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CONSTRUCTION OF TREE BIOMASS TABLES BY LINEAR
REGRESSION TECHNIQUESl/

Tiberius Cunia

Professor of Statistics and Operations Research,

State University of New York College of Environ-
mental Science and Forestry, Syracuse, NY, 13210

The paper describes the weighted least
squares method of linear regression and its ap-
plication to the problem of estimating tree bio-
mass regressions and their error. It discusses
in detail the four main sources of error (tree
selection, biomass measurement of sample trees,
statistical model used and application of biomass
regressions) and it shows how to calculate the
three basic statistics of linear regression func-
tions that are needed in forest inventory, namely
[b], the estimate of the vector of regression
coefficients, S \x’ the estimate of the condi-
tional variance of y about the regression func-
tion and [sbﬂ the estimate of the covariance
matrix of [b]. The procedure is then .applied to
a sample of trees to construct a biomass table on
tree diameter, together with its 95 percent con-
fidence and prediction intervals.

Introduction

In a previous paper, T. Cunia (1986a) pro-
posed a procedure for combining the error of the
tree biomass regression function with that from
the sample plots, when the error of the forest
inventory estimates is being calculated. This
procedure requires that (i) the tree biomass
regression function be of a linear form, that is

y = lel + 32x2 + ...+ Boxo = [B]'[x]

where Xq = 1, Kor Xgy eeey X are the indepen-
dent variables and notation [ ] and [ ]' is used
to denote matrices (and vectors) and their trans-
poses respectively and (ii) valid estimates [b]
of [B] and [Sbb] of the covariance matrix of [b]
be available.

It is the objective of the present paper to
discuss the problem of error of biomass regres-
sions, identify its main sources and present the
procedure for the estimation of this error by the
method of least squares linear regression. It
will be assumed here that the classical assump-

l/Based on the paper "On volume tables and

their contribution to the error of forest inven-
tory estimates" In: Forstliche Nationalinventuren
in Europa (National Forest Inventory in Europe) -
D. R, Pelz and T. Cunia, (Eds.) Mitteilungen der
Abteilung Fur Forstliche Biometrie Universitdt
Freiburg, 7800 Freiburg I. Br. - Federal Republic
of Germany.

tions of this method are satisfied. For more
details on the procedure of combining the error
of the biomass regression with that of the sample
plots the reader is referred to the above-men-
tioned paper.

Main Sources of Error

There are four major sources of error in
tree biomass regression functions. The first is
that associated with the selection of sample
trees. The same selection procedure applied to
the same tree population on different occasions
results in different sets of sample trees and,
thus, in different biomass regressions. The
second source of error is the measurement of the
sample trees. Different measurements of the same
sample trees, made on different occasions by
various individuals, do not ordinarily yield the
same measurements. While the volume of the mer-
chantable bole of a felled tree, or the green
weight of the entire tree can be measured without
any appreciable error, the measurement of the
ovendry biomass of a given tree component is
usually based on subsampling; small parts of the
tree component are selected by some random proce-
dure, their dimensions are measured in the field
and the value of their ovendry biomass determined
in the laboratory is used to estimate the biomass
of the given tree component. The difference
between the true, conceptual value of the tree
attribute we want determined and the actual,
recorded value obtained by measurement is known
as measurement error. The third source of error
is that of the statistical model used. Given the
same set of sample tree data, different statisti-
cians may use different models and, thus, obtain
different biomass regressions. The basic assump-
tions of the model must be satisfied by both,
sample and population, in order for the conclu-
sions to be valid. Finally, the fourth source of
error is associated with the application of the
biomass regressions to a specific forest inven-
tory. This error component may become extremely
important when the regression is applied to a
forest population that is very different from
that for which it was estimated. Strictly speak-
ing, the biomass regressions are never applied to
the original population; the populations of trees
are dynamic and change with time.

Let us now consider, in more detail, each
source of error separately.

Sample Tree Selection

Because the trees of the forest cannot be
all measured for biomass, one must rely on sam-
pling. Any sample of trees, selected by any
procedure, can be used to calculate a biomass
regression. But only when the selection proce-
dure is statistical and, properly applied, lead-
ing to a representative sample of the population
of interest, can the resulting regressions be
statistically valid.

We say that a sample is representative of a
population of interet when the error of the bio-
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mass regression function calculated from that
sample and applicable to that population can be
evaluated,, at least conceptually, in quantita-
tive statistical terms. It is not necessary for
the estimates of the error to be precise and
unbiased; it suffices that these estimates be
sufficiently good under the statistical model
assumed and that the basic model assumptions be
sufficiently well satisfied.

In general, a sample is representative if,
for the given selection procedure, each element
of the population has a known non-zero probabil-
ity of selection. It is not necessary for the
probability to be known in absolute terms. Know-
-ing, for example, that the elements are selected
with equal probability or probability proportion-
al to a measure of tree size is sufficient.
However, the probability must be non-zero. For
example, if the biomass regression is to be ap-
plied to all forest trees in the area of inter-
est, one should not limit the selection of sample
trees from those that are dominant and codomi~-
nant, healthy with no apparent defects, etc.

In addition to being representative, the
selection procedure must also be such that the
resulting samples could be subjected to valid sta-
tistical analysis. Furthermore, it must also be
cost-efficient, that is, yield biomass regression
functions of acceptable precision at reasonable
costs. This implies that one should not use a
selection procedure that yields representative
samples but for which statistical techniques for
a valid analysis have not been devised yet, nor
should one use a procedure that is too expensive
for all practical purposes.

A search of the forest biomass literature
made by Cunia (1979a,b) showed that many authors
did not state how the sample trees were selected
and from what type of tree population. Or, when
they did, the procedure was non-random in the
statistical sense; the sample trees were selected
from subjectively selected parts of the given
forest area, trees of odd shapes or defoliated
were discarded from the sample, etc. Finally,
when the sampling method was indeed statistical,
the biomass regressions were not properly esti-
mated. Sample trees selected by cluster or stra-
tified sampling were analyzed by the ordinary
least or weighted least squares method as if they
were selected by simple random sampling.

Biomass Measurement of Sample Trees

Once the sample trees are selected, they
must be measured for biomass. The biomass is
usually required by components; either by major
components such as main bole, crown or stump-root
system, or minor components such as wood or bark
of dead branches, wood of live branches larger
than 10 cm. of diameter, bark of merchantable
bole, etc. All these components require prior
and very precise definition. A search of the
literature shows a wide variety of definitions.
There is a great need for standardization of
terminology, if one is to combine results from
the analysis of sample data from various sources
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or compare biomass regressions published by vari-
ous authors.

Assuming that a tree component has been
previously defined, it is relatively easy to
measure the fresh weight; it can be weighed in
one piece or in smaller sections. The only
sources of error may be in the physical separa-
tion of the component from the tree (with the
possible loss of small particles), the actual
weighing by mechanical devices and the possible
loss of some humidity (between time of harvesting
and time of measurement). The measurement of the

volume of the components like the main bole that

have sections easily approximated by geometrical
bodies is also relatively precise. Much more
difficult is the problem of measuring the volume
of components such as leaves, small roots or
branches, etc. or the ovendry weight of any com-
ponent of large size. In all these cases one
must rely on subsampling.

Consequently, the value assigned to a sample
tree is most of the time an estimate, not the

true value of the tree biomass. As such, it has

a subsampling bias and random error. Many of the
techniques we know for estimating the tree bio-
mass have an inherent statistical bias, which is
ordinarily small if the subsampling is done pro-
perly and the sample size is sufficiently large.
The random part of the error depends on the
method of subsampling, technique of estimation
and sample size. When the biomass regressions
are calculated by the statistical least squares
methods, the random part of the subsampling error
is automatically taken into account. This in
itself is not a problem. Assuming that the sub-~
sampling bias is small, the real problem is that
of efficiency. 1Is it better to have a small
sample of trees for which the biomass is precise-
ly estimated, or it ig better to have a large
sample of trees for which the ovendry biomass
estimates have low precision? One way to opti-
mize the combined sizes of the sample of trees
and the subsamples within the trees is given in
Cunia (1986 b).

Statistical Models

Seldom, if ever the assumptions of a statis-
tical model are satisfied. This in itself is not
unusual; it is part of the whole process of
solving real world problems by abstracting them
first as mathematical models and by solving then
these models. The solutions found for the models
are assumed to apply equally well to the real
world problems they represent.

The errors associated with the mathematical
model used are generally small when the model
fits well the real world problem. It may become
quite large if the basic assumptions of the model
are critically violated, either by the population
of trees or by the sample drawn from this popula-
tion. Because we are concerned here with a re-
gression model, let us discuss the basic assump-
tions of the least squares method and the effect
these assumptions have on biomass regressions
when they are not satisfied. For a more detailed



discussion of this problem, the reader is refer-
red to Cunia (1979a,b).

There is first the assumption that the true
regression function is of the assumed form. Be-
cause one deals with finite populations of trees,
this assumption is never fulfilled in the strict
statistical sense. But this in itself is not a
serious drawback. Provided one works only with
forms that were shown to be good, and he has no
need to extrapolate the application of the esti-
mated regression beyond the sample data, the
effect of this assumption is minimal. In parti-
cular it does not seem to matter much whether the
form of the regression function is linear or non-
linear. This is important in view of the contro-
versy going on betwen biologists who prefer work-
ing with non-linear functions of the allometric
form and statisticians who most of the time pre-
fer working with linear regressions.

It is true that some biological arguments
can be brought in favor of allometric functions;
the increase in biomass of a growing tree is
proportional to the biomass contained in the
tree. But it is also true that the form of the
regression function is somewhat affected and
greatly obscured by the inherent variation of
biomass values from tree to tree. Furthermore,
mathematical arguments based on Taylor's Theorem
prove that one can always find linear functions
that can approximate as closely as desired many
non-linear functions as long as this approxima-
tion refers to a finite range. Consequently, the
decision on whether to use linear or non-linear
regression functions must be based entirely on
different considerations.

The linear functions have several main ad-
vantages. Most of the statistical theory has
been developed for linear regressions only. The
least squares method is well known, it is simple
to apply and has been extended to cover cases
such as piecewise linear functions, harmonization
and additivity of regression functions of compo-
nent parts of tree biomass,selection of sample
trees by methods other than simple random sam-
pling, etc. Another big advantage is that the
error of the biomass regression can be expressed
in a convenient form that makes the method to
combine it with the error of forest inventory
sample plots relatively easy and straightforward
to apply. Finally, there is enough empirical
evidence to suggest that linear or non-linear
functions properly selected are equally good.
The only disadvantage one can think of, is that
the non-linear regression functions may be better
to use when they are applied beyond the range of
the sample data; they seem to yield better esti-
mates of the biomass when extrapolated.

The second assumption that the conditional
variance of the tree biomass is homogeneous is
generally not critical; forest biometricians know
how to modify the least squares techniques when
this assumption: is not satisfied. One way is to
transform the variables. Another way is to use
the weighted least rather than the least squares
method. But the assumption may become critical
when (i) one uses ,poor. transformations or

(ii) no correction for bias is made when proper
transformations are used or finally, when (iii)
wrong weights are used with the weighted least
squares method.

The third assumption that the conditional
distribution of the tree biomass is normal (in
the statistical sense) is not critical unless (i)
the sample of trees is relatively small, say 10-
15 trees, in which case the central limit theorem
does not necessarily apply and the confidence
intervals and the results of significance tests
may not be valid, or (ii) prediction limits for
the biomass of individual trees are desired, in
which case the calculated limits will be sym-
metrical when it is well known that the condi-
tional probability distribution of the tree bio-
mass is highly skewed. Otherwise the regression
results are all right; the shape of the condi-
tional distribution is not needed (as an assump-
tion) when the point estimates of the regression
coefficients and their covariance matrix are
calculated, and with sufficiently large samples,
say, at least 20-25 trees, the inferences based
on normal distribution (about tests of signifi-
cance or confidence intervals) are valid, since
the central limit theorem applies sufficiently
well.

