; are statistics based on the plot (or
point) variables S; defined as lei)/a for sample
plots (or Hxi/ak) for sample points) where a is
the plot area in acres (or the factor to convert
the variable g of the tree k of the sample point
to a per acre basis). More specifically, for n =
number of sample plots (or points),

z; =8; =is;/n

SziZj = sSiSj/n

I(s;-5) (s5-54)/(n-1)

The objective of this paper is to extend the
Cunia (1986a) approach from the simple random
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sampling method by which the plots are selected
to the method of double or two-phase sampling.
More specifically we shall show how to calculate
estimators [z] and [Szz] of [Uz] and [cz ] respec-
tively by double sampling. We shall still be
concerned with the estimator w of the mean bio-
mass per acre H, We shall assume that we are
given the estimates [b] and [Sbb] of the biomass
regression function. For some of the methodology
to calculate  [b] and [Sbb] the interested reader
is referred to Cunia (1986b,c) among others.

We shall also assume that the reader is
familiar with the theory of double or two~phase
sampling as described in standard texts on sam-
pling techniques as that by Cochran (1977), for
example. Before proceeding further with the
procedures described in this paper, the reader is
strongly advised to become familiar with the
approach of taking into account the error of
biomass regressions as described by Cunia
(1986a). In particular he should understand very
well the definition of the plot (or point) varia-
bles s, since this definition will be assumed
known when the statistics z and their variances
and covariances are defined. To simplify the
discussion we shall use the terminology "plots"
to denote both plots of fixed area and sample
points; once the variables s are calculated, it
does not matter whether the sample units are
plots or points.

Double Sampling with Regression Applied to Forest
Inventory

Sometimes, there is an auxiliary plot varia-
ble, say v, highly correlated with the plot bio-
mass, say u. The variable v is easy to measure,
but it is of little interest; and it is linearly
related to the variable of interest u, that is
relatively difficult to measure. Then, to esti-
mate p, the mean biomass per acre, one can use,
with high efficiency, a double sampling with
regression estimator. For example, let us assume
that good, large scale aerial photography of a
given forest area of interest exists. After
locating a plot on an aerial photograph, we shall
also assume that, by photogrammetry and photo-
interpretation of the trees of the plot, one is
able to derive an estimate v of the biomass per
acre, that is highly correlated with the true
biomass per acre u of the same plot as measured
on the ground.

Consider now the following two-phase or
double sampling with regression estimator design.
In the first phase, n* photo-plots are selected
by simple random sampling without replacement,
their values v are determined by photogrammetry
and photo-interpretation and the statistics cal-
culated from this sample are the average V* and
variance ng. In the second phase, n photo-plots
are selected from the n* plots of the first
phase, again by simple random sampling without
replacement. The plots are visited on the ground
and measured for their true values u of biomass
per acre. The sample data of the n pairs of
values u and v provide the sample averages u and
Vv, variances and covariance suu' svv’ and suv'
and the linear regression and correlation coeffi-
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c%ents € = 8,y/Syy @nd x = Suv/V§::§;; respec-
tively. Then, the double sampling with regres-
sion estimator of the mean biomass per acre i,
and the estimator of its variance are defined
respectively as

¥, =@ - c(@)

and
§- = = |[A*-n) ¢ 1, .JE:E:LE__
Yr¥r n* uulv n (n-1)s,,

()

where N is the size of the finite population
(possible number of photo-plots) and Soulv is the
estimator of the conditional variance of 'u given
v calculated by the following formula, where I
means summation over the n plots of the second

phase subsample,

Suu|v = Z(uh—qu/(n—2)
= (n-1)S,, (1-r?)/(n-2)
where
u o= (U-cV) +cv
= regression estimate of uy of plot h
when v = 4N

Ordinarily, the population size N is infin-
ite in size or very large compared to the first
phase sample size n*. Then, the finite popula-
tion correction factor (N-n*)/N can be made equal
to 1. We shall assume here that this is always
the case and, thus, unless stated otherwise, we
shall make (N-n*)/N = 1.

Sometimes the first phase sample size n* may
be large with respect to the second phase sub-
sample size n and, thus, (n*-n)/n can be made
equal to 1. Then, the variance formula becomes

S PO S LA g
Fr¥r - Cwlv \n T aoDsgy, n*

When n is sufficiently large, the difference
between Vv and V* may become sufficiently small so
that the effect of the term (G-—G*)z/(n—l)sVv may
become negligibly small. Then, the variance
formula changes to

- - = k2 S
syryr (n*-n) uu]v

= - * n*
- suulv/n Suu[v/n * Sy /

/nn* + suu/n*

- - *

- suu|v/n + (suu Suu|v)/n

Note that in this last formula we have not made
(n*-n)/n = 1. Because, for the least squares
linear regression, we have

2 2
suulv = (n-1) (1-x“)S,,/ (n-2) ¢ (1-r )Suu

we can further write
= 2 *

s§r§r = suulv/n + r Suu/n

Finally, when both n and n* are sufficiently
large and such that (n*-n)/n* can be_p%§e2equal
to 1 and the effect of the factors (v-v*)</
(n-1)S and 1/n* is negligibly small, we can
write

vv



- - ¥ * o
Syryr suu|v/n + Syu/M Suu[v/n

Seldom if ever one can determine the true
value u of the ground plots. The usual procedure
is to use a biomass regression function, estimate
the biomass y of each tree in the plot by the
regression value ¢ and then calculate an estimate
4 of the true biomass u of the plot by adding the
values ¢ of all the trees in that plot. By using
2 instead of u in the formulae above results in
an additional source of error (due to the biomass
regression function) which is not accounted for
when the variance of §r is calculated. To take
it into account, we shall use the following pro-
cedure.

We start with the assumption that u, the
true value, is nnt+ Vnown but can be estimated by
the regression value

G = by;s; + bys, + .. +b,s,. = [b]'[s]

In this formula, the biomass
regression function is

9 = byxy + byx, + ... + bpx, = [b]'[x]
and the known estimator of the covariance matrix

of [b] is [Sbb]° For example, if the regression
function is

2
9 = by + byd + byd
= byXy + byx, + bayxy = [b]'[x]

where 4 = tree diameter, then, the plot variables
Sy, 8 and 55 are the usual plot values of "num-
ber % trees per acre", "sum of tree diameters
per acre" and "sum' of squared tree diameters per
acre" respectively.

The estimator of ?t (the double sampling
with regression estimator when the true values u
——r—————
are used), and through y., the estimator of the
parameter of interest p (the mean biomass per
acre) can be defined as

w=1u~-c(Vv-V*) = u - Suv(V-V*)/va
where _ _
= Zﬁh/n = bls1 + b252 + ee. + bmsm

= [b]'[8] = Z[b]'[s)/n

and I is taken over the n sample plots h of the
second phase.

It can be shown that

S = bls

uv + bzs + oeee + bmss

1 s,V v = [b]'[Sgy]
where

(Sgyl' = [Sg,v Sgv votee Sgqv]

Consequently, w can be successively written as
w = [b]'[8] - [b]'[S,,]1(V-v*)/s,,
= [b1'([8] - Isg,](F-¥*)1/5,,)

= [b]'(z] = blz1 + b222 + ... + bmzm
where

sy - (Sslv/svv)(v-v*) =8y - cl(v—v*)

= double sampling with regression estima-
tor of the mean of 8y

(832V/va)(v-v*) =5, - cz(v—v*)

= double sampling with regression estima-
tor of the mean of s,

z3 = §3 - (ss3v/svv)(6-6*) = §3 - c3(6-6*)

= double sampling with regression estima-
tor of the mean of 84

etc.

Of course, in these formulae, we have

¢ = Sslv/svv
= estimator of the linear regression
coefficient of s, on v
€2 = Sg,v/Svv
= estimator of the linear regression
coefficient of s, on v

€3 = Sgv/Suy

= estimator of the linear regression
coefficient of syonv
ete,
Because z;, Z,,....,2Z, are double sampling
with regression estimators, their variances can
be estimated by the formulae

n*-n 1 (T=U%) 2
= | S —_e =" _ T I _ 1+ S *
52524 ( e ) 8151|V(n (n-l)svv) s38;/"

= estimator of the variance of’zi, for i =

1, 2,40,
where
s

r 2
sisi|v = Z(shi—shi) / (n=2)

= (n—l)Ssisi

(1-r2) /(n-2)
8Py = (Ei—ciV) + oy
= regression estimate of Shi given that
v=yv
h

ssiv/vssisisvv

= estimator of the linear correlation
coefficient of 54 and v

and

Similarly, the covariance of z; and z., for
iy¥3j=1,2,,.m can be estimated by the formula

n*-n 1, _(w-g%2)
= S n*
zizj ( ) siSjlv ( (“'1)va) SiSj/
Where, for I meaning summation over clusters h,

Seisylv = sy -spy) (spy-spy)/ (n=2)

(n—l)Ssisj(l-rirj/rij)/(n-z)

estimator of the conditional vari-
ance of sy and sj when v is given,

sﬁi = (Ei-ciag + cyvp .
= regression estimate of Sy; 9given that
vV = v
h
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S};j = (§;-c.V) + c.v
= regression estimate of shj given that
v=vy

i< ssiv/Vgsisigvv

= estimator of the linear correlation
coefficient of sy and v

ry = SSjv/VSSijsvv
= estimator of the linear correlation

coefficient of sj and v

iy = Ssisj/Vss 5

isi Sij

and

= estimator of the linear correlation
coefficient of sy and sj
We have shown above the shortcut, approxi-
mate formulae for the calculation of the variance
of the double sampling with regression estimator
§r' Similarly, for the variance of Z5e i=1, 2,..,
m we can write

s
s - s 1, (9-y*)2 4 _Sisi
zizy ~ Usisi|vin T Ta-Ds,, n
when n* is sufficiently large with
respect to n

S = (n*-n)s

o . / An*+ S
zjz4. sisi|v

/n*
8184
= 2 *
= ssisi|V/n + rissisi/n

when n is sufficiently large, and

0
13

/n* <

s~ S n+ S S n
252y~ Ssys;|v/ sisy sisi|v/

when both n and n* are sufficiently
large and such that (n*-n) /n*msl
the effect of the factors 1/n* and
(¥-)2/(n-1)s,,, is negligibly
small.

Similarly, one can write the following shortcut
approximate formulae for the covariance of zy and
Z5 i#¥3=1, 2,..., m

o w2 S453
= 1 (F-%*) kS
s =8 L +
z3z3 ~ sisj|v (n (n-1)s,,] “n*
when n* is sufficiently large with
respect to n

sziZj = (n*-n)SSiSjIV/nn* + SSiSj/n*

/n*

=S /n+ (r.r./r..)S_. ..
sisj|v 1737713 s 384

when n is sufficiently large, and

[2)
2

o * o
ziZj SsiSjlv/n + SSiSj/n SsiSjIV/n

when both n and n* are sufficiently
large and such that (n*-n)/n* % 1

and the effect of the factors (V-v*)2
/(n—l)va and 1/n* is negligibly
small.

As all the elements of the covariance matrix

[sz ] of [z] are now defined, the formula for the
variance of w = [b]'[z] follows immediately as
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Sww = [B1'[S,,1[b] + [2]'[s (2]

An Illustrative Example

A forest area has been sampled for biomass
in 1960; the trees from 235 randomly selected
permanent sample plots were all measured for
their diameter values 4, in inches. Four years
later, in 1964 it was desired to update the
forest biomass estimates. For this purpose a
subsample of 118 of the old 235 plots was selec-
ted at random and its trees were measured again
for their new diameters d2. By defining the
1960, the first measurement plots as the first
phase sample and the 1964, the second measurement
plots as the second phase sample we can calcu-
late estimators of M,, the mean biomass per acre
at the second, 1964 measurement time by the fol-
lowing, double sampling with regression estimator
procedures,

Procedure 1l: Ignore the error of the bio-
mass regression function and use as auxiliary
variable the plot value

v = estimate of the plot biomass per acre at
the first, 1960 measurement time.

This is the common, double sampling with regres-
sion estimator procedure.

Procedure 2: Take the error of the biomass
regression into account and use as auxiliary
variable the plot value

v = estimate of the plot biomass per acre at
the first, 1960 measurement time.

This is double sampling with (simple linear)
regression estimator of the previous section.

Procedure 3: Take the error of the biomass
regression into account and use as auxiliary
variables the plot values Sys Spr weer S of the
first, 1960 measurement time. This is the double
sampling with (multiple linear) regression esti-
mator a simple extension of the double sampling
with (simple linear) regression estimator of the
previous section.

In estimating the tree and plot biomass
regression we shall use the biomass regression
function calculated by weighted least squares in
Cunia (1986b) and already used in Example 1 of
Cunia (1986a). For convenience, the statistics
of this parabolic regression, that is,

5 2
v b1 + b2d + b3d

byxy + byX, + baxy = [b]'[x]

where d = tree diameter (of first or second
measurement) and the definitions of Xy, X, and X
are obvious, are shown below

[bl' = [5.1818118 -25.653078 12.988357]

and
8715.8855 =~-2222.4882 128.69992
[Sbb] = | -2222.4882 581.99570 =-34.776995

128.69992 -34.776995 2.1744582



The use of this regression function implies
that the plot variables (that summarize the plot
information) are

s = number of trees per acre
s, = sum of diameters per acre
Sy = sum of squared diameters per acre

There are three variables s measured in 1960 on
all 235 sample plots and three additional vari-
ables s measured in 1964 on the 118 plots of the
subsample. Using the first set of three vari-
ables s (the 1960 values) one can calculate the
variable

[}

v = Dbys; + bys, + bysy = [b]'[s]

1960 biomass per acre

(]

and using the second set of three variables s
(the 1964 values) one can calculate the variable

u = bys, +.b252 + bysy = [b]'[s]
1964 biomass per acre

]

The plot values S1r Sy S3, V and u of the
first and second measurement are listed by Cunia
(1986d, Tables 1, 2, 3, 7, 8); they are not
repeated here. We shall only report the summary
values, as they are needed by each procedure.

Procedure 1l: The estimator of'pz, the mean
biomass per acre at the second, 1964 occasion, is
the classical double sampling with regression
estimator, where the error of the biomass regres-
sion function is being ignored, when the error of
the estimator ?r of U, is being calculated. The
variable of interest is u = plot biomass per acre
at the second measurement and the auxiliary vari-
able is v = plot biomass per acre at the first
measurement. The two variables are highly and
positively correlated.

Let us now calculate the necessary statis-
tics. We shall start with the basic sums, sums
of squares and sums of cross-products. WithZI
meaning summation over the values of the 235
plots measured in 1960 and listed by Cunia
(19864, Tables 7, 8) we find the following sum

Iv = 24897913

For I meaning summation over the 118 perma-
nent sample plot values v and u of the first
(1960) and second (1964) measurement respectively
listed by Cunia (1986d, Table 8) we find

12490431, sz 1969954828000
14084491, Zu2 = 2295905587000
and Zuv = 2105734088000

v
Iu

L]
]

Using the above sums and the notation of the
previous section we calculate then

[}

V* = ypv/n* = 24897913/235 = 105948.56

estimate of the average biomass per
acre at the first, 1960 measurement
time; all 235 sample plot data were

used.

<1
!

= Jv/n = 12490431/118 = 105851.11
estimate of the average biomass per acre
at the first, 1960 measurement time;

only the data from the 118 permanent
plots measured on both occasions were

used.
U = Ju/n = 14084491/118 = 119360.09
= estimate of the average biomass per acre

at the second, 1964 measurement time;
only the data from the 118 permanent
plots measured on both occasions were
used.

Syy = I(v=9)2/(n-1) = 5536998459

= estimate of the variance of v, based
on the 118 permanent plots of the
second phase subsample only.

Syy = L{u-u) (v-¥)/(n-1) = 5255342828

= estimate of the covariance of uy and
v
h

Sgu = X (u-8)2/(n-1) = 5254525850

= estimate of the variance of uy

€ = 8,y/Syy = 94913207
= estimate of the regression coefficient
of the linear regression of u on v

2 _ 2 =
r® = Siv/SyySuy = 94927965
= square of the estimate of the linear
correlation coefficient of u and v, and

= (n-1) S, (1-r?)/(n-2) = 268808928
= estimate of the (conditional) vari-
ance of u about the least squares

regression line of u on v

Suu|v

We can now calculate the double sampling
with (linear) regression estimator of W, the
mean 1964 biomass per acre when (1) the auxiliary
variable is the biomass per acre v at the first
measurement time in 1960, and (2) the erxror in
the biomass regression function is ignored.

Fp = 0 = c(3-9%)

= 119360.09 - (.94913207) (-97.453529)
119360.09 + 92.496270 = 119452.59
double sampling with regression esti-
mate of uz, the average biomass per
acre at the second, 1964 measurement
time

n*-n) o 1, (§-9%)2 + Suu
n* ““lV n (n-1)s,, n*

= (.49787234) (268808928) (.0084745909)
+ 22359684 ‘

23493860

estimate of the variance of ir

SFx¥r

Js§r§r V23493860 = 4847.0466

estimate of the standard error of §r
2

T4 ——
Y _t,Syryr

and using t

(119453 + 9694) pounds

95 percent confidence limits
of U,

It may be interesting to see the approxima-—
tion given by various shortcut formulae.
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(1) Although n* is not large with respect
to n, and the value of the correction factor
(n*-n)/n* = 117/235 is approximately equal to .5,
we shall use the corresponding variance formula
and obtain

1 (F-T*)2
Sc = %8 =
Yr¥r uulv (n (n-1)s

The 95 percent confidence limits become

s
)+ ZUY . 24637730
n*

(119453 & 9927) pounds

As the reader can verify, the variance is over-
estimated by

(100) (24637730 - 23493860)
23493860

while the 95 percent bound on the error of y, is
overestimated by

= 4,87 percent

(100) (9927 - 9694)/(9694) = 2.40 percent
This seems to be an acceptable approximation.

(2) The value of n = 118 is sufficiently
large and the approximation given by the formula

- - n*_n
b (T5) Sulv/n * Suw/™*
2
= Suulv/n +r Suu/n* = 23503635

is excellent; the variance of ¥y is overestimated
now by only .04 percent and the 95 percent confi-
dence limits remain practically the same

(119453 9696) pounds

(3) Using the formula where (n*-n)/n* = 1,
1/n* = 0 and (G-Tr*)z/(n-l)svv = 0, we have

s§r§r = suulv/n = 22780417

and the 95 percent confidence limits of
(119453 + 9546) pounds
practically the same thing as in (2) above.

Procedure 2: To simplify notation, we shall
use s, Sy, and 84 to denote the variables of the
second measurement only; the corresponding vari-
ables of the first measurement are only needed to
calculate the auxiliary variable v.

By this procedure, the estimate of the aver-
age biomass per acre uz, at -the second, 1964
measurement time is defined as

w = [b]'[z]
where
z; = §1 - ¢, (V=V*)
= double sampling with regression estima-
tor of the population mean "number of
trees per acre," say¥_, at the sec-
ond, 1964 measurement time

zZy = 83 = cp (V-9
= double sampling with regression estima-
tor of the population mean "sum of tree
diameters per acre," say Hs , at the
second, 1964 measurement tiae

84

23 = By - ey (F-5%)
= double sampling with regression esti-
mator of the population mean "sum of
squared tree diameters per acre,” say
p$ , at the second, 1964 measurement
time

To calculate Zyr 29 and zy, we need the
following statistics. For I meaning summation
over plots h = 118, 119, ..., 235, and using the
individual plot values 8y, Sy, 83 (of the second
measurement) and v (of the first measurement) as
listed by Cunia (19864, Tables 2, 8) we calculate
the following statistics

Sg.g, = I(81-5;)%/(n-1) = 24039.555
11 _ estimate of the variance of sq

Sg.5, = I{87-81) (8,-8,)/(n-1) = 123557.78
1%2 estimate of the covariance of sq and
82
s = I(s,-5,) (s -85)/(n-1) = 635935.23
= estimate of the covariance of 5 and
83
s = I(s,~5,)%/(n-1) = 718316.31

= estimate of the variance of s2

=I(s -§2)(s —33)/(n-1) = 4802637.7

= estimate of the covariance of 8, and
83

= I (s,~8;)%/(n-1) = 47000205

= estimate of the variance of S3

S, = Xv-¥)2/(n-1) = 55369985
= estimate of the variance of v

0
L}

s -§l)(v-6)/(n-1) = 4357434.1
= estimate of the covariance of s and
v

S = I(s -Ez)(v-G)/(n-l) = 41121209
= estimate of the covariance of 85 and
v

S = I(s -§3)(V-G)/(n-1) = 484098884
= estimate of the covariance of Sq and
v

€y = 8¢ v/svv = .00078§96683 )
= eslimate of the linear regression
coefficient of s, on v

cy = Sg v/svv = .00742?6246
= esglmate of the linear regression
coefficient of s, on v

€y = Sg v/Svv = .08742?839 ]
= eséimate of the linear regression coef~-
ficient of sy on v

This yields immediately the values

2y = 266.01695
- (.00078696683) (105851.11 - 105948.56)
= 266.01695 + .076692694 = 266.09364
= double sampling with regression esti-
mate of pg , the mean "number of trees
per acre” At the second, 1964 measure-
ment time



z, = 1638.6805
- (.0074266246) (105851.11 - 105948.56)
= 1638.6805 + .72375078 = 1639.4043
= double sampling with regression esti~-
mate of “s , the mean "sum of tree
diameters Ber acre" at the second, 1964
measurement time
and
z3 = 12320.176
- (.087429839) (105851.11 - 105948.56)
= 12320.176 + 8.5203463 = 12328.696
= double sampling with regression esti-
mate of Ug the mean "sum of squared
diameters Ber acre" at the second, 1964

measurement - time

The variances and covariances of Zyr 2y, and Zq
can now be estimated by the formulae

S
s _ [n*-n 1 (G-9%)2 + 5i84
Z2i25 n* SiSj'v n (n-1)s,,, n*

for 1,] =1, 2, 3

where, for I meaning summation over plots h =
118, 119, ..., 235,

ssisjlv = Hsi—(Ei—ciG)-civ)(sj—(Ej-ch)—cjv)/(n—z)

(n—l)Ssisj(l—rirj/rij)/(n—z)

Ty = Sgyv/V55;s;5vv

estimate of the linear correlation coeffi-

cient of sy and v

and
rij = sSiSj/V SsisiSSij
= estimate of the linear correlation coeffi-
cient of s, and s.
1 J
Obviously, for any i =1, 2, 3, we have r,. = 1

11

Doing the necessary algebraic calculations
we find first

Sslsllv = 20788.075 Sslszlv = 91982.936
551$3|V = 257163.45 55252|v = 416484.22
552s3lv = 1217825.8 and Ss3s3|v = 4715823.6

Then, we calculate the covariances of z; and z.
and arrange them in the following covariance
matrix

102.29583 525.77714 2706.1055
[Szz] =1 525.77714 3056.6621 20436.747
2706.1055 20436.747 200000.84

Consequently,

w = [b]'[z] = 119452.59
= double sampling with regression estimate
of Uz, the average biomass per acre at
the second, 1964 measurement time

3]
I

ww = [P1'[S,,1[b] + [2]'[Sy, (2]
22359683 + 11407373 = 33767056
estimate of the variance of w

\/sww = v33767056 = 5810.9427

= estimate of the standard error of w

and using a t-value of 2,

w + t|/sww = (119453 + 11622) pounds
95 percent confidence limits of P

]

As the reader can verify, ignoring the ef-
fect of the error of biomass tables, results in
an underestimation of the variance of w by

(100) (33767056-23493860) / (33767056)=30.42 percent
The standard error of w is underestimated by
(100) (5810.9427-4847.0466) /(5810.9427)=16.59 percent

While the estimate of Hy is exactly the same
by the two procedures, the estimate of the vari-
ance of w by procedure 1 is slightly higher than
the value of the first component of the variance
as estimated by the procedure 2. The difference
is small, only

(100) (23493860-22359683) /(23493860)=4.83 percent

Procedure 3: It is felt that the regression
estimators of the mean of s,, s, and 84 (of the
second measurement time) of Procedure 2 above may
be improved if the auxiliary variable v is re-
placed by the first measurement values of the
variables 1, S, and s;. Recall that v is a
linear combination of the first measurement val-
ues of Sys S, and s3. To simplify notation we
shall use

(1) Sy, S, and Sq to denote the variables
of the second measurement and

(2) vy =8 of the first measurement
vy = s, of the first measurement, and
Vy = 83 of the first measurement.