The last assumption is that of statistical
independence among the biomass measurements of
the sample trees. It is an important assumption
because the sample trees are almost never selec-
ted completely at random to satisfy this assump-
tion. It is much less expensive to select trees
in clusters and much more efficient to use stra-
tification by size (tree diameter) or geographi-
cal location (site quality class, forest type and
age class, etc.). To see what may hdppen when
the sample trees are selected by methods other
than simple random sampling (that insures statis-
tical independence), and the ordinary least or
weighted least squares are still applied in their
standard form to calculate biomass regressions,
one may refer to the empirical results and the
results obtained by simulated sampling reported
by Cunia (1981, 1986¢c). For some of the modifi-
cations to make to the least squares method when
the sample trees are selected by methods other
than random sampling, the reader is referred to
Cunia (19864).

Application of Biomass Regressions

The error component associated with the
application of the biomass regression functions
to a specific forest area is practically zero,
when the regressions were estimated from trees
properly selected from that specific area. The
possible error is negligibly small even though
tree populations are dynamic in nature and change
with time; and, thus, the population from which
the sample trees were selected is no longer the
same population when the resulting biomass re-
gressions are applied. The error is also negli-
gibly small when the regression was estimated
from a population similar to that being inven-
toried. However, this error component may be
quite important in size for the forest inventory
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systems for which 0ld biomass regressions are
being used; regressions calculated a long time
before, from subjectively selected trees. When
this occurs it is impossible to estimate the size
of this error component.

Least and Weighted Least Squares Linear Regres-

sion Method

Before describing the specific weighted
least squares procedure as applied to biomass
regression estimation, we shall briefly describe
the ordinary least squares method as applied to
the estimation of linear regression functions.
This will introduce the main concepts and nota-
tion used here and the three basic formulae for
the three main statistics that summarize all the
information from the sample tree data that is
usually needed in forest inventory.

Least Squares Method

The basic assumptions of the least squares
linear regression method were discussed in the
previous section. We shall now be more specific
and state them more formally as follows

(1) The expected value of y (the dependent
variable) for given values of x,, Kor seer Xp
(the independent variables) is of the linear form

E(y|x) =y = lel + 32x2 + oo+ Boxe = [B]'[x]

regression function of y on [x]

where y = biomass of some tree component

Kir Xgq eeey X = tree characteristics

other than biomass; such as, for exam-
ple, tree diameter, height, species
(dummy variable) etc. with Xy = 1 being
the variable that introduces a constant
term (the intercept) in the regression
function

[x]' = [x1 Ky eees xm] = vector of the
fixed variables x

{By By +ee- Bpl= vector of the
regression coefficients ’

and [ ]' = notation used to denote transposed

vectors or matrices [ ].

[gl’

(2) The conditional variance of y given
[%], denoted here as o is homogeneous, that
is, the variation of y about the regression func-
tion remains the same no matter what the given
values X1s KXoy -eey X are. More formally,

E(y - E(ylx))2 = ny|x’ a constant value

(3) The covariance of any two sample values
¥; and y. is equal to zero, that is, the random
variables ¥i and Yy are uncorrelated. More for-
mally

E(Yi - E(yi|xi))(Yj - E(Yj|Xj)) =0
(4) The conditional probability distribu-
tion of y given [x] is normal. This assumption

is needed only when null hypotheses are tested
for significance or prediction and confidence
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limits are calculated. It also implies that Y3
and y. are statistically independent since two
norma&ly distributed variables that are uncorre-
lated are also statistically independent.

There are also several implicit assumptions
that are not mentioned here. For example, the
fixed variables Xys Xy eeep Xy are measured
without error, the number n of sample elements is
larger than the number m of independent variables
%, there are at least m distinct vectors [x] in
the sample, or the population from which the
sample elements are selected is static, that is,
does not change with time.

Let the values y, Xie Xgp eeer X of the k~th
sample element, k =1, 2, ..., n be denoted as

Yir Xppr Xyggr eeeer Xpp

To apply the least squares method we shall ar-
range these values in the two matrices [X] and
[Y] of sample values,

¥11 *12 +** Xim ¥y

¥21 %22 - ¥om Y3
[X] = . . . and [Y] = .

an xnz Y xnm yn

The matrices of cross products are now de-
fined as

[T] = [X]'[X] and [P] = [X]'[Y]

Then, the three statistics that summarize the
information from the set of n sample elements are

(1) [b]l = [T1"1(P) = estimator of the
vector of regression coeffi~
cients [Rg]

(2) Syy|x = ([Y]'[Y] - [b]'[P])/{(n-m)

= estimator of the conditional
variance 0yy|x of y given [x],
and
(3) [S,,] =58 (T]"1 = estimator of the
bb yylx ;
covariance matrix lobb) of [b]

where [T]_1 is the inverse of the matrix [T].

Weighted Least Squares Method as Applied to Bio-
mass Regressions

The basic assumptions of the least squares
linear regression are all the same except for the
second assumption (about the variance of y) which
is now changed to the new assumption that the
conditional variance of y given [x] is propor-
tional to a“, a value that is known for all
sample (and population) elements. Ordinarily, a
is a known function of the given independent
variables Ko Koy sees X More formally, this
can be expressed as

2
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g = 0 a®
yylx _ uulv® . .
= conditional variance of y given [x]
where
a = known value, and
Ouu y = an unknown constant value (factor of

proportionality)
= conditional variance of the new
transformed variable u = (y/a) given

{vl = [x]/a

To calculate the weighted least squares
estimates [b] of the vector of regression coeffi-
cients [R] and [Sbb] of the covariance matrix of
[b] we apply the least squares method to the new
transformed variables

u=y/a, vy = xl/a, vy = x2/a, ceey Vo= xm/a,

that is, we apply the least squares method to the
new regression function of u on [v]

3= Blvl + Byvy + oLl 4 BaVm = [B1'Iv]

More specifically, we start with the calcu-
lation of the matrices of the transformed values
[U] and [V], whose elements are

uk=yk/a, vk1=xk1/a, vk2=xk2/a, ceey vkm=ka/a

We continue with the calculation of the matrices
of cross products

[T] = [VI'[V] and [P] = [V]'[U)
and the calculation of the three basic statistics
(1) [b} = [T]—l[P] = weighted least squares

estimator of the vector of regression
coefficients [g]

(2) Suulv = ([u]l'[u] - [b]'([P])/(n-m)
= estimator of the conditional
variance °uu|v of u given [v],
and
(3) syl = s,, v[T]-l = estimator of the

covariance matrix [be] of [b]
Note the following:

= 52 = ;

syylx = a suulv = estlm?tor of the )
conditional variance of y given
[x], a value which varies from
tree to tree according to the

tree vector [x]

(1)

(2) When y is the biomass of the tree bole
and [x] is defined as a function of the tree
diameter d, empirical evidence shows that "a" is
approximately equal to g2 As the tree basal
area is md“/4, the new variable u = y/d2 repre-
sents a value which is proportional to the vari-
able "bole biomass per square inch of tree basal
area”.

(3) When y is the biomass of the tree bole
and [x] is defined as a function of the tree
diameter d and height h, empirical evidence shows
that "a" is approximately equal to d2h . As the
bole volume is proportional to a%nh (recall that

s 2, . .
the function y = bd“h c¢an be used as a Tegression
function of y on d and h), the new variable u =

y/d“h represents a value which is approximately
proportional to the variable "biomass per unit of
bole volume”.

Testing Null Hypotheses about [§]

Sometimes it may be of interest to test the
null hypothesis that some regression coefficients
are equal to zero; that is, the corresponding
variables x may be eliminated from the regression
function without diminishing the goodness of the
regression function to estimate y. This accom-
plishes two things, it simplifies the regression
function and it reduces the error of the regres-
sion estimators.

Because the variables x are arranged in an
arbitrary way, let us show how to test the null
hypothesis that, for some r < m,

Bys1 = Byyp = --» = B, =0

The test requires the assumption that the condi-
tional probability distribution of y given [x] is
normal and consists of the following steps

Step 1 - Calculate the regression sums of
squares

CRlss [bll'[Pll and

CR,S8 [b2]'[P2]

of the Unrestricted Regression Ry

G =
Ryt ¥ = Byt odote s c4B X 8 1 Xy g ¥e e gy

and the Restricted (under the null hypothesis)
Regression R,

Ry: y = B1Xg * ByXy + ... 4+ gox
Step 2 - Calculate the test statistic

F = (n—m)(CRlss - CstS)/(m—r)Ulss
where
UISS = [Y]'[Y] - CRlss

Step 3 - From a table of F-distribution with
(m-r) and (n-m) degrees of freedom, find the
critical value F , for some probability o of
rejecting the null hypothesis when the null hypo-
thesis is true. Then, apply the decision rule to
accept the null hypothesis when F < Ex and reject
it otherwise.

The above procedure has been written for the
least squares method. When the weighted least
squares method is being used, the same procedure
applies, except that

(py] = [vq1'luql,
(P,] = [V,]1'[U,], and
U;8s = [U]'[U] - [by]'[P,]

There is an alternate test for the special
case where r = m-1, that is, for testing the null
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hypothesis that Bi = 0 for some i =1, 2, ..., m.
Then, the test statistic is

t = b, VS
1/ bibj

where Sp. bs is the estimator of the variance of
i1

bi provided by [Sbb]. The critical value ty is
taken from a table of t-distribution with (n-m)
degrees of freedom for some probability level o
of rejecting the null hypothesis, when the null
hypothesis is true. The null hypothesis is ac-
cepted when _ta <tX< Ex or rejected otherwise.

Constructing (1-0¢) Confidence Intervals for Bi
and [B]

The (1-a) confidence intervals for some
regression coefficient Si is calculated by the
formula

+
by ¥ Sy,

where
t = critical value of t read from a table of
t-distribution with (n-m) degrees of
freedom and for (l-o) confidence level,
and

sb-b- = estimator of the variance of bi, the
i i-th diagonal element of [Sbb].

Note that the inferences about the confidence
interval of %.are strictly valid only if the
conditional probability distribution of y given
[x] is normal; they are acceptably good even when
the distribution is not normal but the sample
size is sufficiently large.

Sometimes it may be interesting to make
inferences about a joint confidence interval for
the entire vector [g]. It is not right to calcu-
late the confidence intervals for each Bi sepa-
rately and then combine them; they are not sta-
tistically independent. To calculate such a
joint confidence interval we start by defining

SSBB = [b - B]'[T][b - B]
= sum of squares associated with the
vector [B] of regression coeffi-
cients.

Because [B] is not known, this sum of squares
cannot be calculated. However, it can be used to
define the (1-2) joint confidence interval of 31,
82, '“"Bm as the set of values [B] that satisfy
the inequality

(b - I'IT1b - g] <mF s, |,

for the least squares method, or

[b - gl'[T][b - RB] <mF suulx
for the weighted least squares method, where F is
taken from a table of F-distribution with m and
(n-m) degrees of freedom at the desired (1l-ua)
confidence level.
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Note that the statements about the confi-
dence intervals of the individual regression
coefficients Bi or the joint confidence interval
of [g] are strictly valid only if the assumption
about normality of the conditional probability
distribution of y given [x] for the least squares
(or u for given [v] for the weighted least
squares) is satisfied. Of course, because of the
central limit theorem, the confidence interval
statements are approximately all right when the
sample size is sufficiently large.

Constructing Confidence and Prediction Intervals
Associated with the Regression Estimates

Assume that an element of the population is
selected at random, its values XKy Koy eens Xy
are measured and, thus, they are known and we are
interested in calculating point and (1-g) inter-
val estimators for (i) the expected value of y
for that given [x] and (ii) the actual value of y
for that particular element.