The values v., v, and vy are to be found in
Cunia (1986d, Tables 1, 2) and the values $11 Sy
and Sq in Cunia (1986d, Table 2). Using the
first measurement values V1=8y, V,=8 and v,=s
of the 235 plots that were measured in 1964 we
find

Vl* 225.61702
(Vv*] = 52* = 11389.0374
53* 10810.647

= vector of the average values of the
variables Vyr v, and vy as calculated
from the first measurement data of
the entire sample of 235 plots

Using now the first and the second measurement
values of the subsample of 118 permanent plots
measured in 1960 and 1964 (variables v,, Vs and
Vs for the first, and variables s,, Sq and S5 for
the second measurement) we find the following
statistics

Vl 236.35593

vl

62 =| 1439.3161

V3 10898.164
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= vector of the sample averages of Vir
Vo and Vs of the 118 permanent plots

21272.932 110452.37 602351.30
[Syy] =] 110452.37 659011.32 4724541.6
602351.30 4724541.6 48604076
= estimate of the covariance matrix of
Vir Vg and v, as calculated from the
data of the 118 permanent plots
s 266.01695
[s] ={ s = | 1638.6805
§3 12320.176
= vector of the sample averages of Syr
Sy and sS4 of the 118 permanent plots
24039.555 123557.78 635935.23
[Sss]s 123557.78 718316.31  4802637.7
635935.23 4802637.7 47000205
= estimate of the covariance matrix of
Sq1 8, and sy as calculated from the
data of the 118 permanent plots
21987.926 109292.82 542577.80
[Ssv] =| 118295.97 670898.34 4443890.0
659678.73 4832348.2 46552860

= estimate of the covariance matrix of
Sy, 8 and 54 with v,, v, and v, as
calculated from the data of the 118
permanent plots

Note that the first row of [ssv] contains the
covariances of s, with v,, Var Vi the second
column of [ssv] contains the covariances of Vo
with Syr Sy and Sqs etc.

Using the above values we calculate

€11 12 €13
- - -1
[Cl =] ey ©cap ©Co3| = [Syyl T[Sgyl!
€31 €32 ©33
[ 1.7649801 3.5411706 9.0746818
=| -.17546979 .27603189 -.81992294
.0063462595 .020713020 92503505

= estimate of the matrix of regression
coefficients of sy (cll' Co1r c31), sg
2+ ©32) and s3 (cy3, Cp3r C33

as the gependent variables and Vie Vo

and vy as the independent variables.

Note that the regression function of sy on vl, vy
and vy can be written as

8] = 8; + c11(Vy=Vy) + cy1 (Vy=Vy) + €3y (V3-V3)

= 32.247354 + 1.7649801 v, - .17546979 v,
+ .0063462595 v,

with similar expressions for the regression func-
tions of S5 and S3.

We can now calculate the vector of statis-
tics [z] by the formula
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zy _ _ 255.32996
[z] = z,] = [s] - [Cl'[v-v*] = ]1584.9609
Zq 12182.992

To estimate the covariance matrix of [z] we
need to calculate first the matrix [R] of the
residuals of Sy S and s, from their own regres-
sions. The first column of [R] eomtains the 118
residuals (sl—sy defined as

81781 = (5178)) - €43 (v3-Vy)=Cp; (VyVp) —€35 (v3=V3)

Defined by similar formulae, the two sets of 118
residuals (s —sQ and (s -sg are contained in
the second and third column respectively of [R].
Dividing the product [R]'[R] by the number (n-4)
= 114 degrees of freedom yields the covariance
matrix

[s ] = [R]'[R]/114

ss|v
990.96189 4400.9063 24744.489
=] 4400.9063 22757.914 172903.71
24744.489 172903.71 1963296.7

= estimate of the conditional co-
variance matrix of the variables
Sy 8y and S5 for given v,, v, and
V3 calculated from the data of
the 118 plots of the second phase
subsample.

This yields the statistic

= [p*-n ) {155 “lig_s 1
[s,,] = ( n*) ([v vt [s,,] T V*»[Sss‘v] oSl
108.87373  554.98988  2870.3549
=|554.98988 3207.7263  21584.446
2870.3549  21584.446  213032.73

estimate of the covariance

The point and interval estimates of the
average biomass per acre U, at the second, 1964
measurement time follows immediately as

w = [b]'[z] = 118900.99 = double sampling
with (multiple linear) regression

estimate of u2

n
L

e = [B170S,,1(0b] + [z]'[s, 1[z2]
23907253 + 11798043 = 35705297
estimate of the variance of w

V Su

/35705297 = 5975.3909
estimate of the standard error of w

and using a t-value of 2,
w t ZJSww (118901 + 11951) pounds
95 percent confidence limits of Uz

The reader may be surprised by the fact that
the error of the estimate by Procedure 2 (using
simple linear regression) is smaller than the
error by Procedure 3 (that uses multiple linear
regression). The standard error of w is 5811 by
Procedure 2 and 5975 by Procedure 3, an increase
of some 2.8 percent. This may be due to sampling
error. A more credible reason is, however, that
the multiple linear regression of s; on vy, Vv,



and v, may not necessarily be better than the
simple linear regression of s; on their linear
combination v = b,v, + b2v2 + b3v3. The

error of the multiple linear regression has four
sources (the four regression coefficients) com-
pared to the error of the simple linear regres-
sion that has only two (the two regression coef~-
ficients). Consequently, whenever the multiple
linear regression is not significantly better, it
may well be possible for the corresponding double
sampling estimator to be less precise than the
double sampling with simple linear regression
estimator.

Acknowledgements

This paper is based on research funded by
the Research Foundation of the State University
of New York, the United States Department of
Agriculture Forest Service and the Department of
Energy, Grant No. 23-524.

Literature Cited

Cochran, W. G. Sampling Techniques, 3rd Ed.
John Wiley and Sons, New York, NY; 1977.

Cunia, T. Some theory on the reliability of
volume estimates in a forest inventory sample.
Forest Science, 11:115-128; 1965.

Cunia, T. Error of forest inventory estimates:
its main components. 1In: Proceedings of the
workshop on "Tree biomass regression functions
and their contribution to the error of forest
inventory estimates”, May 26-30, 1986, SUNY
College of Environmental Science and Forestry,
Syracuse, NY; 1986a.

Cunia, T. Construction of tree biomass tables by
linear regression techniques. 1In: Proceedings
of the workshop on "Tree biomass regression
functions and their contribution to the error
of forest inventory estimates", May 26-30,
1986, SUNY College of Environmental Science
and Forestry, Syracuse, NY; 1986b.

Cunia, T. Use of dummy variables techniques in
the estimation of biomass regressions. 1In:
Proceedings of the workshop on "Tree biomass
regression functions and their contribution to
the error of forest inventory estimates”, May
26-30, 1986, SUNY College of Environmental
Science and Forestry, Syracuse, NY; 1986c.

Cunia, T. On the error of biomass estimates in
forest inventories: Part 2: the error compo-
nent from sample plots. Faculty of Forestry
Miscel laneous Publication Number 9 (86-001),
SUNY College of Environmental Science and
Forestry, Syracuse, NY; 1986d.

87



ON THE ERROR OF FOREST INVENTORY ESTIMATES:
CONTINUOUS FOREST INVENTORY WITHOUT SPR(l)
Tiberius Cunia

Professor of Statistics and Operations Research

SUNY College of Environmental Science and Forestry
Syracuse, NY, 13210

The error of the biomass estimates in Con-
tinuous Forest Inventory Systems has two main
error components; one due to sample plots and one
due to biomass tables or regressions. The common

procedures by which the estimates are calculated
take into account only the first component; the
second component is simply ignored. An approach
is shown that introduces the error of the biomass
regressions into the total error of the estimates
of average biomass per tree, average biomass per
acre and growth components such as average net
change from one to the next occasion, average
mortality or average ingrowth biomass per acre.

Introduction

The sampling design of a forest inventory
system consists generally of a random selection
of sample plots (or Bitterlich relascope points)
where the trees are measured for diameter and
where the biomass of these sample trees is

estimated by biomass tables or regression functions.

When inferences about the error of the forest
biomass estimates are made, however, only the
error from the sample plots (or points) is taken
into account; the error of the biomass tables

or regressions is simply ignored.

Cunia (1986a) has proposed an approach to
combine the error of the biomass regressions with
that of the sample plots (or points). This
approach requires that the estimators. be of the
form

w = [b]l'[z] = Db +b.z 4+ .. +Dbz

171 7 253, m”m
where [b] is the estimate of the vector of co-
efficients of the biomass regression

y = [bl'[x] = bix) +bx, + ...+ b x
Y is the tree biomass and [z] is the vector of
statistics calculated from the sample plot data.
We implicitly assume here that the statistics z
are defined so that the product of the expected
value of the vector [z}, say [U,] with the ex-
pected value of the vector [b], say [B] is equal

(l)Paper based on a set of lecture notes
"On the error of biomass estimates in forest
inventory: Part 2: the error component from
sample plots" Faculty of Forestry Miscellaneous
Publication Number 9 (ESF 86-001). SUNY College

of Environmental Science and Forestry, Syracuse, NY.

to the parameter of interest M, say M = [B1'[u,].
The variance of w can be estimated by the approxi-
mate formula

S = [b]'[Szz][b] + [21'[Sbb][Z]

where [S__] and [S.,] are the estimates of the
covariance matrices of [z] and [bl] respectively.
Note that the first part of Sy, may be viewed as
the error component due to sample plots and the
second part may be viewed as the error component
due to biomass regressions.

The definition of [z] depends on the (i)
specific parameter U one wishes to estimate, (ii)
specific sampling design by which the sample
plots are selected (including the type of sample
units used) and (iii) specific independent vari-
ables X3, X5, ..., X, used in the biomass regres-
sion function. In the Cunia (1986a) paper it
is assumed that (i) the parameter to estimate is
the average biomass per acre ¥ , (ii) the sample
plots (or points) are selected by simple random
sampling and (iii) the definition of the statistics
z is based on the plot (or point) variables S1,
$2, «v+ 4 Sy defined as the averages of the re-
gression variables X1+ X3, ..., X expressed on
a "per acre" basis.

For example, let us assume that X = 1,
X9 = d = tree diameter and Xy = az. Then, for
L meaning summation over the trees of a given
plot, we have the plot variables

sy = (Ix,)/(plot area)

= numéer of trees per acre
sy = (Ix3)/(plot area)

= sum of tree diameters per acre, and
s3 = (Ix3)/(plot area)

sum of squared diameters per acre

If instead of a plot we have a relascope point
sample, the variables 53, Sp and s3 are similarly
defined; only the way they are calculated is
different. For more details on this, the reader
is referred to Cunia (1986a). If, in addition,
the plots are selected by simple random sampling
and the parameter of interest is the average bio-
mass per acre U, the variables zy, 23 and zy are
defined as the sample averages 81, §; and 83 re~
spectively. For this case, the covariance matrix
[Szz] of [z] is easy to calculate; its element ij
is simply the sample covariance of §; and §j, that
is

S

Zizj = Ssisj/n

Z(si - §i)(sj - §j)/n(n-l)

where n is the number of sample plots and I is taken

over the n sample plots.