Let the measured values XKys Xy eesy Xp be
written as the vector

[xgl' = [x57 Xgp c+ee Xggl

the expected value (the arithmetic mean) of all
population elements that have [x] = [xO] be writ-
ten as u, and the actual value (a random varia-
ble) taken on by the selected tree be written as
Yoo Then

(1) the point estimator of both uo and Yo
is the regression estimator

Yo = [bl'Ixg]

(2) the (1-¢) confidence interval of the
expected value of y given [x] = [xg] is given by

%o+ vPe 0

where

= [xol ' [sbb] [X0]

00

= estimator of the variance of § R
that is, the variance of the estima-
tion error (§0-u0), and

t = value read from a table of t~distri-
bution with (n-m) degrees of freedom
at the (l-a) confidence level.

(3) the (l1-® prediction interval of the

actual value of y given [x] = [x0] is given by
Yo + 8f5
yoyo
where
[ =85> 5 + 8
X
YOYO YOYO Yy 0

= estimator of the variance of
the prediction error (y, - §0),
and

t has been defined above



Note that, for the case of weighted least
squares, 2
S, = a“s
X uujv
yy|x, |
and, thus, 2 1
Syoyo = Spujvia® + [x]'[T] “Ix1)

It may also be of interest here to state the
basic difference between the confidence and pre-
diction intervals; the confidence interval may or
may not include the parameter Wgs @ fixed value,
while the prediction interval refers to an inter-
val in which a random variable Yo Mmay or may not
fall in, at some future time.

A Numerical Example

Let us use the data from 353 sample trees
reported by Cunia (1985). These trees were selec-
ted by simple random sampling and their diameter
at breast height (in inches) and total above
ground biomass y (in pounds of green weight) are
listed by species group in Table 1. To estimate
the regression function of y on 4, for all species
combined, we must select a mathematical model to
represent the regression function and the condi-
tional variance of y given d.

From past experience it is known that, an
acceptably good mathematical model to express the
regression function of the tree biomass y on
diameter d is that of the rectangular parabolae

y = By + B,d + Bya?
= Byxy + Byxy + B3d2 = [81'(x]

where x1=1, x,=d and x3=d2. This can also be
seen from the plot of the values y over the
values d of Table 1 shown in Figure 1. Also from
past experience it is known that the conditional
variance of given & is approximately propor-
tional to 4. That this is reasonable can be
seen from Figure 2 where the conditional standard
deviation of y given d is plotted against the
squared diameter d“. Note that the statement
"conditional variance of y given d is proportion-
al to d°" is equivalent to the statement "condi-~
tional standard deviation of y given 4 is propor-
tional to 4" and also equivalent to the state-
ment "a straight line passing through the origin
of the two axes" is a good expression of the
relationship between conditional standard devia-
tion of y given d@ and the squared diameter d2.

To calculate the three main statistics of
the regression function by the weighted least
squares method we proceed as follows. We start
with the calculation of the new transformed vari-
ables

= 2
g = yk/ dk

2 2
Vel = xkl/dk 1/dk
v =x _/ 2. d d2

k2 w2/ % = k/ k

- 2 _ 42,42 =
Vs = Xy3/d = a2/al

1/4

f
[
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Figure 1 - Total above ground tree biomass y
(green weight in pounds) plotted
against tree diameter 4 (inches) to-
gether with the parabolic weighted
least squares biomass regression and
the corresponding 95 percent confi-
dence and prediction limits.

A conditional
r standard
deviation
.
1250 4
1000
750
b )
.
.
500 4 . |
3 o *
.
250 -
Bquared
diameter

T Y Y Y Y Y T
60 120 180 240 300 360 420 480 540

Figure 2 - The sample conditional standard devia-
tion S of biomass y for given
diameter d plotted against the squared
diameter, and a straight line passing
through the origin, an expression of
the relationship between conditional
standard deviation and squared diame-
ter.
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Table 1 - Diameters d (inches) and total above ground biomass y (pounds of green weight) of 353 trees
arranged by species groups.

d \' 4 y d Yy d y d y d y d y d y
Species group 1 ‘
9.3 557} 7.8 621| 9.5 813| 8.2 546| 7.2 322] 9.3 647/12.7 1220/14.3 1953
11.4 1529] 8.3 790]12.5 1356| 8.7 627[12.0 1055| 5.6 236f{ 7.5 409 9.3 866
7.9 369) 7.2 507} 6.2 288{ 9.3 936| 6.5 272| 7.6 460| 6.1 234| 6.6 272
12.4 1993} 5.0 206 7.2 356| 7.5 436| 7.8 533| 5.0 123} 9.4 419] 7.1 503
6.6 336 5.1 240{11.1 851} 6.6 400{11.4 1532] 7.6 410|13.9 1125| 9.2 944
8.4 637 5.7 235| 9.8 821] 9.5 846] 6.5 306| 8.5 497] 5.5 221} 6.3 276
11.9 1277} 5.3 251) 7.1 394 6.5 296| 7.4 475| 8.6 444] 5.1 244] 9.5 647
13.4 2539 7.1 513{ 5.3 178] 9.0 771]14.2 2376{13.5 1315] 5.4 275} 9.2 1005
7.0 439] 7.2 474 8.2 482 9.2 717 6.1 210| 7.8 410] 6.0 186} 9.5 962
11.1 1471} 5.1 219| 8.6 626{11.7 1534] 7.6 414| 5.6 234} 6.0 141| -- -
6.7 364|22.8 8195| 7.7 594{15.8 2518{11.4 1057} 6.3 268 5.5 187 -- -
7.0 377] 8.0 339| 9.5 756|11.9 1864|13.5 1956{ 9.5 885| 5.1 158| -- -
6.9 384| 8.1 577| 6.8 378| 6.9 388| 5.2 149| 5.8 225| 5.2 170| -- -
Species group 2
7.2 762] 5.4 435| 6.3 513] 6.5 603| 5.5 145/14.0 2311} 7.0 469]| 8.8 841
6.8 485/ 8.7 1091| 6.6 355{16,3 2219{ 8.0 383} 8.9 457| 6.6 327| 7.7 529
6.3 322 6.4 505| 5.0 250| 5.2 175}12.0 1124{13.8 1831 15.2 2531{11.6 1607
6.1 210| 8.7 1186]/10.4 1563|11.9 1190} 6.2 278|16.2 3266] 8.5 779{15.2 3629
7.2 506 8.9 1162{10.7 1138| 8.3 472} 9,5 803| 9.9 701} 8.1 450| 7.5 569
7.3 473] 5.3 325{ 6.0 246] 5.0 142{ 5.3 184| 9.2 657{ 5.3 146/12.4 1830
11.8 1542 7.5 753| 5.2 170} 5.2 163]| 5.1 162 8.9 590}114.8 1395| 7.4 816
6.8 465] 6.0 443 7.1 546{ 6.8 331| 6.8 391} 7.5 434} 9.3 881| 9.8 1085
13.8 2151} 7.1 753] 7.8 310| 6.9 329| 7.1 486| 7.1 555{ 6.8 421{15.8 3385
8.8 950| 8.8 612]10.0 940| 6.6 265| 5.0 101| 7.4 614| 5.2 175 -~ -—
6.7 431 6.8 566| 8.6 672| 5.9 185{15.1 2791 6.8 325} 7.4 582 -~ -
7.5 956 5.4 411] 9.1 1012} 5.3 159{ 6.2 334 8.6 883| 6.8 429| -- -
5.7 334] 5.2 199| 6.8 433] 6.4 338|24.5 4797] 7.1 526| 8.1 477| -~ -
7.6 436 6.1 " 255|11.8 2039{12.1 1531} 9.3 795|12.1 1440| 6.6 198} -- -
Species group 3
6.5 535, 5.4 373} 5.5 281| 6.5 284] 6.7 540| 8.4 167} 5.3 320| 9.4 1076
11.1 1023]12.6 1931} 5.5 218| 6.0 235{11.9 1435| 6.9 151! 8.8 1137[15.9 3606
13.7 2560111.9 1438] 5.0 307|19.2 3544| 9.6 910| 8.4 134] 7.4 686(13.9 2999
9.6 941} 6.7 685| 6.3 462| 7.2 524|10.8 965| 8.8 261|15.6 3083|10.8 1445
6.6 527 6.6 548] 6.5 415(12.2 1929]10.0 1053} 7.0 508| 7.8 704| 6.7 409
9.0 1242 7.3 599{ 7.9 516| 5.4 374|10.7 740{14.3 2877|10.9 1464|12.5 1361
13.0 2140| 6.4 443] 5.2 267[15.2 2736| 8.5 510| 9.2 1340] 6.9 143} 5.8 379
:5.7 238{11.9 1464| 7.5 645{12.7 1577} 5.5 182 7.1 441] 9.7 1063] 6.5 405
5.9 327{ 6.0 367| 7.1 581] 7.8 676{24.7 6636/14.8 3287|12.8 1255/10.4 1069
5.1 197{13.6 2759| 6.1 393| 7.7 743| 7.4 559} 5.0 183} 8.3 1053| 8.6 825
22.6 60561 6.3 367 9.8 655/12.3 1710| 7.4 449| 5.8 398}14.3 2611] 8.9 748
9.4 1576| 7.9 . 715} 5.6 422§ 7.0 541| 8.8 1046} 6.3 508|11l.5 1531}10.1 1010
14.7 3744| 5.3 308| 6.8 446{10.7 1277] 8.6 790| 6.6 584| 9.9 1110{14.5 2264
8.4 1106{ 6.5 511| 7.3 488] 7.6 546 9.2 678 7.3 521|10.3 841] -~ -
9.7 1630|14.2 2819| 6.9 404115.8 2815{10.2 998] 7.5 735{15.2 2233] -- -
5.9 423]12.4 1995] 7.0 568} 5.6 252] 6.0 317{ 5.8 354(12.1 1847| -- -
6.0 321]10.2 1367] 8.8 1116/14.3 2221| 5.7 278] 5.6 328} 9.6 1241 -- -
7.0 1035§10.3 1090f 5.1 217| 5.7 278] 8.8 1416 6.4 537|23.1 5804| -- -—
6.0 568| 6.5 354} 8.6 773|10.8 1162| 7.8 235 6.0 478| 9.9 1398 -~ --

for each individual sample tree k = 1, 2, ..., The new variables u are arranged in a 353 by
353 of Table 1. For example, for k = 1, the 1 vector [U] and the new variables v 1? a 353 by
3 matrix [V]. We continue by calculating the ma-

first tree of species 1, these variables are
trices of cross products

uy = 557/(9.3)2 = 6.4400509
.14868724 .94619303 6.3324803

%, = 1/(9.3)? = .011562030

{T] = [V]'[V] = |.94619303 6.3324803 45.275493

Xy = 1/9.3 = .10752688
6.3324803 45.275493 353

1
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58.746219
[P] = [Vv]'[U] = |430.50963
3456.2479

the inverse of the matrix [T]
1085.6999 -276.84567 16.031589
(r17! =] -276.84567 72.496669 -4.3320188
16.031589 -4.3320188  .27086279

and the three basic statistics

5.1818118
bl = [T17t(p] = [-25.653078
12.988357
= estimate of [B]
Syujv = ([U1'[U] - [b]'[P])/(n-3) = 8.0278958

]

estimate of Suul v the conditional

variance of the transformed variables

u = y/d2 given 4

and 1
[Sppl = suulv[T]

8715.8856 -2222.4882 128.69992

-2222.4882 581.99570 -34.776995

128.69992 -34.776995 2.1744582

f

H}

estimate of the covariance matrix [cbb] of
[b].

Under the basic assumptions of the weighted least
squares linear regression method, the estimators
[bl, Suulv and [sbﬂ are all unbiased.

If the conditional variance of y given 4 is
required, one can estimate it by the formula
a‘s

Syyla = 4 Suulv

For example, if d =10 inches, then

Syy|a = (10)%(8.0278958)

= 80278.958 square pounds

It may be interesting to consider the null
hypothesis Bl = 0, that is, the regression func-
tion passes through the origin of the two axes.
Because the test statistic t is equal to

t = blA’sblbl = 5.1818118/«8715.8856 = .06

a value which is not significant, the null hy-
pothesis would normally be accepted. However,
what happens at d=0 is irrelevant; we have no
trees of diameter equal to zeroc and we should not
extrapolate the application of the regression
function anyway.