It is the objective of the present paper to
extend the application of this approach to biomass
estimates calculated from Continuous Forest Inven-
tory (CFI) data of two successive measurements.
The Sampling with Partial Replacement (SPR) is not
being used; the case of CFI with SPR is considered
in a companion paper by Cunia (1986b). We shall
consider estimates of the current average biomass
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per unit area (on the first and second measure-
ment occasion), estimate of the average biomass
per tree and estimates of growth components per
unit area such as mortality, ingrowth, growth on
survivor trees and net changes in biomass between
the two measurements.  As the difference between
working with saimple plots or Bitterlich sample
points rests with the way the variables Syr Sor
«eer Sp are calculated, we shall implicitly
assume that whatever we say for sample plots
apply equally well to sample points.

The CFI sample units are generally selected
by systematic sampling but we shall assume that
the bias due to the application of the simple
random sampling formulae is negligibly small., It
can be shown that this bias affects only the
variance component associated with the sample
plots.  We shall also assume that the biomass
tables are constructed from linear regression
functions § = [b]'[x] for which the estimates of
the covariance matrices [sbb] are given. For
ways to calculate [b] and [Sp,] the reader is
referred to Cunia (1986c¢,d) among others, The
non-statistical error of using, in a given forest
area, biomass tables constructed for another area
is not being considered here.

We shall specifically define the vectors [z]
corresponding to each CFI estimator and show how
to estimate their covariance matrices. Once [z]
and [Szz] are defined, the estimators w and Sy,
can be calculated by the formulae given above.
Finally, we shall illustrate the application of
these formulae to a simple numerical example.

In what follows we shall use the notation

Fal

Ynk = Pi¥nk1 * P2¥nk2 * --- * PoXhkm

[b]'[xh 1 = regression estimate of the
true bu% unknown biomass Yyk of the
k-th tree of the h-th plot

and, for the case of sample plots of fixed area a,

A
V.

A [a]
h (Eyhk)/a = I(y, /a)

regression estimate of the true but un~
known biomass per acre.vh of plot h,

where I is taken over the trees of plot h.

When the sample unit is a Bitterlich sample

point, the definition of Gh becomes

fl

~ la)
Vi T I/
(b.s.. +b.S.. + ... + b

15n1 7 P2%h2 n Shm’

.where apk is the plot area corresponding to the
hk-th tree, and

S ) fori=1,2,..., m

ni = Z ki’ nk

is the "sum of xy values per unit area" at the
sample point h.

For convenience, we may prefer using some=
times the more general notation

90

Y = Llyp/an)

for both plots of fixed area (where a = a for
all trees) and Bitterlich sample poingk. For
more details on these variables the reader is sent
to Cunia (1986a).

Because we shall be dealing with variables
s measured on two occasions, it may be convenient
to use a superscript 1 for the first and 2 for the
second measurement time. For example, s% will de-
note variable s, measured on the first occasion,
while sf will denote variable s1 measured on the
second occasion, and not the square of sy. We
realize that, sometimes, this may lead to confusion.
However, we shall remind the reader, whenever we
feel it necessary, whether 2 is a superscript or
exponent. Of course, when the superscript is not
necessary, we shall simplify the notation by
dropping it.

Biomass Estimators

We shall assume that (i) the CFI sample con~
sists of n plots selected by simple random sampling,
(ii) the biomass table is constructed from a linear
regression function for which [b] and [Spp] are
given, and (iii) the data of the sample plots, the
variables s, are statistically independent of the
biomass tables.

Estimator of the Average Biomass per Unit Area ul
at the First Measurement Time

As the discussion is limited to the first
measurement data, superscript 1 will be dropped
from the notation of sy but used only in the de~
finition of [z] and its covariance matrix [S,,].
For notational convenience we shall drop the sub-
script h of the variables sp; and let I stand for
summation over the values of the plot h = 1,2,...,n.

. The common procedure is to define the estimator
of U, as

"

w) = I¥/n = (byIs) + byIsy + ... + bIsy)/n

=b b5 + .... +b 8 = [b]'[s]
mm

151 * Po%;
If we define now

z} =5, =vys,/nfori=1,2, ...., m
i i i

we can define [21] = [§] and, thus,

w = [b]' (2]

1]

estimator of My

Because [b] and [zl] are statistically independent
the variance of w. can be estimated by the approx-

imate formula 1
11 1 1
Sww = [b]’[Szz][b] + [z ]'[Sbb][Z 1
11
where

[Sll] = estimator of the covariance matrix of
[zl1.



It remains now to calculate [S;;]. For this
we use the fact that, for i,j =1, 2, ..., m,

1 S = I(s -8 s.-8.)/(n-1)
(1) s.s. ( i i)( 3755 /
17
= estimator of the covariance of s, and sj
i
and
(2) 5s.5, ss.S./n = Sz zZ
i3 i’j i3
If
[Sll] = estimator of the covariance matrix
ss of s, sz,..., sm
as calculateé frém the first measurement
values,

we can verify immediately that

1

11, 11
[SZZ] = [Sss]/n

Estimator of the Average Biomass per Unit Area

U2 at the Second Measurement Time

The procedure is the same as in the subsection
above with the second, rather than the first

measurement values sl, 52, veay sm being used
If
[z2] = [E] = vector of the average values of
S.s Sy eenus sm as measured on the second
olcaslon,
and
22 22 . ;
[s_. 1 = [s771/n = estimator of the covariance
2z ss
, 2
matrix of [z ]
where

2 . .
[52 1 = estimator of the covariance matrix
ss

of Sy, s2, <e-r Sp as calculated from the
second measurement data,

we can verify immediately that
2
[b]'[z"] =

wW. =

2 estimator of u2

and

) 122 2., 2
[bl] [Szz] [b] + [27] [Sbb][z ]

n
|

estimator of the variance of W,
Note that in the formulae above, 2 is a

superscript not an exponent.

Estimator of the Net Change ug = (uz—ul) in Bio-
mass per Unit Area between the Two Measurements

The estimator of the net change can be sim-
ply defined as

2
I6] ' [2°]~Ib] ' 2] = [b] ' [29)
where
g 2 1 .
[27] = [27]1~[27] = difference between the
sample averages of [s] of the first and

second measurement

Because the i~th element of [zg], i=1, 2,

“veey

m, can be written as
-2 =1 _ 2 1 -9 _ =9
8§ §; Z(shi shi)/n = Eshi/n = si

it suffices to work with the individual cluster
values sgi, define their averages sg and co-

variances S39g,
[89] and covariance matrix [Sgg].

Then

1291 = 1891 ana 15991 = (599
z2z 8s

and

Wg = [b]'[279] = estimator of ug, and

_ ' 199 914 g
swgwg = [bl'Is_1[b] + [z°] [s,,1127]

Estimators of Growth Components: W = Average
Biomass Growth per Unit Area on Sufvivor Trees,
Up = Average Mortality Biomass per Unit Area and
Ui = Average Ingrowth Biomass per Unit Area

When “g was calculated, all trees measured
on either occasion were used. If instead of all
trees one uses only the survivor trees, that is,
the trees that were measured on the first and
were alive and measured also on the second oc-
casion, one can define the estimator wg of Ug.
More specifically, we define the new variables
of plot h as

s 2 1
= 1 ~
s, . ((xhk_ X

4 L3 -
hi 17 Fhki) P for i

where I is taken only over the trees k of plot h

that were alive and measured on both occasions.

Note that x2 denotes the value of X as measured

on the second occasion and 295 the square of x.

For the case of the relascope sample points, the
"per unit area" converting factor ap, is that of
the first measurement. We further define

arranged as the vector of averages

1, 2, v..m

125 = [8%] = vector of sample averages §i of
[S:z] = sample covariance matrix of the new
plot variables sﬁi
and
[S:E] = [S::]/n = estimator of the covariance

matrix of [zs].

This yields immediately
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w, o= [b]'[zs] = estimator of us
and

_ ' 1SS s ., s
Sw v = [b] [Szz][b] + [Zs] [Sbb][z ]
s

If in Wy, the estimator of the average bio-
mass per unit area of the first measurement we
use only the mortality trees (the trees that
were measured on the first occasion but not
measured on the second because they were dead,
not harvested) we obtain the estimator W of M.
More specifically, the new plot variables are

m

_ 1 s o
Shi = Z(xhki/ahk) for i 1, 2, ..., m

where I is taken only over the mortality trees k

of plot h. Using these new plot variables we
further define
m M =m
[z] = [§] = vector of sample averages 8
mmn . s m
[Sss = sample covariance matrix of Shi
[SZS] = ]/n = estlmator of the covariance

magrlx of [2M

w_ = [b]'[z™] = estimator of M, and
m
s = ]IS 1b] + (210 0s 112"
W W

m m

estimator of the variance of wm

Similarly, if in w,, the estimator of the
average biomass per unit aresz at the second
occasion, we use only the ingrowth trees (the
trees that were too small to be measured on the
first but became of merchantable size on the
second occasion) we obtain an estimator w of
H.. More specifically, we define the new plot
variables
si Iy 2 /a, . ) for subscript i =1, 2

*nki’ 2hk SUoSCEIbE !
cee, M %superscrlpt 1 means ingrowth) where I ‘is
now taken only over the ingrowth trees k of plot
h. PFor the case of relascope sample points, the
Eér "unit area" factor ay, is that of the second
measurement time. Using the new plot variables
we define the usual statistics

. . i
[z°] = [§'] = vector of sample averages §;
[Sii] = sample covariance matrix of si

ss i3 hi

ii 1i
[szz] = 1/n = estlmator of the covariance

matrlx of [z 1

w, = [b]'[zl] = estimator of ui, and

S
W, W,
ii

Ceodi i, i
bl [Szz][b] + [27] [Sbb][z ]

estimator of the variance of Wy

We hope that use of superscripts s, m and i
to denote survivor, mortality and ingrowth trees
will not be confused with the notation s for plot
variables, m for the number of variables x or s,
and i for subscript of variables X, or s,.

Note that the estimators ws, wm and wi are,
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most probably biased. This is because the biomass
regression function is usually defined for the entire
set of all population trees. When applied to a
class of trees, it is not uncommon for the biomass
of the trees in this class to fall, on the average,
below or above the overall regression function.

For example, it is reasonable to expect the sur-
vivor trees to be the tallest and most vigorous
trees of highest growth (the dominant or codominant
trees) and the mortality trees to be the shortest,
least vigorous trees (intermediate or suppressed).
Thus, it is reasonable to assume that w_ is an
underestimate and Wy, an overestimate. ut there

is also a source of underestimation of Wi the
growth on mortality trees between their measurement
on the first occasion and the time of their death
is being ignored.

It can be shown that, in the absence of har-~
vesting, we must have (for plot, not point sampling)

These relationships can be used as a check on the
calculations performed.

Estimator of the Average Biomass per Tree ut at a
Given Occasion

Because the estimation of the average biomass
per tree follows the same procedure for either

measurement, we shall consider the general case
with no need of superscript 1 or 2.

While the plots (clusters of trees) are
selected by simple random sampling, the selection
of the trees themselves is made by cluster random
sampling. To estimate ¥, we must therefore use
the cluster sampling formulae as found in standard
texts on sampling techniques as, for example, that
of Cochran (1977). Using our notation, these
formulae can be written as follows

W, = ZGh/Eth = estimator of ur and
Sy, = DSy T S, + WIS )/ By )2
= n(Zvi - 2w thth + w Et )/(n 1)(Zt )
= estimator of the variance of LA
where Z is taken over all plots h =1, 2, ..., n and

t, is used to denote the number of trees per unit
a¥ea of plot h. Do not confuse subscript t of w
that stands for"biomass per tree" (and may also Be
used as superscript) and variable t that denotes
the number of trees per unit area(which may also
be used as a subscript).

In this formula we have ignored the effect of
the finite population correction factor; the popu-
lation size is ordinarily much larger than the
sample size. We have also ignored the effect of
the error of the biomass tables. To take this
error into account we must express first the plot
biomass per unit area as

~ _ ,
vy blshl + b2$h2 + ...+ bmshm [b] [sh]



Algebraic manipulation of the formula of wy yields
the formula

t
= + LT = '
w, = Dbz, + Dbz, bz = [bl'[z7]

where

z, = Zsh./Zt = cluster sampling estimator of the
+ expected value of the tree
variable %, -

The variance of z, is estimated by the formula

2 2
Sz.Z. B n(SS‘s * Zistt)/(Zth)

- 22,8
R i’s
ii ii

.t
i

2 2.2 2
= n(Zshi - 2ziZs it + ziZth )/(n~l)(2th)

hih

and the covariance of z, and zj by the formula

=n - z,8 -.z,5
SZ_Z (Ss s zl s.t 9 sit

2
+
. s zizjstt)/(Zth)
i3j i] J

=n(ls_.,s . - z.Is
1

¥
ni®nj 25085t

.t
hl h j hih

Using the formulae above, we calculate

t . . . t
[SZE] = estimator of the covariance matrix of [z ]

This yields immediately

t :
w, = [b]'{z"] = estimator of the average
biomass per tree

and

n
]

) ot t t
[b}] [Szz][b] + [z ][Sbb][z ]

estimator of the variance of W

It may be interesting to see what happens
when zi = 1. This may be the case when the sample
unit is a plot of fixed area "a"
and

Sy =L (1/a) = number of trees per unit area =
where L is taken over all trees of a given plot h.
Then,

zl= Zshl/Zth =1

and it can be easily shown that, for all i =1, 2,

[llustrative Numerical Example

To see how to apply the formulae of the pre~«
vious section, we shall work with data from 118
permanent, one-tenth acre sample plots selected
at random from the Maniwaki region of Québec-

2 2
+ ziszth)/(n—lXZth)

Canada. These plots were measured on two occasions
in 1960 and 1964. To estimate the biomass of
sample trees and plots, we shall use a tree biomass
regression function of the parabolic form

y = blxl + b2x2 + b3x3 = [b]"'[x]
where x. = 1, x_ = (tree diameter) and x_ = (squared
tree diameter).” This regression functioh was cal~
culated from a random sample of 353 trees by
Cunia (1986c) and the following statistics are
given.

[ 5.1818118

[b] -25.653078 and

12.988357
" 8715.8855  -2222,4882 128,69992
[Sbb] = 1-2222.4882 581.99570 -34,776995
128.69992  ~34,776995 2.1744582

The biomass is given in pounds of above ground
green weight and the tree diameter is measured in
inches.

The plot variables corresponding to this re-
gression function are

s number of trees/acre

i
s, = sum of tree diameters/acre, and
sy = sum of squared tree diameters/acre

Sometimes, a superscript 1 for the first and 2 for
the second measurement may be added. It should
not be confused with exponents 1 or 2,

Estimation of u

v Wy and ug = (u2 )

1 M
The values of the individual plot variables
sl, s, and s, as measured in 1960 and 1964 on the
n’= 1%8 permanent plots of our sample are given
in Cunia (1986e), and the values of their means,

variances and covariances are shown below.

[236.35593
51 1 =[1439.3161| = sample mean of [s] of
10898.164 the first measurement
[266.01695
(22 1 =|1638,6805| = sample mean of [s] of
12320.176 the second measurement
11 [21272.932 110452.,37 602351.30
[877) =]1110452.37 659011,32 4724541.6
°%  |e02351.30 4724541.6 48604076
= gample covariance matrix of [s] of the
first measurement
22 24039.555 123557.78 635935.23
[s s] =1123557.78 718316.31 4802637.7
S 635935.23 4802637.7 47000205

= gample covariance matrix of [s] of
the second measurement
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12 21987.926
[Sss] = 1109292.82
542577.80

118295.97
670898.34
4443890.0

659678.73
4832348.2
46552860

sample covariance matrix of [s] of

the first with [s] of the second

measurement

Note that 1512] is not symmetrical and that the
covariance terms associated with s, of the first
measurement are found in row 1, while the co-
variance terms associated with s1 of the second

measurement are found in col

umn 1,

These statistics are sufficient to estimate

By, M, and net change H

and their variances.

Using the formulae of tge previous section, the

reader can verify that

1 1 236.35593
[z”1 = [§ 71 = |1439.3161] ,
10898.164
) ) 266.01695
[27] = [E"] = | 1638.6805
12320.176
29.661017
g 2 1
[z7] = [27] - [27] = 199.36441
1422.0114
1 1 180.27909 936.03701 5104.6720
[ST7] = [{S~"1/n = |936.03701 5584.8417 40038.488
2z ss 5104.6720 40038.488 411898.95
2 92 203.72504  1047.0999 5389.2817
(s““1 = [s°“1/n = | 1047.0999 6087.4263 40700.319
zz ss 5389.2817 40700.319 398306.82

and

99, _ i, - o120 12 22
is 1 = ([sss] [s 1 - Is 1"+ ISSS]) /n

11.327426 54.418338 305.33909
= 154.418338 301.10981 2126.6194
305.33909 2126.6194 21174.239

This yields immediately the estimates
w, = [b]'[zl] = 105851.11 pounds

= estimate of the mean biomass per acre
at the first, 1960 measurement

w, = [b]'[22] = 119360.09 pounds

= egtimate of the mean biomass per acre
at the sécond, 1964 measurement

wy = b]'[27) = 13508.98 pounds = w, =y

= estimate of the mean change in biomass
per acre between the two measurements
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, R £ 1., 1
s = [b] [szz][b] + [z7] [Sbb][z ]

11
= 46923716 + 10710584 = 57634300
= estimate of the variance of wl
22 2 2
= L} L
Sw2w2 {b] [Szz][b] + [z] [Sbb][z 1
= 44529880 + 11393835 = 55923716
= estimate of the variance of v,
and
- 1 1e99 [ I g
ugv, (6] ' ()91 1b] + [271'(s 112"}

= 2379986 + 50666 = 2430652

estimate of the variance of wg

The wariance of each estimator above has
two main components, the first associated with the

variation between sample plots, the second associated

with the biomass table.

We shall now show that the common procedure
consisting of the calculation of (i) the indivi-
dual plot biomass per acre %h' (ii) average bio-
mass per acre ¥ and (iii) the variance of ¥ as
the variance of individual plot values Gh divided
by n, yields the first variance component, Using
the individual plot biomass per acre as given by
Cunia (1986e), we find

~

v

h 12490431 for the first measurement

[}

14084491 for the second measurement
z(%h)2= 196995482800 for the first measurement
= 2295905587000 for the second measurement
and the sum of the cross products between the first
and the second measurement values Vy,» as equal to
2105734088000.
The reader can verify then that
s11 = 5536998459, 522 = 5254525850, 512 = 5255342828
vv vv v
w, = V of the first measurement
= 12490431/118 = 105851.11
w, = ¥ of the second measurement

= 14084491/118 = 119360.09

13508.98

£
]
£
1
£
]

wo W, = va/n = 5536998459/118 = 46923716

S = 8°“/n = 5254525850/118 = 44529880
w, W vV
22
and
s = (Sll - 2512 + 522)/118 = 2379986
w wg v v vV
g

Let us now see the percent of the total



error represented by the error of the biomass
regression function. When estimating ¥y and u
the percentages are 18.58 and 20.37. The per-
centage becomes negligibly small, about 2 percent
when estimating the net change Ug. It appears
that the effect of the error of the biomass re-
gression may be ignored when the net change is
estimated but the effect is sizable when the
current averages are estimated. In this last
case, it is also important to realize that we
have a large sample of trees (from which the
biomass regression function is estimated) and

a small sample of plots. For illustration pur-
poses let us consider a much more realistic
sample of 88 trees (one fourth of our sample of
353 trees) and a sample of 472 plots (four times
as many as our sample of 118 plots). Then, the
variance of w; is expected to be about

2

(46923716/4) + (4) (10710584)
= 11730929 + 42842336 = 54573265

and the percent of the total error due to the
biomass regression is now about 78,50, an ex~
tremely large value.

Estimation of Growth Components us, um and ui

To estimate the average biomass growth on
survivors and the biomass of the mortality and
ingrowth trees, one should go to the original
tree measurements and calculate the new plot
values of [s”], [sM)and [s!]. These new values
are given by Cunia (1986e) and not repeated here.
Using them, we calculate the following vectors
of averages and the covariance matrices

. 0 n 7.2033898
g% = 107.75] , 18 = |49.911017] ,
1346.0135 470.95899
N
1571 =[36.864407
141.52542
546.95690
s © 0 0 0
11 =] o 3371.6046 36266.937
* Lo 36266.937 437765.17
o, | 148.52238 1066.5183 11480.546
1s™1 =] 1066.5183 9533.2480 123761.82
ss 11480.546 123761.82 1840636.3
;i [1120.8533 4304.0120  16653.079
1s**1 =1 4304.0120 16595.353  64517.716
ss 16653.079 64517.716 252214.66

Using the relationships [z] = [5] and [szz]
= [SSS]/n, we find that

[b}'[z°] = 14718.385 pounds

w =
s
= estimate of the biomass growth per
acre on survivor trees
m
wm = [b]'[z ] = 4873.939 pounds

= estimate of the biomass per acre loss

due to mortality
w, = [b]'[z"] = 3664.5330 pounds

= estimate of the biomass per acre growth
due to ingrowth trees

- ' r oSS s, , s

S bl [Szz][b] + [z7] [Sbb][z ]
= 439839 + 608965 = 1048804
= estimate of the variance of ws

_ ) [ oI m m
S w = [b] [Szz] [b] + [z ]'[Sbb][z ]

= 1996418 + 24567 = 2020984

= estimate of the variance of W

- el i, i
S [b] [Szz][b] + [z7] [Sbb][z ]
= 98330 + 767722 = 866052
= estimate of the variance of wi
It can be verified that

W, =w, +w_+w, ~-w = 105851 + 14718 + 3665 -~ 4874
2 1 s i m

= 119360

wo=w_+w, - W= 14718 + 3665 - 4874 = 13509

The percent of the total error of the estimate
of mortality, due to the error of the biomass re-
gression function is negligible, about 1.22; this
may be due to the fact that the variation of mor-
tality from plot to plot is very large. On the
other hand the percent is very high for survivor
growth and ingrowth about 58.06 and 88.65 re-
spectively. 1In the first case the pairs of values
of the survivor trees are very highly correlated
and thus, their differences have a small variance,
and in the second case, the ingrowth trees are
small in size, they are all estimated from the
extreme side of the biomass regression function
where the error is extremely large.

Estimation of the Average Biomass per Tree He

We shall start with the calculation of the
average biomass per tree for the first measurement.
For notational convenience, the superscript 1, and
later 2, will not be shown, and subscript h will
be dropped. The set of original data has been
summarized as the following basic statistics.
Recall that vy = [b]l'[sy] is the biomass per acre
of plot h, and ty = Shy is the number of trees per
acre of plot h.

Iv = 12490431, It = Zsl = 27890, Zsz = 169839.3,
Is, = 1285983.399, S = 5536998459,

3 v
svt = 5100342,7, Stt = 21272,932 (=Ss s )
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The covariance matrix of [s] has already been
given as [Sé%] when W; was estimated and

S, ¢ S_ o 21272.932
: 51%1
S S
= t = =
(s_,1 s, 515, 110452.37
s
ss3t $,5, 602351.30

sample covariance vector of [s] and t.