We can similarly test the null hypothesis
that B, = 0. As the test statistic

includes all possible parabolae for which the
minimum occurs at d=0 and the full parabolic
model

¢ =8, +8yd+ 33d2

includes the set of all possible parabolae. As
the least squares model selects the parabola of
least squares, there seems no reason to work with
the restricted when we can work with the full
parabolic model.

Note that the two separate null hypotheses
above are not equivalent to the null hypothesis
% = % = 0. This is because, if one of two null
hypotheses is accepted, and the corresponding
term eliminated from the regression function, the
other null hypothesis will not necessarily be
accepted also.

Using the formula

(b1*(x1 * tyfxI " (s, 11x]

for the confidence interval, the formula

[bl'(x] * t/d‘lsuu' vt {x]"* [Sbb] [x]
where

(x]' =[1 a4 da?)

for d =5, 6, ..., 30

for the prediction interval of future values
and t=2 for the 95 percent confidence level, we
have calculated the biomass table and its 95
percent confidence and prediction limits shown in
Table 2, The corresponding regression function
and the 95 percent confidence and prediction
limits are shown graphically in Figure 1.
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Diameter Lower 95 Percent Limits Regression Upper 95 Percent Limits
d Prediction Confidence Estimates Confidence Prediction
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USE OF DUMMY VARIABLES TECHNIQUES IN THE ESTIMA-
TION OF BIOMASS REGRESSIONS

Tibeerius Cunia
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If the sample elements can be subdivided
into classes, one can use linear regression with
dummy variables techniques to estimate individual
class regressions and their error when their
regression coefficients are interrelated. It is
shown how to test null hypotheses about relation-
ships among coefficients and it is illustrated
how to apply these techniques to problems of (i)
piecewise regressions, (ii) harmonization of
biomass regressions and (iii) forcing additivity
of biomass tables.

Introduction

In his paper, Cunia (1986a) reviews the
method of weighted least squares linear regres-
sion as applied to the problem of estimating the
regression of tree biomass y on several indepen-
dent variables x defined in terms of diameter,
height, etc. He assumed implicitly that all

variables were quantitative, measured by an inter-

val or ratio scale. There are cases, however,

where the sample trees can be classified according
to some criterion (species, forest type, site qual-
ity etc.) into several classes. Biomass regression
functions may be required separately by classes or
a single biomass regression may be desired for all

classes, regression that includes the classifica-

tion criterion as a set of independent variables x.

In both cases it is useful to work with dummy
variables techniques of the type described, among
others, by Cunia (1973).

The objectives of the present paper are
those of describing the general method of linear
regressions with dummy variables and showing how
this method has been applied to a variety of
problems involving calculations of tree biomass
regressions. More specifically we shall show how
to use the standard, least or weighted least
squares linear regression techniques and (i)
estimate independent biomass regression functions
for individual classes, (ii) test for similarity
or identity the corresponding coefficients of
various individual class regressions, (iii) cal-
culate common estimators (and their error) of
regression coefficients when the corresponding

tests show that they are not significantly differ-

ent and (iv) apply dummy variables to estimate
piecewise linear regressions, harmonize biomass
regressions and insure additivity of the regres-

sions of several biomass components. In all cases

we shall show how to calculate the vectors of
regression coefficients [b'] of class i and the
covariance matrices lsgg] of [bll and [bJ]; these

statistics are needed, see Cunia (1986b) to cal-
culate the error of forest inventory estimates.

Estimation of Individual Class Regressions

Assume that the n elements (trees) of the
sample are grouped into g mutually exclusive and
collectively exhaustive classes and are measured
for the dependent variable y and the indepen-
dent variables x,, Koy eeer Xp which may be
referred to as the vector of order m

[x]* = [x1 Xy ceen xm]

Assume alsothat the subsample of n; elements in class
i satisfies the basic assumptions of the least
squares linear regression of y on [x], in partic-
ular that the regression is of the linear form

i = BgXg * BoXp *toeee * guXp = [81'[x]
for i=1, 2, ..., q

and that the conditional variance of y given [x]

is homogeneous over all n elements of the sample

Let us define now

(1) the dummy variables Di, i=1, 2, «.eey @
D; = 1 if the tree belongs to class i
= 0 otherwise

(2) the new variables x;. (with the first
subscript denoting the class number i = 1, 2,
.., g and the second subscript denoting the
variable number j =1, 2, ..., m) as

xij = Dixj = xj if the tree ?elongs to
class i

0 otherwise,
and (3) the giant size regression

v = I8 [B]'[x]

ij¥iy =
= Biyxgg + Bioxgp + oo ¥ BpXgg

+ Boyxgy + Bogxay + en + Bypxon

+ ... .

+ B + ...+ 8B

al¥q1 * Ba2%q2 qm®qm

where

[8]' = [By; Byp --- Byy B - Boml

-
[teh1r 1 ... [Bq]']

and a similar expression for [x].

an

It is not necessary that the same indepen-
dent variables be included in all regressions; by
forcing coefficients Bi' to be equal to zero we
can eliminate the variables x; that are not de-
sired in the regression of class i. It is also
not necessary for a given variable x. to have all
the regression coefficients Bi- distinct; some
classes may be defined as having equal regression
coefficients for some variable x:. Because the g
individual class regressions are all included in
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the giant size regression, one can (i) estimate
all regressions in one single step and (ii) test
null hypotheses about relationships among the
coefficients of the various regressions, in par-
ticular hypotheses about equality of two or more
coefficients Bij (for given j).

Note that the giant size regression can be
written in a long format form, showing in expli-
cit terms the individual class regressions, as

9= Bllx1 + Bioxy + .a. 4 By
if the tree belongs to class 1

= Byyxp + Bypxy v+ B
if the tree belongs to class 2

Bqlxl + ?%2x2 + ... + quxm
if the tree beldngs to class g

where some Bi' may be equal to zero and not all
B;; are distinct.
J

A simple procedure to calculate the least
squares estimators [B] of [B] and [S,,] of the
covariance matrix [GBB] of [B] is that described
by Cunia (1986a). We start by defining the ma-
trices (Y] and [X] of sample data and the matri=-
ces [T] = [X]'[X] and [P] = [X]'[Y] of the sums
of crossproducts. If [T] — denotes the inverse
of the matrix [T], then

[B] = [T171(p]
Syy|x = ([¥1'[¥] - [B]'[P])/(n-qm)
and
[Sppl = Syyh([T]'1

Note that the number of degrees of freedom
(n-gm) of S % is correct only when each indi-
vidual class regression has m independent varia-
bles (including the intercept terms %j7 = 1). The
vector [B] can be written in terms of the subvec-
tors of regression coefficients [b1] as

[[bll' 21" ... [bqu

[b11 byy «ev by by byy .- qu

(B]"’

]

[

and the matrix [Sgg] can be expressed in terms of
the covariance matrices [S;g] of [b1] and [bl] as

F -
11 12 1q
[Sbb] [sbb] cees [sbb]

- 21
el = [Sbb]

22 2q
[Sbb] ceese [Sbb]

a1 q2 aq
(sT1 1sTr.... s3

When the subsamples. of various classes are sta-
tistically independent, and distinct regression
functions are fit in each class, the submatrices
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[ngfcare all equal to zero, as [bi] and [bj] are
sta%istically independent.

When the conditional variance of y given [x]
is not homogeneous, one should normally apply the
weighted least squares method. In the case of
biomass regressions, one can apply the procedure
described, among others by Cunia (1986a) which
assumes that the conditional variance of y given
{x] is proportional to a value a“ known for all
sample (and population) elements. Let us assume
more specifically that

g [0
yylx = %uafy 2

where, for the trees with equal values [x], we
have the same function a® (independent of the
class of trees) and © is the same for all
classes. Then, to calculate the weighted least
squares estimates, we define first the trans-
formed variables u=y/a, vi-=xi-/a arranged in the
matrices [V] and [U] of sample data. If [T] =
(v1'[V]) and [P] = [V]'[U], then

(B] = [T1"1(P)

Squ|v = ([U1'[0) - [BI'(P])/(n=qm)

and [s (r)-1

BB] = suulv

Ordinarily O, would change from class to
class. This is not important, however, since the
differences are relatively small and the weighted
least squares method is not too sensitive to
small departures from its assumption of homoge-
neity of conditional variance of the transformed
variable u. But if the departure is felt to be
large and one wishes to take it into account, the
procedure is more complex and requires the follow-
ing steps

Step 1 - Calculate each class regression
separately. Let the estimate S of class i be
denoted as st .

uufv

Step 2 - Proceed with the weighted least

squares method as usual, but define the new trans-
formed variables as

1 ’ 1
= d 2 = X../ays
u y/av uu "v an vl] 13/ quV

It may be of interest to note that for this case,

uufv

[ul'[u] - [B]'[P] = n-gm
and thus,

s =1 and [sggl = [717}

uu|v
Let us apply the above procedures to a numer-
ical example.

Example 1 - Consider the data from the 353
sample trees listed in Table 1 of a paper by
Cunia (1986a). These trees were measured for
total above ground tree biomass y (pounds of
green weight) and diameter at breast height d
(inches). They were also classified into three
species groups (1 for pines, 2 for maples and 3
for all other species). There are 100, 107 and
146 trees in species groups 1, 2 and 3 respec-



tively. It is desired to calculate a different
biomass regression function for each individual
group. From past empirical experience it is
known that within each species group, (i) the
biomass regression function is of the parabolic
form, ¥ = B + BA+ a2 and (ii) the condition-
al variance of y given d is proportional to &°.
It has been verified that these assumptions are
also satisfied by our sample data.

To estimate the three regression functions
we shall use the following two procedures

Procedure 1 - Applying the weighted least
squares method as described by Cunia (1986a) to
each species group i = 1, 2, 3 separately we
obtain the following statistics, where the super-
script refers to the group number i.

(1) The matrices [Ti] and [Pi] of the sums
of crossproducts of the variables u and
V.

ij
[ .04333 .27451  1.83053]
trl] = | .27451  1.83052 13.00988
1.83052  13.00988 100 |
(04917  .30862 2.02798
(r?] = |.30862  2.02798  14.15100
2.02798  14.15100 107 j
.05618 .36306  2.47398
tr3] = | .36306  2.47398  18.11461
2.47398  18.11461 146
14.32026 18.33304
(pl] = {104.79302| , (P?] = |131.75597
836.39548 1027.3029
26.09292
(3] =|193.96063
1592.5495

. i
(2) The inverses of the matrices [T ],

4231.9155 -1115.5300  67.66323]
trl;71 = |-1115.5300  301.30214 -18.77909
67.66323 -18.77909  1.21455
3343.8895 -863.61829  50.83846 |
(r21°1 = |-863.61829 229.43526 -13.97511
50.83846 ~13.97511 .89404
2776.4363 -687.93798  38.30736 |
(r31~! =|-687.93798 174.87134  -10.03959
38.30736 -10.03959 .60337

sl

(3) The estimates of the vectors of regres-
sion coefficients and their covariance

matrices
- .
(71" = [by; Dby, by,l
= [295.60183 -107.06967 16.882552]
2
(b]" = [by; byy  Dbosl
= [-356.70604 465050701 9.1695394]

370 o
[(b7]* = [by; byy Dbysl

= [18.800242 -~-20.693393 13.156786]

= 3.1325346
uu|v
s = 7.7487808
uu|v
s3 = 9.0755518
uu|v
[ 13256.622 -3494.4363  211.95740 |
[s1,] =|-3494.4363 943.83938  -58.826156
211.95740 -58.826156  3.8046237
[25911.067 -6691.9889  393.93612 |
[sibl =| -6691.9889 1777.8435 -108.29003
393.93612  -108.29003  6.9277171 |
[ 25197.692 -6243.4168  347.66044 |
[sgb] =| -6243.4168 1587.0539  -91.114812
347.66044 -91.114812 5.4758847

Procedure 2 - Assuming that the same condi-
tional variance function applies to the sample
trees of all three species groups, that is, same
function a“ and 0uu|v’ we start by defining the-
dummy variables

Dy 1 if tree of group 1
= 0 otherwise

D, =1 if tree of group2
0 otherwise

Dy =1 if tree of group 3
= 0 otherwise

If the single subscripted variables Xy are de-
fined as 2
xl=1, x2=d, x3=d

we defined the double subscripted variables x, .