Using matrix notation, the reader can verify that

z
sl 1
[z = s, //%t = | 6. 0896128
253 46.109122
and
tt . t,,. ..t t
= - - + L
[S n([S ] [z 1ls t] [sst][z 1'+[z71(z7)
)y. b2
0 0 0
= 0 .015573400 .29380459
0 .29380459 5.8076198
For example,
S z = {118) (4724541.6)- (6.0896128) (602351.30)
22%3 - (46.109122) (110452.37)

+ (6.0896128) (46.109122) (21272, 932))/(27890)
= .29380459

This yields immediately

w, = [b]'[z7] = 447.84622 pounds
= estimate of the average biomass per
tree at the first measurement
and
s, = I'Iscoiel + (2517 0s,, ) 125

tt
794.19269 + 191.72561 = 985.91831
estimate of the variance of wy

It can be easily verified that the first
component of the variance of W is that given
by the common procedure

nu

= - + Lt
SWtwt n(Svv 2WtSVt thtt)/( )

= (118)(5536998459—(2)(447.84622)(5100342.7)

+ (447.84622)2(21272.932)/(27890)2=794.19269

since

wt = Lv/Zt = 12490431/27890 = 447.84622
similarly, to estimate the average bio~

mass per tree at the second measurement
time we start with the basic statistics
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It = Zsl = 31390, 252 = 193364.3,
¥s., = 1453780.747, stt = 24039.555
22 s
SSS] as given before and
24039.555
[Sst] = | 123557.78
635935.23

Then the reader can verify that

N 1
[z'] = | 6.1600605 ,
46.313499
e 0 0 0
[szz] = [0 .012967567 .24205016
0 .24205016 4,7494072
w, = [b]'[zt] = 448.69355

= estimate of the average biomass
per tree at the second measurement

and

wn
1

tt t t
[bl'ls, 1Ib] + [271'[s 11271

648,44837 + 161,00944 = 809.45780

estimate of the variance of w

As a simple check of some of our calculations,
we find

= for the first measurement
= for the second measurement

I
£
i

W, (Zt)/n= 105851.11 =
= 119360.09 =

[
£
i

Extension to More than One Species

The formulae above can be easily extended to
more than one species. We start with the giant
size vector [B] of the regression coefficients
vectors [bll, [b2],..., [bP] of species 1, 2,..., D

respectiyvely, that is,

1
[B]' = [[b 1'Ip°1" .....16°1"]
and the covariance matrices [Sii], [S ],.,',[SPP]

arranged in the giant size covariance matrix

11 7
(S, [0] eevevennnnns [0}
22
10l (S leeennnnnenns 101
(Spp) = . . ..
0 ; pp
I [0} [0] eveeerenncnns [sbb]

It is assumed that [bl] is statistically indepen-
dent of [bJ], for i # j =1, 2, ..., p. If not,

one should calculate all the covariance matrices

[Slj] of [bl}] and [bJ] and complete the matrix

[SEE] above. One way in which [513] # 0 may arise



is shown by Cunia (1986d).

For each species we calculate the plot vector
[s], say sl1, 1s?1, .... , [s¥]1 of species 1,
2,00ann. ; p respectively. After constructing the
giant size vector

’ 1 2 P

vo— 1 ' '
[sh] [[sh] [shj ...[sh] ]

for each plot h, we calculate, by the usual formulae

[2] = [B8) = vector of the averages of [sh]

and
[SZZ] = (covariance matrix of [sh])/n
Then,
w, = [B]'[2] = estimator of ul (of all species)
and
= v + 1
Swlwl [B] [SZZ][B] [2] [SBB][Z]

estimator of the variance of wy
The same approach can be applied to estimate
the other parameters of interest, such as, for

example, u2, ug or ut;

Concluding Remarks

The common procedure for the calculation of
the error of volume estimates from Continuous
Forest Inventory data ignores the effect of the
error of the tree biomass tables; it is implicitly
assumed that this error is negligibly small. And
this may indeed be true whenever (i) the number
of CFI plots or points is relatively small, (ii)
the sample of trees from which the biomass tables
was constructed is relatively large and (iii) we
are concerned with estimators of current volumes
per unit area or per tree. Then, the error of
the sample plots is much larger than the error
of the biomass tables.

We have reconsidered the approach proposed
by Cunia (1965, 1986a) to add the error of biomass
tables to the error of sample plots, when the
total error of biomass estimates is calculated.
We have extended the applicability of this approach
to CFI systems for estimates of (i) average biomass
per unit area, (ii) average biomass per tree and
(iii) average biomass per unit areas for growth
components such as net change between measurements,
mortality, ingrowth or survivor growth. We have
also shown how to extend the applicability of the
formulae from plots of fixed area to Bitterlich
sample points.

We have then illustrated how to apply these
formulae to an actual case of 118 permanent
sample plots and a biomass regression function
calculated from 353 sample trees. We have seen
that, with this combination of sample sizes, the
percent of the total error associated with the

biomass tables is only about 20 percent, when
the estimates of average biomass per acre at the

first and second measurement are calculated. The
percent remains the same for the average biomass
per tree. We felt, however, that these sample
sizes are not representative of what is actually
occurring in real life. Working with four times
as many plots (472) and four times as few sample
trees (88) we have shown that the expected part
of the error of the biomass tables may rise to
about 80 percent., This size of the error is:
indeed very high and can hardly be ignored.

The effect of the error of biomass regression
function may be quite different when we consider
estimates of growth components. It may be
negligibly small for estimates of net change and
mortality and considerably large for estimates of
survivor growth and ingrowth. Sometimes this can
be explained. The ingrowth is calculated from
small &rees, whose biomass regression estimates
have a large error; they are all calculated from
the extreme of the regression function
where the error is at its maximum.

In the case of survivor growth, the

error due to sample plots is small (relative to
that of biomass tables) because the differences
between the two measurements of the same trees
have a very small variance; the correlation
between the two measurements is extremely high.
We are at a loss, however, to explain why the
part of the error due to biomass regression func-
tion is small for net change and mortality; it is
possible that the variation of the net change and
mortality from plot to plot overshadows completely
in size the error of biomass tables.

We have completely ignored the possible bias
of the biomass tables calculated for one, and
applied to another forest area. It is assumed
that the two forest areas are sufficiently similar
for the bias to be small. However, this may not
be true. Because the bias is non-statistical in
nature and can hardly be estimated, it is generally
ignored. By properly designing (i) the sampling
method for selecting sample trees for biomass
regression function and (ii) the statistical
procedure by which the regression function is
calculated, one may be able to quantify the error
component due to the difference between forest
areas or stands, and, thus, take it into account
when calculating the total error of the biomass
estimates. More research is, however, needed in
this area.

We have finally shown that the extension of
the methodology from one to several species is
straightforward. It requires the construction
of (i) giant size vectors [B] containing the
individual species vectors [b] and their covariance
matrix [S__ ] and (ii) giant size vectors of sample
plot valués [s] corresponding to vector [B] and
their averages [8] = [Z] and covariance matrices
[s,,] = [S__1/n. Then, the formulae for the
es%%mator W of Yy and its variance are the same.
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ON THE ERROR OF FOREST INVENTORY ESTIMATES:

CONTINUOUS FOREST INVENTORY WITH SPR. (1)

Tiberius Cunia

Professor of Statistics and Operations Research
SUNY College of Environmental Science and Fores=
try, Syracuse, NY, 13210

In a previous paper, Cunia has shown how to
take into account the error due to biomass
tables when the error of forest biomass estimates
is calculated in Continuous Forest Inventory (CFI).
This approach is extended to the case of CFI
systems using Sampling with Partial Replacement
(SPR). methodology. The formulae to calculate
the error of current biomass estimates and the
estimates of growth components are given for the
case of SPR on two successive measurements when
(i) biomass tables are constructed from linear
regression functions for which an estimate of the
covariance matrix of the regression coefficients
is given and (ii) the CFI plots or relascope
sample points are selected by simple random sam=

pling independently of the given biomass regression

functions.

Introduction

Although it is known that the biomass re-
gressions applied to forest inventory are not
without error, it is a common procedure to ignore
this error when inferences are made about the
average biomass per unit area. Cunia (1986a) has
proposed one approach to combine the error from
inventory sample plots with the error from bio-
mass regressions when (i) the regressions are
linear and the vector [B] of m coefficients is
estimated by the vector [b] calculated by least
squares techniques, (ii) there are m statistics
zys Zp, ..., Zp calculated from the sample plots
data, so that the vector [H,] of their expected
values nmultiplied by the vector [B] is equal to
u, the parameter one wishes to estimate and (iii)
the vectors [b] and [z] are statistically inde-
pendent. He gave the formulae for the estimators

w [b]'[z] of the parameter of interest W,
and

S
wwW

(bl'[s, 1ib] + (z]' (8}, 11zl

of the variance of w, where [S__] and [Sb ] are
the known estimators of the covariance magrices
of [z] and [b] respectively. Note that the

left hand side of the expression of the variance

(l)Paper based on a set of lecture notes
"On the error of biomass estimates in forest
inventory: Part 2: the error component from
sample plots". Faculty of Forestry Miscellaneous
Publication Number 9 (ESF 86-001). SUNY College

of Environmental Science and Forestry, Syracuse, NY.

of w may be viewed as an error component due to
sample plots, while the right hand side may be
viewed as the error component due to biomass
regressions.

In his paper, Cunia (1986a) considers the
case where the sample plots are selected by sim-
ple random sampling and the parameter of interest
1 is the mean biomass per unit area. This pro-
cedure was then extended, see Cunia (1986a), to
the case where the sample plots were all perma-
nent and part of a Continuous Forest Inventory
(CFI) system and the parameters of interest are
the mean biomass per acre at the first and second
occasion (M and H,), the net change in the mean
biomass per acre between the first and second
occasion (Mg = V¥, - ¥y), the mean biomass per tree
(Ut) and the mean biomass growth per acre by
growth component (M for mortality , Wj for in-
growth and HS for growth on survivor trees.

It is known that CFI systems can be made
more efficient when, at each measurement time,
Sampling with partial Replacement (SPR) method-
ology is being used and a part of the old sample
plots is being replaced by new plots. A rela=-
tionship between past and present measurement
values is established from the data of the plots
that are being remeasured, and this relationship
is being used to update the values of the old
plots that are not being remeasured and backdate
the values of the new plots that have not been
measured in the past.

It is the objective of the present paper to
derive the formulae for the estimation of (i)
current values and growth for CFI systems using
SPR, and (ii) the error of these estimates that
includes the error of biomass regressions in
addition to the error of the CFI plots or points.
For the general approach of how to combine the
error of biomass regressions with that of the
sample plots, the reader is sent back to Cunia
(1986a,b). For the general methodology of SPR
as applied to Forest Inventory the reader is
sent to papers by Ware and Cunia (1962), Cunia
(1965), Cunia and Chevrou (1969) and Newton, Cunig
and Bickford (1974) among others.

We shall use the terminology and notation
introduced by Cunia (1986a,b), in particular that
of the cluster (plot) variables sj, Sy, +ee-y de~
fined on a "per unit area, acre or hectareV basis
For convenience, these variables will be defined
in a later section. Because these variables can
be defined on both sample plots of fixed area or
relascope sample points, it is immaterial whether
CFI sample units are plots or points; for con-
venience we shall use plots to denote them both.