1]
as
Xjq = Dyxq = 1 if tree of species i
= 0 otherwise
Xip = DjX, = d.if tree of species i
= 0 otherwise
X33 = Dyxg = a? if tree of species i

= 0 otherwise
for i =1, 2, 3.

Because of the assumption that the condi-
tional variance of y given d is proportional to
d” (that is, a = d°), we define the new variables
u and v.. as

+ u= y/d2 and v;. = x.-/d2
ij ij

Note that
Vi = l/d2 if tree of species i
= 0 otherwise
Vis = 1/4 if tree of species i
= 0 otherwise
Viz = 1 if tree of species i

n

0 otherwise

The matrices [T] and [P] of the sums of
crossproducts take the form

(rl1 (ol (0]
tr] =01 1t?1 (o]

[0l (o] (73]
and
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where [Ti] and [Pl] are the matrices of the sums
of crossproducts of species i obtained by Proce-
dure 1 above. The inverse of [T] takes the form

(17l (o) (0}
(171 = | (0] (171 (o)
(0] (0] (r317Y]

and, using matrix multiplication by blocks,
vt el (bl

(B] = [T17Y(p) = | (22171 1p%1 | = | p2)

(3171 p3) (b3]

This is verified when the calculations are
performed with the sample data. Then, it is
found that

[B]' = [295.60183 - 107.06967 16.882552
-256.70604 40.050701 9.1695394

18.800242 -20.693393 13.156786]

Suulv = 6.9986424

and the covariance matrix of [B] is

[ .11 0

[Sbb] [0] [0]
22

sggl =| L0l 1s22] (o]

33
[0] [0] [Sbb]

where _ -
29617.663 -7807.1955 473.55072

(s}l =[-7807.1955 2108.7059 -131.42815

bb 473.55072  -131.42815  8.50021]

[23402.687 -6044.1556  355.80023]
[s22] =] -6044.1556 1605.73531 =-97.80676
bb 355.80023  -97.80676  6.25706 |
719431.285  -4814.6319 268.09952
[533] =| -4814.6319 1223.8620 =-70.26349
268.09952  -70.26349  4.22275 |

and

Note that although the vectors [b'] of re-
gression coefficients are identical by the two
procedures, their covariance matrices are not.
This is because in Procedure 2 we assume that the
conditional variance of u given [v] is the same
in all strata: As this is not the case, and
[Sppl = Suy V[T]'l, the covariance matrices [sbb]
are not the same, even though the inverse matri-
ces [T] ~ are identical.

It may be interesting to realize that we
have the following relationships

1 2

(n1'3)suu|v+(n2-3)suu|v

3
+(n3_3)suu|v)

wher (ni-3) is the number of degrees of freedom

of suulv and that

[Sit] = (Suu|v/s;u|v)[sbb]

Because [s;b] of Procedure 1 is not equal to
[ SL] of Procedure 2, a question arises as to
which covariance matrix to use, when it is impor-
tant to know the error of the biomass regressions
or the error of forest inventory estimates based
on these regressions. At first sight, it seems
that the error is estimated more accurately by
[Sib]. A look at the three sample values S |,
shows that s%va=3.13 of species grou§ 1 (pin
trees) is the smallest, followed by uulv=7'75 of
species group 2 (maple trees) and Saulv-9.08 of
species group 3 (all remaining trees). This is
not surprising since softwood trees (pines) are
expected to be less variable than hardwood trees
(maples), and a species group consisting of trees
of a variety of species is expected to be the
most heterogeneous.

Consequently, when it is important to know
the error of the individual regression functions,
one is advised to use [Sib]. This may be the
case when individual biomass tables are to be
(i) constructed with their confidence and predic-
tion limits and (ii) applied to estimate the
error of forest inventory estimates by species
group. But if the interest lies with the calcu-
lation of biomass estimates for all species com-
bined, it does not really matter which matrix is
used; the error of these estimates will be ap-
proximately the same. However, because working
with [skt] presents advantages not shared by
[Stb] we prefer using the estimates calculated by
Procedure 2.

One of the main advantages of dummy varia-
bles techniques and giant size regressions (of
Procedure 2) is that of using the entire set of
all sample tree data to (i) test null hypotheses

about the values taken on by the coefficients of
some variable x. in one or more individual class
regressions (as, for example, whether these coef-
ficients are equal to zero, have common values or
are related in some specific way), (ii) estimate
the values of the coefficients of some variable
x:, when based on a significance test they can be
assumed to be in a given relationship and (iii)
to estimate the covariance matrix [Ség] when [bi]
and [b)] have common coefficients or, in general,
are not statistically independent.

Testing Null Hypotheses about Regression Coeffi-

Suulv = (n;-3) + (n,-3) + (ny-3)
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cients

Cunia (1986a) describes the way to test the
general null hypothesis that several regression
coefficients are all equal to zero. The same
test applies, albeit in a different form, to
null hypotheses about linear combinations of
regression coefficients.

To describe this new form of significame
test let us assume that we deal with a given,
unrestricted regression Ry defined as




N
Ryt vy = Bixq + BoXy + eeew + Bpxy

The null hypothesis is expressed as the following
r<m linear combinations among the m coefficients

a1131 +ag by +oeees Ay By = [31]:[81 =0
a31P) * @gpBpy * -ee- + dppBp = [35]17(B1 =0
ap Byt ag By + oo +a B, = [ad'lgl =0

Assume that we can solve the r equations in
m variables Bj for any set of r regression coef-
ficients in térms of the remaining (m-r). Sub-
stitute this solution in Ry, rearrange the terms
under the remaining (m-r) regression coefficients
and, by using a different notation for the coef-
ficients and the corresponding new independent
variables, define the restricted (under the null
hypothesis) regression R, as

.A=ll $ Tyt [] ]
Ry: ¥ lel + 82x2 + ceea + Bm_r xm_r

We can now test the null hypothesis with the
test statistic

_ (CR.SS - CR SS)/r

Ulss/(n m)

which has the F-distribution with r and (n-m)
degrees of freedom, where

CRISS = [bl]'[pll
= regression sum of squares of R;

CR,SS = [b2]'[P ]
= regression sum of squares of R,y

U;ss = [Y]'[Y] - CR,SS
= unexplained sum of squares of Ry
and n = sample size.

For the case of weighted least squares me-
thod all of the sums of squares above refer to
the transformed variables u and v

Let us now illustrate how to apply this test
to the giant size regression function of the
previous section.

Example 2 - Consider the sample data and the
giant size regression of Example 1. The reader
can verify that additional calculations yield

ul'(u] = 2 = I(y/d%) = 36961.259

CRy88 = [B]'[{P] = 34553.726
U,88 = 36961.259 ~ 34553.726 = 2407.533
UISS/(n-m) = 2407.533/(353-9) = 6.9986424

where Ry is the giant size regression
~
Ri: ¥ = Byyxgy + Byoxgp + By3%g;
+ Byyxyy + BooXpy + By3xps

+ B3yx3y + Byoxyy + BagXay

We would like to test now the null hypothe-
sis

812 = 822 = 832 = 82 (same common value), and
813 = 823 = 833 = B (same common value)

When this null hypothesis is true, the three
biomass regression functions are "parallel"; that
is, they differ only by their intercept. The
null hypothesis can also be expressed as the set
of four linear combinations

By - By, = [a]'[8] = 0

Ba2 =P = lay'isl = 0

By3 - 823 = [az]'[g] = 0, and
L RS TR

lay]' = [0 r 0 0 -1 c 0 o0 0]

[a,]* = [0 o o0 o0 1 0 o -1 0]

lag]’ [o o 1 o o0 -1 O 0 O]

and

[a4] [0 0 0 0 0 1 0 0 -1]
solving for B.,, B,,, B,, and B,. in terms
2 3 23 33
of B , and 613, which we shall now denote by B,
and é3 respectively, we can write

Ryr v = Bypxgy + Boxyy + Baxyy

By1xg1 + Byxpy + Bax
#830%3; + Byxgy + Baxgy

= Braxyy * Bopxpy + Byyxgy + Boxp 4 Byxs
where

X12 + X599 + X39 T Xgu and

X13 * Xp3 t+ X33 = X5

The statistics associated with the restric-
ted regression R,, are the following

.04333 0 0 .27451 1.83052
0 .04917 0 .30862 2.02798
[T2] = 0 0 .05618 .36306 2.47398

.27451 .30862 .36306 6.33248 45.27549
1.83052 2.02798 2.47398 45.27549 353

[P2]' = [14.3203 18.3330 26.09292 430.5096
3456.2479]

Note that there is a relationship between
the matrices [T2] and [P2] of the restricted
regression R, and the corresponding matrices [Tll
and [Pll of the unrestricted regression Ry (Pro-
cedure 2, Example 1). Some values are the same,
as for example .04333, .04917, etc., others are
the sums of three values, as for example, 6.33248
(row 4, column 4 of [T,]) which is equal to the
sum of the three values 1.83052, 2.02798 and
2.47398 (row 2, column 2) of the submatrices
[Tll, [T“] and [T°] respectively of [T1] of the
unrestricted regression R,.

After calculating [T2]'1, we find
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[le' = [-36.543351 17.250897 77.620963
-29.919713 13.174939]

CstS =[B2]'[P2] = 34473.439

and,
7856.12 7688.97 7736.77 -1977.43 114.489
7688.97 7832.29 7734.47 -1977.83 114.599

={7736.77 7734.47 7910.14 -1987.70 114.949
~1977.43 -1977.83 =-1987.70 518.766 =30.9890
114.489 114.599 114.949 -30.9890 1.93720

The test statistic is

= {CR/SS - CR,SS)/(4) _ 5. g¢
F R%lss/(3§3-9) 8

with 4 and 344 degrees of freedom. As the criti-
cal F values for the .05 and .01 probability of
rejection are 2,37 and 3.32 respectively, the
usual decision would be to reject the null hy-
pothesis. However, for the purpose of illustra-
ting how to express the results as a 9 by 1 giant
size vector [B] (that contains the three biomass
regressions in an explicit form) we shall assume
that the null hypothesis is accepted and we use
the statistics of the restricted regression R,.
We can write the estimate of the restricted re-
gression as

N

R2: y

]

by, + byd + b3d2 for species group 1

#

b21 + b2d + b3d2 for species group 2

b3l + b2d + b3d2 for species group 3

This implies that the biomass regressions of the
three species groups and the corresponding co-
variance matrices are

[~ .
by, -36.543351
(b1 = b, | = [-29.919713
by 13.174939
byy 17.250897
(b%] =| b, | = [-29.919713
| by | | 13174039
by; 77.620963
(b31 =] b, | = |-29.919713
by 13.174939
= S, p S T
1111 112 1173
11, _
[s;o) = 1% p Sp_b Sp_b
211 22 23
5p b 5 b 5y b
311 32 33 |
7856.12 -1977.43 114.489
= | -1977.43 518.766 -30.9890
114.489 -30.9890 1.93720

and similarly
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7832.29 -1977.83 114.599
[sii] =|-1977.83 518.766 -30.9890
114.599 -30.9890 1.93720
and
7910.14 -1987.70 114.949
[s%i] =|-1987.70 518.766 =30.9890
114.949 -30.9890 1.93720

Because [bi]

and [bj] are not statistically

independent (they have common values b, and b3)

we have [Slj]#o. Then, the reader can verify
that bb
s S5 1 CH
1121 112 11°3
12, _
[s..] = So.b Sb b Sp b
221 22 23
5p b Sp b Sy b
321 32 33
-
[7688.97 -1977.43 114.489
=|-1977.83 518.766 -30.9890
114.599 -30.9890 1.93720 |
and similarly - -
7736.77 ~1977.43 114.489
(s13] ={-1987.70  518.766 -30.9890
114.949 -30.9890 1.93720
[ 7734.47 -1977.83  114.599]
1s23; =|-1987.70 518.766 -30.9890
| 114.949 -30.9890 1.93720

and

210 c127, 131, al3;, 32572374
[Sbb] [Sbb] .[Sbb] [Sbb] and [Sbb] [Sbb] .