Only CFI systems with SPR on two occasions
will be considered here. To facilitate the de-
rivation of the methodology that combines the
error from sample plots and volume regressions,
we shall present the SPR formulae in a more
streamlined matrix form which may differ from
that used in the above-mentioned SPR papers.
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. and § of = - ar defined
The Basic Methodology of SPR on Two Occasions 9 Hg tuzmuy) ¢ now defined as the 3 by

1 vector

We shall start with a summary description £
of the basic methods of calculating the SPR es- 1
timators.of ¥, = average b?omass per unit areé Iwl = § = [Q] + [A]'IP]
at the first measurement time, Uz = average bio- 1
mass per unit area at the second measurement a
time, and M, = ¥, -~ H; = average change in bio-
mass from tge first to the second measurement where
time. We shall assume that there are (u + m + n)
sample plots selected by simple random sampling, -i
where u (for unmatched) plots were measured on 1u
the first but not on the second occasion, m (for ol =y = vector of the averages
matched) plots were measured on both occasions, 1n of urmatched (and new)
and n (for new) plots were measured on the second J. - % plots
but not on the first occasion. | “1n lu

To describe the methodology, we shall need x1 - [iﬁl = vector of the (p + q)
additional notation. The biomass regression e} =} ¢ differences betgeenqthe
functions are usually defined in terms of depen- [in] - [?ﬁ] averages of the matched
dent and independent variables y and x respect~ L and unmatched (and new)

ively. Because we work only with vector [b] and
matrix [Sbb], we shall use x and y to denote
different values. More specifically, we shall

plots

[A] = [G]-l[H] = the (p + q) by 3 matrix of

use variables X)r Xpr o eeny to denote measure- the SPR coefficients
ments made on sample plots on the first occasion,

and variables yj, y3, ..., Y, to denote measure~ Eiﬂ)[s 1 (}) (s 1

ments made on sample plots oﬁ the second occasion. [G] = umj " xx° \m Xy

For convenience, we shall arrange these variables 1 -
as vectors [x] and [y]l. Except for x, and ¥y G;)[Sxy]' -E;-[Syy]
defined as biomass per unit area on the first and

second occasion respectively, the other x and y

= i tri f [p
variables (which we shall call here auxiliary) covarlance matrix of {P]

may or may not be paired with each other. [G]-l = inverse of [G]
Let the vector of the averages of x,, x., and
...y X5, as calculated by the usual formulae . -
from the u unmatched plots be denoted as S, x /ua 0 - /u
- l l . X X
' = [R .. % .11
[xu] [xlu qu xpu] : . .
where [ ]' means transpose of [ ]. Similarly, . : .
the vector of the averages of Y1r Yor ceer Ygq o . .
as calculated from the n new plots is denoteg as . /u Y -S /u
{H] xlxP xlxp
70" = 13, Ty voe T, 0 s /0 S /o
. 6241 Y1¥p
and the vectors of averages of the m matched plots . . .
will be denoted as . . .
-1, - = - 0 S,y /n s,y /n
[xm] = [xlm x2m e xpm] B 1¥gq Yy a |
and = covariance matrix of [P] and [Q]
[§A]' = [ilm ?ém cee §qm] If we define, in addition
The sample estimators of the variances and covar- s /u 0 -s /u
iances of x and y variables are derived from the X% X%
m matched plots only, by the usual formulae. De-~ K] = 0 s /n s v /n
noted as Sxixj, Sxiyj, and Syiyj they are arranged ylyl Yy¥q
in the three covariance matrices [Sy,] of [x] , 5y x /u SY y /n (sx AR Sy v /n)
[Sgy) of [x] and ly] and [Syy} of [y]. Note that 1 11 11 171
the order of [Syxy] is p by g, since the covariance .
terms of a given variable x; are arranged in the then, the estimator of the covariance matrix of [w]
i-th row, while the covariance terms of a given is
variable y. are arranged in the j~th column. -l
J Is,,] = [Kl + [A]'[H] = [K] - [H]'IG] ~[H]

The SPR estimators, say §l of Hq, 91 of H,,
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Various SPR estimators are generally obtained vector of the second msasurement

whenever different sets of auxiliary variables are values Sy, Syr ---1 Sp
being used. All these estimators ignore the effect
of the biomass regression function used in the and
calculation of x; and yj. To take this effect 22 2
into account, we may use the approach of the next [SSS] = sample covariance matrix of [s”], the
section. vector of the second measurement
values Sl' 52’ cens sr
The New SPR Estimators Note (i) the use of superscripts 1 and 2 for
the statistics of the m matched plots and the
To take into account the error of the volume dropping of these superscripts when they are not
tables, we need plot variables sj, Sy, ... of the needed, (ii) the covariance terms of [S%é] asso-
type defined by Cunia (1986 a,b). For more de- ciated with s; of the first measurement are all
tails the reader is referred to these papers. It on the row i, while those associated with s. of
suffices to say here that if the regression func-~ the second measurement are all on the column j,
tion of u = tree biomass on some independent and (iii) [Sgi] = [Séﬁ]t

variables Vir Var eeey Vp is of the form
Consider now the following vectors

G = blvl + b2v2 + ool F brv
* fo,) = 151, 1, = [53, Io] = IQ,)) - 1Q]
then, the plot variables are defined as g

and
s, =L(v, /a) ,i=1,2, ..., r 1
1 ik k , 15 - I5,]
where I is taken over all trees k in a plot or point [pP] = 2
and  ap is the factor that converts the measure- [§n] - [ém]

ment vy of tree k to a "per unit area" basis.
For example, if vy = 1 and vy = d = tree diameter,
and the tree is selected from a plot of fixed
area of "a"

The covariance matrices of these vectors are

-estimator of the covariance

k.1 = s> u
S matrix of [Ql]

acres, then ) 1

= L =1 = 22
51 (Vl/a) (1/a) gzﬁzerazg trees per [K2) = [8°“]/n = estimator of the covariance
' S8 matrix of [Q2]
=z =1 = i
Sy (v2/a) (d/a) zzgeOf dilameters pex K] = [Kl] + [K2] = estimator of the covariance
g matrix of [Qg]
We start with the same three samples of u r
unmatched, m matched and n new plots. Each plot CHﬂﬁ[sll] GQ[SIZ]
is measured for the variables s,, Sy, ..., Sy On um ss sS
the first, on the second, or on both occasions [G] = 1 124 ntn 29
depending on whether it is one of the u, one of (-)[Sss] (75;)[5551
the n or one of the m plots respectively. Using |
wberever necessary superscripts to denote the - estimator of the covariance matrix of (P]
first (1) or the second (2) measurement, and sub-
script u, m and n to denote the sample from which P[K ]j
the statistics are calculated, we define [H.] = 1 - estimator of the covariance
0 matrix of [P] and [Q.]
(1) the vectors of sample averages -[ I (7l Ql
B 1
- 14 _ = - - {0} .
[Su]' = [slu Son 77 Sru] [H2] = = estimator of the covariance
(g1 (s - 5 ) [K2] matrix of [P] and [Q2]
S’ T YSin Son ot S¢n - -
=1 - =1 =1 and
[§71" = [sl E ve... S5 ] and
m Im 2m - .
221, 2 L2 =2 - (¥, 1 .
[sm] = [slm S2m ..... Srm] H1= = estimator of the covariance
d [KZ} matrix of [P] and [Qg]
1 2
(2) the covariance matrices of [s”] and [s ] - -
calculated from the data of the m matched plots where
alone, .
[0] is the r by r matrix of zero,
1 . .
[s 1] = sample covariance matrix of [sl], the . .
ss vector of the first measurement values We can define now the SPR estimators of the
S., Say +ves S expected values of S;, Sy, ..-r Sy denoted here as
1 2 r the mean vectors [p%] for the first measurement, 1
[512] = sample covariance matrix o [sl], the n2] for the second measureme?t, and gl = Wzl - gl
S8 vector of the first and [s”], the fo¥ the net change from the first to the second
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measurement as the statistics

1 '
[z7] = [Qll + [Al] [P]
2 )
[z7] = [Q2] + [A2] [P]
and
g
= al'[p
[z7] [Qg] + [ g] [P]
where
a1 = 617 u)
1= 1
~ -1
[A2] = [G] [H2]
and
-1
[Ag] = [G] [Hg] = [A2] - [All

The covariance matrices of [z1], [z2] and
[z9] are estimated by the formulae

11, . _ _ . -1
[Szz] = [Kll + [AI] [H1] = [Kll [Hl] [G] [Hl]
22 , _ _ vy =l
[Szz] = [K2] + [A2] [H2] = [KZ] [H2] [G] [H2]
and
99, _ ) - _ viay—l
(s} [Kg] + [Ag] [Hg] [Kg] [Hg] {G] [Hg]
Finally, the SPR estimators of u, = average

volume per unit area on the first occasion, Uy =
average volume per unit area on the second
occasion, and H; = average change in volume per
unit area from the first to the second occasion
are respectively defined as

- vr b - V1,2 - V1,9
w, = [bl1'[27], LN [b]'{z"]1, and [wg] [bl'[z"]

Their variances are estimated by the formulae

 rell 1., 1

Sypu, T 118510+ (271008, V=)
122 2., 2

Sy w = [bl [Szz][b] + [z27) [Sbb][z ]

22
and

- 1199 9. g

swgwg [b] [szz][b] + [27] ISbb][z ]

Note that the new SPR estimators are generally
different than the old SPR estimators of the pre-
vious section. This is because different sets
of auxiliary variables are being used. However,
the difference between the old and new estimators
is expected to be small and probably not signi=~
ficantly different than zero from a statistical
point of view.

Illustrative Numerical Example

Consider the sample data from u = 117 tem~
porary plots measured in ]960, m = 118 permanent
plots measured on two occasions in 1960 and 1964,
and n = 92 temporary plots measured only in 1964.
These plots are one-tenth acre in size and have
been selected from a forest area in Québec, Canada
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by a method which can be assumed to be equivalent
to simple random sampling.

To the trees of these plots we shall apply a
biomass regression function used by Cunia (1986a,b).
For the sample data and the calculation of the
regression function

2
= + d + d
u bl b2 b3
where u = tree biomass (total above ground green
weight in pounds) and d = tree diameter (inches),
the reader is referred to Cunia (1986c¢). We need
here only the statistics

5.1818118
[b] =] ~25,653078| and
12,988357
] [ 8715.8855 ~2222.4882 128,69992
Isbb] =] ~2222.4882 581.99570  ~34.776995
128,69992  ~34.776995 2.1744582

Because (i) the independent variables of the
biomass regression function are 1, d and d2, and
(ii) the plot size is one-tenth of an acre, the
plot variables S1, Sy, and sy are defined as

sl = 2(1/.10 acres)

= number of trees per acre
s, = L(4/.10 acres)

= sum of tree diameters per acre, and

2

s, = £(d7/.10 acres)

= sum of squared tree diameters per acre

The values of s;, Sy and s, as measured in

1960 and/or 1964 on the (u+m+n) = 327 plots are
given in a set of lecture notes by Cunia {(19864d).

We shall now use these values to calculate three
sets of SPR estimators.

First Set: The New SPR Estimators -

To calculate these estimators, we shall need the
following summary statistics calculated from the
basic plot values S1r Sy and s

3
214.78632
[S 1 =]1338.3291 | = vector of the 1960 averages
u | 10722.382 calculated from the data
- of the u = 117 plots
228.69565 |
[S 1 =]1502.8380 | = vector of the 1964 averages
n 12521.600 |  calculated from the data
- of the n = 92 plots
1 236.35593
[§m] = | 1439.3161 | = vector of the 1960 averages
10898.164 calculated from the data

of the m = 118 plots



) [266.01695
[§m] =11638.6805] = vector of the 1964 averages
12320.176 calculated from the data
- of the m = 118 plots
11 31272.932 110452.37 602351.30
[Sss] =1110452.37 659011.32 4724541.6
602351.30 4724541.6 48604076
= estimate of the covariance matrix of
the first measurement values S1, S
and s3 as calculated from the m = 118
plots
12 21987.926 118295.97 659678.73
[Sss] =1109292.82 670898.34 4832348.2
542577.80 4443890.0 46552860
= estimate of the covariance matrix of
the first measurement values Sy1+ Sy,
and s3 with the second measurement
values s., Sy, and s, as calculated
from the m = 118 plogs
22 24039.555 123557.78 635935.23
[Sss] =]123557.78 718316.31 4802637.7
635935.23 4802637.7 47000205

= estimate of the covariance matrix of
the second measurement values Sy, So,
and s; as calculated from the m = 118
plots

Note that (i) we have used superscripts to
denote the first or second measurement  (do not
interpret them as exponents or powers), and (ii)
the covariance terms of [S12] related to the first
measurement variables are arranged in rows and
those of the second in columns. For example, the
covariance of the first measurement s, with the
second measurement s, is 118295.97 while the
covariance of s; of the second measurement with
sy of the first measurement is 109292.82.

By using now the formulae of the new SPR
estimators, one can easily calculate and write
down the vectors

[Ql], [QZ], [Qg], and [P]-
and their covariance matrices

[Kl], [KZ]' [Kg], {Gl, [Hl]'[HZ]' and [Hg]
These are not given here, but the interested reader
can find their values listed in Cunia (19864d).
The inverse of [G] is also listed there as well

as the calculation of the following vectors of
SPR coefficients.

~.57582423 .27162431 2.1942318
-.016295496 ~.71115549 -.60394450

[All = .00082660796 .0038778696 ~-.60368650
-.052395398 ~1.4196676 -6.1216962
.075951873 .58362944 1.2028896
-.0031360528 -.011748779 .23558038

.58503065 1.0689709 1.9045323
-.051364277 .14848762 .068781280
(a] = .0017007641 .0047393886 .30871816
2 ~.62752621 .39234747 2.7713606
-.021883489 -.81539047 ~.73733567
.0011022853 .0052754490 -.67282885
and [A ] = [A_] - [A.] not shown here.
g 2 1

Consequently the SPR estimates of

mean number of trees per acre in 1960
[ul] _ | mean sum of diameters per acre in 1960
mean sum of squared diameters per acre
in 1960
2 . .
[uz] similarly defined for 1964 measurement,
and

SL- M o |
[uz] = [uZ] [uZ]

are the following

1 219.71326 , 247.57976
[z°] = 1374.9418| , [2z°] = | 1561.1367] ,
10954.679 12280.514
27.866502
and 1291 = 186.19492
1325.8344

and the estimates of their covariances are

11 -65.995681 342.03116 1869.1504 |

[s z] =} 342.03116 2039.9531 14673.089

z 1869.1504 14673.089 151545.20

29 -75.556641 386.92007 1995.4171—

[Szz] =] 386.92007 2243.7140 15044.211
1995.4171 15044.211 147808.27

and

a9 8.2793523 38.357716 219.65978—

[Szz] =] 38.357716 209.87519 1597.4279
219.65978 1597.4279 l7693.325J

Consequently, the SPR estimators of Hyr Moo

and ”g are calculated respectively as
W= [b]'[zll = 108150.31 pounds
w, = [b]'[z2] = 120738.64 pounds
W = [b]'129) = 12588.336 pounds

and their variances are estimated as

11 1 1
- 1 L
Swlwl = [b] [Szz][b] + [27] [Sbb][z 1
= 17292284 + 11049512 = 28341796
22 2 2
= ' '
Sw2w2 [b] [Szz](b] + [z27] [Sbb][z ]
= 16553974 + 11720724 = 28274698
and
= 1199 9q g
swgwg [b} [SZZ][b] + [z7] [Sbb][z ]
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= 2078027 + 43969 = 2121996

Note that the part of the total variance due
to the error of biomass regression function is
about 38.98, 41.45 and 2.07 percent respectively
for wy, wy, and wg. It may be interesting to
compare these percentages with those obtained by
Cunia (1986b) when the CFI estimators were cal~
culated from the m = 118 permanent sample plots
alone., When estimating the current average bio-
mass per acre (w; and wy) the error component due
to the biomass regression is about the same in
absolute terms (11049512 versus 10710584 for w
and 11720724 versus 11393835 for w2) but about
twice as large in relative terms (38.98 versus
18.58 for wy and 41.45 versus 20.37 for w2). This
is because the part of the total variance of the
SPR estimators due to the error of the sample
plots is smaller in absolute terms (17292284
versus 46923716 for w) and 16553974 versus
44529880 for w,) than that of the CFI estimators;
the SPR estimators are based on data from 353
plots while the CFI estimators are based on the
data of the 118 permanent plots only. Cn the
other hand, the error component of the variance
of w, due to the error of the biomass tables
remaing about the same for the SPR and CFI esti-
mators, (43969 versus 50666 for the absolute and
2.07 versus 2.08 percent for the relative terms).

Second Set: The Common (0l1d) SPR Estimators

We thought it would be interesting to calcu-
late the values (estimators and errors) by the
common SPR procedure and compare them to the
values of the first set. If we define the plot
variables as

x plot biomass per acre at the first,

1 1960 measurement time, and

Y, = plot biomass per acre at the second,
1964 measurement time we can proceed as
follows,

We start with the calculations of individual
plot values x; and y,. The ordinary procedure is
to calculate the biomass of each individual tree
separately, sum them up by sample plots and divide
these sums by .10 acres, the area of the plot,
Because the individual plot variables s., s.,, and
s, are available, it is easier to use the formulae
x] = [b]l'[sl] and y; = Ib]'Is2]. cunia (1986d)
lists the individual plot values %7 and ¥ and
calculates the following basic statistics that
are needed for the calculation of the second set
of the SPR estimators

X = 106046.85 = [b]'[5 ]
u u
v = = ‘s
¥, = 125267.64 = [b]'I5 ]
% = 105851.11 = [b]'[§11
m m
§ = 119360.09 = [b]'[52]
m m
S__ = 5536998459, S = 5255342828,
XX Xy
S = 5254525850
Yy
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Note that there is only one variable (x and y)
measured on the plot on a given occasion, not

P > 1land g > 1 as implicitly assumed in our for-
mulae. This would simplify the calculation of the
SPR estimators. Also, the statistics Syxr Sxy’
and S were calculated only from the data of the
m = ng permanent plots.

Using the appropriate formulae, the reader
can verify that

% [106046,85 ]
Q] = ’n = [125267,64
3 -% 19220.790 |
n u adl
X - [195.73999
[P] = u m -
v -7 59075513 |
47324773 0 -47324773
K] = o 57114411 57114411
-47324773 57114411 104439185
94248489 44536804
[G] =
44536804 101644292
1 g 13.380774 -5.8629647
[G] = (10 ")
-5.8629647 12.407167
. 47324773 0 -47324773
th) =
0 57114411 57114411
-.63324208 .33485978 .96810186
[A] =

.27746347 -.70862804 -.98609152

matrix of SPR coefficients

]

Consequently, the (common) SPR estimates are

w1 107562.03
[w] = vyl = [Q1 + [A]l'[P] =[121146.93
w 13584.900

g

and

[s_1=1[K) + [A]'[H] =
ww

17356735 15847163 -1509572
= | 15847163 16641538 794375
~-1509572 794375 2303947
Note that one can verify that
Sw w = Sw w —2Sw w + Sw W
949 171 12 22



= 17356735 - (2) (15847163) + 16641538 = 2303947

It may be interesting to compare these re-
sults to those obtained before as the first set.
As one can easily verify the results are not
identical. This is not surprising, since the two
SPR procedures do not use the same auxiliary var-
iables. The second set is based only on the bio-
mass per acre variables of the first and second
measurement, while the first set is based on plot
variables sy, sy, and sj.

The differences between the two sets of
measurements may look, at first sight, large. If
we consider first the difference between the
estimates wy and wp, we find the values

108150.31 - 107562.03

588.28 or about .54 percent
and

120738.64 - 121146.93

~408.29 or about .34 percent

Obviously these differences are negligibly small,
about 11.05 and 7.68 percent of the standard error
of w) and w, respectively. The difference is,
however, much larger for the estimate wg since

12588.336 - 13584.900 = ~996.564 or about 7.9 percent

But this is still only about 68.41 percent of the
standard error of vy of the second set of estimators.
The variances of the second set of SPR esti-
mators are much smaller than those of the first
set. This is not surprising since the error of
the second set does not include the error of the
biomass regression function. When this last
error is taken out from the error of the first
set, the estimates of the variances become ex-
tremely close. The slightly smaller values of the
first set are due to the fact that the first set
uses three auxiliary variables sj, S5, S3, while
the second set uses only a single variable, the
biomass per acre, that is nothing but a linear
combination of si, s; and 84, say X or y equal to
bysy + bpsy + bass.

To see what happens when the common (0ld) SPR
estimators are calculated with Sy, So. and s3 used
as the auxiliary variables, we have calculated,
as an example the following additional SPR estima-
tor of Uy

Third (0l1d) SPR Estimator of “2:
Used ,as Auxiliary Variables

Syr Sy and Sy

To calculate this estimator, we proceed as follows:

[Q1 = [y 1 = [125267.64]
B T
1 -21.569607
[§u] - [§ﬁ]
[Pl = = |-100.98704
vy - ¥
nooon -175.78196
| 5907.5513 |

Ix1 {S. /nl = [57114411]
vy

12
+m 11 1l (s ]
tum) [Sss] (Eﬂ sy

[G] =
1
(l) [512] (m+n s ]
m sy mnf “yy
362.09902 1880.0743 10252.974  47859.527 '
_ | 1880.0743  11217.417 80419.186 390847.37
10252.974 80419.186  827318.40 4181841.0
47859.527  390847.37 4181841.0 101644292
0 0
0 0
[H] = 0 = 0
0 0
s 57114411
yy/n

Note that to calculate [G] we need the addi-
tional covariance terms of Sy, S, and s3 (of the
first measurement) with y (the biomass per acre
of the second measurement). The values of these
covariances divided by m = 118 are shown in [G] as
47859.527, 390847.37, and 4181841.0.

The reader can verify that

12.787013
-6.5898007
4.0713794
-.71009051

(al = [e1 1 =

w, = [0} + [Al'[P] = 120746.74

and

Sw w = 16558010
22

Note that the newly obtained values (of the old
SPR estimators) of 120746.74 and 16558010 are
much closer to the corresponding values (of the
new SPR estimators) of 120738.64 and 16553974.

Concluding Remarks

The approach used by Cunia (1986a) to combine
the error of volume tables with that of sample
plots when calculating volume and growth estimates
in Continuous Forest Inventory (CFI) systems is
extended to the case where the Sampling with Par-
tial Replacement (SPR) is used to increase the
efficiency. We have considered the simplest case,
that of forest inventories on two successive
occasions. By properly defining the cluster
variables sy, s2, ..., one can apply the same
formulae to clusters of both types, sample plots
of fixed area or relascope sample points.

The new SPR estimators are slightly different
(although, for our sample data not significantly
different) than the classical ones where the error
of the biomass tables is being ignored. This is
due to the fact that the classical SPR method is
applied to linear combinations of cluster variables
Si, Sy, ... (namely cluster biomass per unit area),
while the new SPR approach is applied directly to
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these variables. In this sense the new SPR
estimators would normally be better; SPR re-
gressions on linear combinations of auxiliary
variables would not generally be better than
regression on the variables themselves.

We have considered only one species. By
defining the giant size vector [B] of regression
coefficients

[B1' = [ [b71' (621" ... [b°1']

where [bi] is the vector of regression coefficients
of species i =1, 2, ..., ¢, and its giant size
covariance matrix [Spgl whose ij-th submatrix
component is the covariance matrix [Sl 1 of [bl]
and [bJ], one can extend the methodology from
one to more than one species. This requires
the definition of a giant size vector of cluster
(plot or relascope point) values

(s1' = [ s1' 1s%)0 ... 15511
where [sl] is the subvector of cluster values
corresponding to species i, and the giant size
covariance matrix [Sg ] of [s] whose ij-th sub-
matrix component is the covariance matrix [Slg]
of [si] and [sJ]. From here on, the procedure
and the formulae introduced here apply immedi-
ately; the giant size vector [2Z] is defined as

Z1' = [ (241" 1221 ... (2%

i =1 i
where [z] = [{§ "] = the sample average of [s’],
and the giant size covariance matrix [SZ"] con-
tains as submatrix component [S1]] = [Séi]/n.

The approach can also be generalized to
more than two measurements by using the SPR
approach outlined by Cunia and Chevrou (1969)
and Newton, Cunia and Bickford (1974). It
suffices to define the vectors [Q] and [P] so
as to (i) include the averages from all measure-
ments on all auxiliary variables, and (ii) have
the SPR estimators w = [Q] + [A]'[P] unbiased.
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