Consequently, the giant size vector [B] contain-
ing the subvectors of regression coefficients of
the three individual species groups is the 9 by 1
vector

(B]' = [[bll' (b3] " [b31]

and its covariance matrix is estimated by the 9
by 9 matrix

[~ T
11 12 13

[Sbb] [Sbb] [Sbb]
I 31 22 23

[sgp] =| 1.1 (sZ1 (S]]
31 32 33

[Sbb] [Sbb] [Sbb]

The numerical values of these subvectors and
submatrices are shown above.

Piecewise Linear Regressions

In the previous sections the sample elements
were classified into groups by a criterion other
than their values [x]. This is not necessary, as
sometimes classes may be defined in terms of the
variables [x]. Then, the resulting regressions
will be of the piecewise form, that is regres-
sions for which the function changes its form
over the range of independent variables [x].



For example, when estimating biomass regres-
sions one may have difficulties finding a single
mathematical function that would fit sufficiently
well the data over the entire range of tree
diameters. The fit may be poor for the small
trees, or for the large trees or for both. 1In
this case, one may be able to fit piecewise
regression functions consisting of one branch for
the small and a second branch for the large
trees; or, if the relationship seems to be of an
S~shaped form, to fit a parabolic branch for the
left-hand side, a linear branch for the middle
and a second parabolic branch for the right-hand
side of the regression function.

Fitting different mathematical functions to
different classes of tree diameter would general-
ly result in regression functions that present
points of discontinuity at the class border; and
this is not desirable. Then, one can set condi-
tions on the choice of the regression coeffi-
cients of the various branches and, thus, obtain
piecewise continuous regression functions. How-
ever, the transition from one to the next branch
may not be smooth, even though the regression
function is continuous; and this may also be
undesirable. Then, one can force the two bran-
ches intersecting at the border of the two clas-
ses to have equal derivatives. In other words,
one can set additional conditions on the choice
of the regression coefficients and force the
piecewise regression function to be continuous
and have a first derivative everywhere.

Let us now show how to use linear regression
with dummy variables to fit piecewise linear
functions consisting of two branches. The exten-
sion to more than two branches is straightfor-
ward. We shall start with the grouping of the
sample trees into two classes according to their
diameter; class 1 containing the small trees with
diameter less than or equal to do (say do =5
inches) and class 2 containing the remaining
trees. We shall assume that we want to fit
different parabolic regressions to the two clas-
ses, that is, we shall make the assumption that

~

y = Byp + By,d + By5d% if d < 4,
= 2
= 321 + Bzzd + 323d if 4 > dO
This can be written as the giant size regression
Ry y = Bpxgy + Bipxyp + Big¥gg

+ B + B

+ B 22%22 23%23

1¥21
Xqq = 1 if dﬁdo, or 0 otherwise
Xy = d if dﬁdo, or O otherwise
x5 = 4% if dd;, or O otherwise
Xy = 1 if d>d0, or 0 otherwise
gy = 4 if d>do, or 0 otherwise

Koy = d2 if d>do, or 0 otherwise

The two parabolic branches will not general-

ly intersect at the point d=d0. To force them to
intersect at that point we shall make the assump-
tion that the estimates of the biomass of the
trees of diameter d=d0 by the two regression
branches are equal, that is

2 _ 2
Bi1 + B1gdp + By3d] = Byy + Bopdp + By3d]
This can be written as

[a]l'[g] = 0O

where

-d2]

= 2 - -
[a]"! (1 4, do 1 dg o

Solving for 82 in terms of the other B co-
efficients, substituting this solution for 621 of
regression R,, rearranging the terms by regres-
sion coefficients and by redefining the variables x
we obtain the regression R, as follows:

- 2 _ 2 _ 2
Ba1 =By1y +B832dg +B8133) ~ Byd0 ~ B39,
"
Y =Boix11 +Bo%15 +By3%)5
2 2
+ (Byy + Byodg + Bygdg - Byydy - Bysdg)xyg

+ 32 + 8,

2%22 3%23
= B (xyg4ryg) + Byolxgprdgxy) + By gy grdoxy,)

_ 42
+ B (xgpmdgxyy) + By3(xy3-dixyy)
and
"
Ryt ¥ = Bpaxiy + Bpoxfy + Biaxfy
+ Bogxhy + Boyaxis
where
xil = Xyq * Xy = 1
xiz =Xy, *+ dox21 = d if tree diameter 535

do otherwise

d2 if tree diameter 5@0

_ 2
X'y = %33 + doXy;

2
dO otherwise

]

I

»
N
N

- d0x21 = 0 if tree diameter 5@0

(d-do) otherwise

x' = Koy = é%x21 = 0 if tree diameter 5@0

(cf —30) otherwise

Of course, Rz can also be written in terms
of the individual class regressions as
A

2, :
= + +
Yy Bll Blzd Bl3d if tree diameter 5§O

2 .
= 821 + 822d + Bz3d otherwise

R 2 2

with By = By + B1pdp * B13g ~ Bypdy - Bysd,
Note that R; presents a discontinuity (a

jump in the estimate of the biomass) at d=d0 and

that R2 is a continuous function everywhere. If

one wishes to test the null hypothesis that the

size of the jump of regression R, at d=d0 is

equal to zero, he can use the F-statistic
F=(n- 6)(CRISS - CstS)/UlsS
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with 1 and n-6 degrees of freedom, where CRSS and
USS are the regression and unexplained sums of
squares. Of course, this test does not make
sense in our case since we do not expect a jump.
Consequently, the form of the regression function
of tree biomass on diameter is that of Ré.

Although continuous, the regression R, may
present a sharp change as we move from one to the
other branch of the regression at d=do. This may
be undesirable. To obtain a smooth transition
point we shall assume a second relationship among
the regression coefficients; that the derivatives
of the two parabolic branches are equal at d=d,.
More formally we make the assumption that in

~ regression R, we have equality of the two deriva-
tives at d=d0, that is

B8 + =
12 ¥ 24 By =By, +2a 8
that is [c]'[B] = 0
whexr LA - -
e [c] [0 1 24, -1 -24]

Solving for 322, substituting this solution
in R2, rearranging the terms and redefining the
new variables, we obtain the new regression Ry as
follows

Baa = Bp + 2d0By3 - 2408,y

~

y = Byxi o+ Byoxt, + Bygxd, )
+ (By, + 2d8,4 - 2d0823)x52 + 623x£3
= Brady *+ Bty + %))
+ B 't ')+ v - '
13(x13 2d0x22) 323(x23 2dox23
that is, .
Ry: ¥ = lel + 82x2 + B3x3 + B4x4
where
¥ =1 for all trees
Xy = d for all trees
X3 = dziif tree diameter < d0
= do(2d - do) otherwise
Xy = 0 if tree diameter.£ d0

(d - do)2 otherwise

In terms of the individual class regres-
sions, R3 can be written as

Ry: v = 811 + Blzd + 613d2 if tree diameter <d,
. 2
=B + By + 8,00
P11 =By Bip =By By3=8y,

2
Bap =B+ agB, -8y

if tree diameter > do

822 =32 + 2d0(B3 -34) and323 =B4

The individual class regression coefficients
can also be written, for i=1,2 and j=1,2,3 as

8
. = [a;:1'[B]
where + H
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[a;;1' =011 0 0 0]
laj,]' = (0 1 0 0]
[a13]' = [0 0 1 0]

layl' =1 o0 -d% a3

lagy]' = [0 1 24y -2d,]

[a23]' [0 0 [} 1]

The procedure to estimate the regression Ry
is to apply the least squares method to the
sample data vy, Xyr Xy, Xg and X4 (or the weighted
least squares method to the transformed sample
data u, Vir Ve Vg and v4). More specifically,
we define the matrices of sample data [Y] and [X]
{or [U] and [V] in the case of weighted least
squares) and we calculate the matrices of the
sums of crossproducts [T] and [P], the vector of
regression coefficients [b] and the covariance
matrix [sbb] of [b] by the usual formulae. This
yields the four regression coefficients bl’ bz,
b3 and b4 and the estimates of all their vari-
ances and covariances.

It is necessary sometimes to show the indi-
vidual class regressions in explicit form, that
is, to define the giant size vector [B] of regres-
sion coefficients as

[[bll' [b21']
b

b1y Py

{B]"'

13 Py byy  by3l

where bi' = [ai-]'[b] were defined above. To
calculaté the variances and covariances of bi' is
much more complex; for each bij and bhk one
should use the formula

Covibyys bpy) = lag4]1'[Sppllapy]
For example, the reader can verify that

Covibyys byy) = [a3;1"[Sppllagy] = Sy

11
Covibyys byp) = lag;1'(Sppllagy) = 8y 4
172
Cov(byys byy) = lagy1'Isyllay]
= g 2 +dzs
b b - d’s 0%b_b
171~ %% b 14

etc.

It may be a good idea, at this point to
verify that our regression Ry is continuous and
that the two branches have equal derivatives at
d=d0. Then,

(1) R3 is continuous at d=d0 since
B
b1+ Bado + Bady
= B _ 4% 2 28 _ 542 2
1 - do°3 + dgfy + agB, + 2d585 - 2488, + a28,



2
51 + d032 + dgB

B+ ®

3

2
129 *+ B13%
and
(2) Rg has a derivative at d=d, since

derivative of right-hand side branch =

fyy + 2483

B, + 24,85 - 2d,8, + 28,4,

32 + 2dpBy = By, + 2d813

derivative of left-hand side branch

Note that, to apply this procedure one needs
to know the value of dO' Ordinarily this is not
the case. However, if one knows the approximate
region (range of diameter values) where the re-
gression function changes its form, one can use
trial and error and determine that value of d0
for which the sum of squared residuals is
approximately minimized.

Sometimes one may have doubts about the
curvilinearity of one or the other branch. To
test the null hypothesis that B =33=0 one can
use the test statistic t=b3AJS;J§ which has the

33

t-distribution with (n-4) degrees of freedom. A
similar test can be devised for the null hypothe-
sis 32 =B4=0. To test the null hypothesis that
simultaneously 313=323=0, that is B,=B,=0, one
can use the F distribution; the unrestricted
regression is Ry and the restricted regression is
the straight line

A

Rg: ¥ = B+ Bpa

Another null hypothesis of interest may be that
of two identical parabolic branches, that is,

B11 = Boys Bpp = Byy and By = Byy

A first test starts with the giant size regres-
sion Ry defined as the unrestricted regression
and regression Rg

A 2
Rg: y = 31 + Bzd + B3d
as the restricted one. The test statistic is
F = (n-6) (CR{SS-CRgSS)/(3) (U;SS)

with 3 and (n-6) degrees of freedom. A second
test starts with regression R3 defined as the
unrestricted regression and R5 as the restricted
one. Note that in this approach the three equali-
ties 311=321, 312=322 an§ B;3=32 reduce to the
same equality 33=§%. This is because Bll=821 can
be written as

Bl = Bl + d0(84_63)
and this implies that 34-B3=0. Similarly, for
%2=%2

implies that B,=B,. Finally, B ,=8,. is a dif-
ferent way of expressing the same equality 33=34.

The restricted regression is Ry because

9 31 + Byd + 83(éz+0) for tree diameters <4,

Bl + 82d + 83(0+éz) for tree diameters >d,
For more on piecewise regressions and an

illustrative example, the reader is referred to
Cunia (1973).

Harmonizing Biomass Regressions of Nested

Components

A problem that arises quite often when bio-
mass regression functions are estimated for vari-
ous tree components, is that the estimated re-
gressions may not behave the way they should with
respect to each other. For example, if one tree
component is a part of another component, their
regressions should not intersect; or if they do,
they should intersect outside the applicable
range of tree diameter.

Jacobs and Cunia (1980) and Cunia and Briggs
(1985a) have illustrated the application of lin-
ear regression with dummy variables techniques to
the problem of harmonization of a set of regres-
sion functions estimating the biomass of the tree
bole up to various top diameters. The reégres-
sions were forced to be similar in shape, the
spacing between successive regressions had to
behave rationally over the range of tree diame-
ters of interest and the regressions were not
allowed to cross over. It is the objective of
the present section to illustrate the application
of this approach to the harmonization of a speci-
fic set of nested components. 1In the present
context, we shall define nested compénents as a
set of successive components such that the bio-
mass of one is smaller than, or at most equal to
the biomass of the component preceding it in the
set.

To better illustrate the techniqué let us
consider the specific problem of estimating the
biomass regression functions for the following
six components; component 1 = entire tree bole,
component 2 = bole up to 10 cm of top diameter,
component 3 bole up to 15 cm of top diameter,
component 4 = bole up to 20 cm of top diameter,
component 5 = bole up to 25 cm of top diameter
and component 6 = bole up to 30 cm of top diame-
ter. We have a sample of trees where each tree
is measured for the biomass of at least one and
as many as all six bole components.

An overall set of regression functions are
desired, one function for each component so that
(i) no part of a component may have more biomass
than the component itself, (ii) the spacing be-
tween the regressions of the successive compo-~
nents should follow a reasonable pattern, (iii)
the biomass estimates of the set should be in-
creasing functions of tree diameter and decreas-
ing functions of top diameter and (iv) no biomass
estimate should be allowed to be negative within
the applicable range of tree breast and top diam-
eter.
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To construct a regression model to fit the
set of six regressions, one for each component,
we shall start with a decision about the form of
the regression function. Past experience has
shown that (i) the regression function of the
bole biomass y (of some component) on tree diame-
ter at breast hejight @ is of the parabolic form §
= Bl + 32d + B3d2 and (ii) the conditi%nal vari-
ance of y given d is proportional to 4. Let us
assume here that an analysis of the sample data
shows that these assumptions are sufficiently
well satisfied and, thus, they can be used as the
assumptions of our basic regression model.

We shall now define the six dummy variables

D.

i 1 if component i,

0 otherwise

for i=1, 2, ..., 6 and the doubly subscripted
variables

xij = Dixj for all i=1,2,...,6 and j=1,2,3

where x1=1, x2=d and x3=d2. The giant size re-
gression can now be written as

. va=0B
Ry: ¥y = Miixy
+ B

+ B + B

12%12 13%13
21%21 * Boo¥po + By3Xy;
+ caee.

+ Beixe1 + Bga¥Xgy * Be3Xes

Note that, the giant size regression can
also be written as a set of six individual compo-
nent regressions

311 + Biod + 813d2 for component 1

y

821 + 822d + Bz3d2 for component 2

861 + Bszd + 863c12 for component 6

Because all regression coefficients are now
contained in the same giant size regression, we
can force them to enter into specific relation-
ships. For our specific problem, there are two
approximate relationships that seem reasonable.
These relationships can be expressed as null
hypotheses and, thus, can be tested for signifi-
cance.

Relationship 1: The difference between the
biomass of two components of the same tree is in-.
dependent of tree size. Expressed otherwise, the
six regression functions are "parallel”, that is,
the "distance"” (on the vertical direction) between
two regression functions is the same over the
entire range of tree diameters.

This relationship can be justified by the
following arguments. The difference between two
bole components of the same tree is a log with
end diameters equal to the top diameters of the
given two components. Of course, we assume here

i6

implicitly that both components can be defined on
the tree. It is also reasonable to expect the
shape of the upper part of the tree bole to be
approximately the same for the trees of all
sizes. This implies that the length and the end
diameter (and, thus, the biomass) of this log are
agproximately the same for the trees of all
sizes. Of course, there are differences between
individual trees of the same or of a different
size. But on the average we shall expect to
have, for a component i<j =1, 2, ..., 6,

¥i - ¥y = By 4B ,a483a%) - (By)484,d+853d%)

a value which is independent of the
tree diameter 4.

This implies that %2=B-2, Bi3=8-3 and the dif-
ference ‘311'3'1) represents the “expected biomass
of the average” log expressing the difference
between the two bole components i and j.

The null hypothesis that expresses this
relationship in the form suitable for testing is

Byz =Byp = .. = B¢y and

Bi3 =By3 = ... = B3

To test this null hypothesis, we apply the proce-
dure outlined in a previous section. The giant
size regression is the unrestricted regression Ry
and the restricted regression is
5o 2
Ryt ¥ = Byyxyy + Byd + Byd

+ B

2:

+ B

21%21 31¥31 * .- ¥ Be1¥eg

Let us assume that this null hypothesis has
been accepted and the new réegression function is
of the form R,. Then, we may continue with the
testing of another relationship that seems also
reasonable, namely

Relationship 2: The spacing between the
regressions of successive bole components (which,
under relationship 1 are "parallel") varies in a
"quadratic" fashion. The spacing may be defined
as the difference between the heights (the inter-
cepts) of the regressions. If we assume that the
intercepts %1 are of the parabolic form

2
Bl =By + B2y + Bgzy
where z; = top diameter = 0,10,15,...,30, the
height of successive regressions would change in
a quadratic fashion. This relationship can be

justified by the following arguments.

Consider a large tree'that,has all six com-
ponents and section the tree at the points of top
diameter equal to 30, 25, 20, 15 and 10 cm. This
yields six sections or logs, which starting from
the top of the tree will be denoted here as log
1, 2, ..., 6. Note that bole component 1 con-
tains all six logs, bole component 2 contains
only the logs 2, 3, ..., 6, etc. and that each
log (except log 6) represents the difference
between two sSuccessive bole components. The
volume (and, thus, the biomass) of each consecu-



tive log varies with the length (which may be a
linear function of the top diameter) and the
square of the log diameter (which goes for con-
secutive logs from 0 to 10, 15, ..., 30 cm).

The null hypothesis associated with this
relationship is that, for some fixed parameters
Bl, 84, and B, we have the relationships

811 = B

B21

1

Bl + 1064 + 1008,

B8
31 61 + 158, + 2258,

or, in terms of the new variable z; = o, 10, 15,
..., 30,

= 2

1 =8y *Byz; +Bg2;

The restricted regression for this null hypothe-
sis is

. = 2 2
Ry: y..61+ %d+ %d + Byz + Bgz

and the unrestricted regression is R, above.

For a numerical application of this tech-
nique, the reader is referred to Jacobs and Cunia
(1980) who use the weighted least squares method
to estimate the regressions and test the null
hypotheses. Because the biomass of the various
components of the same tree are not statistically
independent, Cunia and Briggs (1985) use the
generalized least squares method to estimate the
same regressions and test the same null hypothe-
ses.

Forcing Additivity of Biomass Regressions

If a tree component is subdivided into sev-
eral mutually exclusive and collectively exhaus-
tive subcomponents, it is usually desirable for
the regression estimate of the biomass of the
component to be equal to the sum of the regres-
sion estimates of the biomass of the subcompo-
nents. For example, if we assume that proper
definitions of the components are given, the
estimate of the bole biomass should be equal to
the sum of the estimates of the unmerchantable
top biomass and the biomass of the merchantable
bole.

To define the problem in more formal terms,
let us assume that (i) the tree is subdivided
into (s-1) mutually exclusive and collectively
exhaustive components, (ii) the biomass of the
component i =1, 2, ..., (s-1) is denoted by y.
and the total biomass of the tree by y and (iii)
for some independent variables x,, x2, ceey X
the regression function of the component i = 1,
2, ..., s is denoted by

~

Y; < ri(xll Xor eeoes xm)

Then, it can be shown that (i) in the absence of

measurement error, the value Yg of a particular
tree is equal to the sum of the values Y1r Yoo
ceer Ygq and (ii) the :true regression value of the

total ? is equal to the sum of the true regression

values y , 1 =1, 2, oo, (s8-1).

Consider now a representative sample of n
trees and its n sets of sample values Yyr Yor
coes Ygo It is then known that, if the regres-
sion functions of the component parts and that of
the total are estimated separately, the resulting
biomass regressions are not necessarily additive.
And this is true in spite of the fact that, for
every sample tree, we have Y1t ¥y e ¥ Ys -1 =
Yg- To insure additivity is a problem consi-
dered, among others, by Kozak (1970), Cunia and
Briggs (1984, 1985b), Chiyenda and Kozak (1984)
and Reed and Green (1985).

One can recognize three specific methods to
insure additivity.

Method 1 - The "best" (from a statistical
point of view) regression function is calculated
for each component Yir i=1, 2, ..., s-1 sepa-
rately, by whatever procedure is thought best.
The regression function of the total Yg is then
defined as the sum of the regression functions of
the components, that is

~

¥g = §1 + 92 + ... + §s_1

The method can be used with linear, non linear or
combinations of linear or non linear functions;
different independent variables x can be used in
different regressions; it is not necessary that
all components be measured on all sample trees
(that is, missing data for some components of
some trees presents no problem); and it calcu-
lates the "best" regression for each component.
On the other hand, the estimate of regression of
the total is not necessarily the "best" and what
is an important drawback sometimes, the method
does not provide means for the estimation of the
error of the total regression; the regressions of
various components are not statistically indepen-~
dent and the error of their sum is practically
impossible to estimate.

Method 2 - The additivity is obtained by
using the same independent variables Xyr Xor eeny
Xm in the linear regression function of all com-
ponents. If the weighted least squares method is
used, the same weights must also be used in all
regressions. The method has the main advantage
that it is simple and easy to understand. On the
other hand the regression functions of some com-
ponents may not be the "best" in the statistical
sense; regression coefficients may be estimated
even though they may not be significantly dif-
ferent from zero; the same weights must be used
with the weighted least squares method even when
different weights may be better for different
regressions, etc. Furthermore, if some data for
some components are missing for some trees, the
method fails to insure additivity; to obtain this
additivity, one must ignore all information from
the trees that have some data missing.

Method 3 -~ The additivity is obtained by

47



using linear regression techniques with dummy
variables., More specifically we assume that the
regression function of the biomass y on R IY

ceer Xp within a component i is of the linear
form
A g 8
Yi = Pip%p * Pigxp 4 eeo + B,
for i=1, 2, ..., s

These s regression functions are expressed to-
gether as the giant size regression

~

= B
Y = ®11%14 + ... +8B

+

Bllez 1m*1m

+ B + B + ... +8B

21%21 22%22 2m*2m

+ ... +B_x

8
M sm®sm

+B

s1¥s1 s2%s2

subject to the additivity constraints

B B =
11t 21t e B = By
B =

12 Bt Beo1,2 = a2
Blm + B2m ol Bs—l,m = Bsm

In this regression,

X:: = X

ij i if component i

0 otherwise

for alli=1, 2, ..., sand j =1, 2, ..., M

It is not necessary for the regression func-
tion of each component to contain the same inde-
pendent variables as all others; regression coef-
ficients B . may be made equal to zero as de-
sired; différent sets of weights (in the weighted
least squares method) may also be used for dif-
ferent regressions; missing biomass measurements
for some components of some trees present no
problem; the set of all regressions is "best" even
though each individual regression is not neces-
sarily the best; it is possible to measure the
error of each regression separately using the
information from data of all components. The
fact that the biomass measurements of the various
components of a given sample tree are not inde-
pendent presents no problem as the generalized
least squares method will take this dependence
into account. The main drawback of the method is
the fact that it is not well known and is not as
easy to understand and apply as the other two
methods.
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ON THE ERROR OF TREE BIOMASS REGRESSIONS: TREES

SELECTED BY CLUSTER SAMPLING AND DOUBLE SAMPLING
Tiberius Cunia

Professor of Statistics and Operations Research,

SUNY College of Environmental Science and Fores-
try, Syracuse, NY, 13210

The least squares method used in the estima-
tion of biomass regression functions requires
that the sample tree values be statistically
uncorrelated. This requirement is normally sat-
isfied when the trees are selected by simple
random sampling. However, this is seldom, if
ever the case in real life; the trees are more
efficiently selected in clusters and by methods
other than simple random sampling. As the compu-
ter packages used in the least squares estimation
of the biomass regression functions assume that
the tree biomass values are uncorrelated, valid
questions are raised about the validity of the
estimators [b] of the vector of regression coef-
ficients and [Sbb] of the covariance matrix of
[b]. To insure the validity of these estimators
one would normally have to modify the least
squares techniques so as to take into account the
effect of the method by which the sample trees
were selected. Two such modifications are pre-
sented; one that can be applied when the trees
are selected by cluster random sampling, the
other, when the trees are selected by a two-phase
or double sampling procedure.

Introduction

In his paper, Cunia (1986a) describes an
approach to combine the error of biomass regres-
sion functions with the error from sample plots
when forest biomass estimates are calculated and
their error estimated. This approach requires
that (i) the true biomass regression function be
of the linear form

Y =By o+ Bxy 4 aew 4 Bpx0 = (8] (x)

where y is the biomass (of some tree component)
and [x) is a vector of known attributes other
than biomass and (ii) valid estimates [b] of [3]
and [S,,] of the covariance matrix of [b] are
given. Note that we haveused [ ] and [ ]' to
denote vectors or matrices and their transposes
respectively.

The standard least squares method of linear
regression as needed here is described by Cunia
(1986b). He (i) defines the basic matrices [X]
and [Y] of the values [x]) and y of the n sample
elements and (ii) calculates the estimators [b]
of the vector [B] of regression estimators and
[Sbb] of the covariance matrix of [b] by the
formulae

bl = (T1"1(P] ang

[Spp] = Syy|xT1

where
[T] = [X]'([X]
[P] = [X]'[Y]

(71! is the inverse of [T], and
= ([Y]'{¥] - [b]l*[P])/(n-m)

= estimator of the conditional vari-
ance of y given [x]

Syy|x

In the same paper, Cunia (1986b) describes
the changes to make in the procedure when the
least is replaced by the weighted least squares
method. Assuming that the conditional variance
of y given [x) is proportional to the known value
a“, we start by defining the new, transformed
variables u = y/a and [v] = [x]/a. These new
variables are arranged in the new matrices [V]
and [U] of sample data and the estimators [b] and
[Sbb] are defined by the formulae

(bl = [T]"1[P] and

(Spp! = Suu]v[T]-1
where
[T] = [V]'IV]
[P] = [V]'[U)
and
Syu|v = ([U1'[0] - [b]'[P])/(n-m)
= estimator of the conditional vari-
ance of u given [v]
Note that
2

= a

Syv|x Suu|v

= estimator of the conditional vari-
ance of y given [x]

For the special case of the regréssion func-
tion of biomass y on tree diameter d, the condi-
tional variance of y given d can be assumed to be
agproximately proportional to d4, that is, a =
d“. When the regression of biomass y on tree
diameter @ and height h is desired, the condi-
tional variance of y given @ can be assumed to be
agproximately proportional to d4h2, that is, a =
d“h.

The method of least or weighted least
squares in its standard form above assumes impli-
citly that the variables y and [x] are measured
in the interval or ratio scale. When some of
these variables are qualitative and their mea-
surement scale is nominal or ordinal, one may
still use the least or weighted least squares;
but then, these variables must be transformed
first to vectors of dummy variables. These pro--
cedures are not specifically needed here, even

‘though they can be applied with the methodology

described in this paper. The interested people
are referred to Cunia (1986¢c), among others.

To obtain valid estimators [b] and [sbb]'
certain basic assumptions of the least or weight-
ed least squares must be satisfied first, at
least approximately. For a more detailed discus-
sion of the relationship between estimators and
basic assumptions of the least squares regression
method, the reader is referred to papers by Cunia
(1979a, b, 1986b). This is not repeated here.

Of interest in the present study is only the
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assumption that the sample values y are statisti-
cally uncorrelated. This assumption is automati-
cally satisfied when the trees are selected by
simple random sampling. However, this is seldom,
if ever the case; it is much more efficient to
select the sample trees in clusters or by methods
other than simple random sampling. As the compu-
ter packages used in the least squares estimation
of the biomass regression functions assume that
the tree biomass values are uncorrelated, valid
questions may be raised about the validity of the
estimators [b] and [Sbb]. To insure their vali-
dity, appropriate modifications must be made to
the standard least squares method; modifications
that take into account the effect of the method
by which the sample trees were selected.

The objectives of the present paper are
those of presenting two modifications of the
least or weighted least squares; one that can be
applied when the sample trees are selected by
cluster sampling, the other when the data of the
sample trees are selected by a two-phase or dou-
ble sampling design. The basic discussions on
these two modifications can be found in Cunia
(1981, 1982), Briggs and Cunia (1982) and Cunia
and Michelakackis (1983). Using simulation tech-
niques, these modified least squares procedures
were later tested by Gillespie and Cunia (1986)
and Michelakackis and Cunia (1986), among others.

Sample Tree Selection by Cluster Sampling Method

The method of cluster sampling as considered
here can be simply described as the selection, by
some random procedure of groups or clusters of
sample trees (rather than individual trees) from
a given forest area of interest. Usually, these
clusters consist of trees growing within sample
plots of fixed area or trees counted by relascope
from fixed points in the forest. They may also
consist of subsamples (fixed number or percent-
ages) of trees selected from randomly selected
plots or points.

Ideally, this requires (i) a prior subdivi-
sion of the tree population into non-overlapping
plots of fixed area, and if some conditions are
satisfied, overlapping plots or relascope points,
(ii) a random sample of plots selected by some
statistical sampling procedure and possibly (iii)
a random subsample of trees from the plots so
selected. Strictly speaking, the cluster sam-
pling (or one-stage cluster sampling) is defined
when all the trees of the sample plots are in-
cluded in the sample and two-stage sampling (or
two-stage cluster sampling) when each sample plot
is subsampled. For convenience, both methods
will be known here simply as cluster sampling.

The way the cluster sampling is actually
applied to selection of sample trees for con-
struction of biomass tables is, however, somewhat
different. Points are selected in the forest,
more or less at random and an arbitrary number of
sample trees are selected, by some random, arbi-
trary or subjective procedure from the forest
area around these points. These trees are mea-
sured for the characteristics of interest (diame-
ter, height, species, site quality, etc. and
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biomass of various tree components) and they
constitute the sample trees from which the bio-
mass regression function is being estimated.

The main advantage of cluster sampling is
the large decrease in the average sampling costs
per tree; as more and more trees are measured
from the same location, there is less and less
ground movement of the logging equipment and
crew, It is also more convenient to work in a
few areas than go from tree to tree all over the
forest. But there are also disadvantages. One
major disadvantage is that the average amount of
information per tree decreases with the increase
of the average number of sample trees per clus-
ter; trees growing close to each other differ
less among themselves than trees growing farther
apart. A second major disadvantage is that,
unless the least squares techniques are appro-
priately modified, the validity of the statisti-
cal inferences made under the standard assump-
tions of the least squares method are highly
guestionable.

Several such modifications have been pro-
posed and applied to samples of trees. A first
modification makes use of the theory of ratio
estimators as described in standard textbooks on
sampling techniques, It is described, and the
results of its application discussed by Kotimaki
and Cunia (1981), Cunia and Gillespie (1985) and
Gillespie and Cunia (1986). This modification is
not considered here. A second modification makes
use of linear regression techniques with dummy
variables. It is described by Cunia (1986b) but,
to my knowledge, it has never been applied. It
is also not considered here. A third, probably
the best modification is to make use of the
generalized least squares method. It is a com-
plex procedure, to my knowledge has never been
applied to sample trees selected by cluster sam-
pling and is of no further interest here. The
last modification, and this is the modification
we shall discuss in this paper, uses the ordinary
weighted least squares applied to a set of appro-
priately defined cluster variables; the usual
techniques are applied to individual tree varia-
bles.

Modification of the Least Squares Regression

Method: Trees Selected by Cluster Sampling

Let us make the following, more formal as-
sumptions.

(1) The sample trees are selected in clus-
ters (plots) and the trees are measured for the
dependent variable y (biomass of some tree compo-
nent) and the independent variables X1r Xop weey
X (tree measurements other than biomass).

(2) The true regression function of y on
[x] is of the form

L= lel + 82x2 + oo+ Rixy = [B]"{x]
and the conditional variance of y given [x] is
proportional to some known tree value a“, that is

2.2
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where a“ but not o“ is known.
(3) The sample values y within a cluster
may be correlated, but the values y belonging to

different clusters are uncorrelated.

There are also additional implicit assump-
tions not mentioned here as, for example, that
conditional probabilities distribution of y given
[x] is normal, that the variables x are fixed
variables measured without error, that the number
of clusters is greater than the number m of
variables, that we deal with static populations
that do not change with time, etc.

Let us now sum up, for each cluster, the
tree variables y, X1v Koy eeey Xp and write the
new cluster variables

t = 2y, §; = lel Sy, = szl--—., Sm = me

where I means summation over the trees of a given
cluster. For example, if the cluster is a plot
and y = tree biomass, X = 1, X, = tree diameter
d and Xy = d“, the new cluster variables are

t =Ly = plot biomass

$q = le = number of trees per plot

s, = 5 = sum of tree diameters 4 per plot

= sum of squared diameters a? per
plot

3]
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As the regression values y of the biomass of
the trees of a given plot can be written as

-~
y = lel +BoXy ¥ L.+ gox

we can also write the regression value of the
plot biomass as

A A

t =Ly = UBjx; + Boxy + v + guxp)

Bls1 + 82s2 +oeeeee + By = (8] [s]

Although this looks very much like the true
regression of t on [g], it is not. The true
regression of the plot biomass t on plot vari-
ables [s] is defined as the conditional expected
value of t given [s]. Its form is not necessar-
ily the same as that of the true regression of
tree biomass y on tree variables [x]. Various
subdivisions of the population of trees into sets
of plots yields various regressions of t. The
fact that the regression of y on [x] is linear
does not mean that the regression of t on [s] is
also linear.

Let us consider now the total biomass of the
given forest population. Obviously, the total
plot biomass is equal to the total tree biomass
and also equal to the total regression values of
the tree biomass. This means that we can write

Iy = 51§ = 5t = 3t
B1Ixy + BoIx, + ... + BmZ¥m

I

= 31251 + 32252 + ...+ BmESm

and we can view the function t = [R]1'[s] as a
model for the regression function of plot biomass
on plot variables [s]. This in turn implies that
we can use the sample plot data to estimate [B].
Furthermore, because t is the sum of several
variables y with variances a“g“, it is reasonable
to assume that the conditional variance of t is
at least proportional, if not equal to the sum

¢“La‘) of variances, where again § means summation

over the trees of a given plot.

Let us reverse somehow the process and make
the following assumptions.

(1) The true regression function of  the
plot biomass t on plot variables 814+ Sys -eey S
is of the linear form

%= Bysq + Bysy + oo + Busp = [B]'[s]

and the conditional variance of t given [s] is
proportional to the known sum of tree values LaZ.

(2) The sample plot values t are uncorre
lated random variables. ‘

(3) The probability distribution of t given
[s] is normal; this assumption is needed only for
testing null hypotheses or calculating interval
estimates.

Then, the weighted least squares estimates
[b] of [B] and [Sbb] of the covariance matrix of

[b] are the least squares estimates of regres-—
sion oﬁr;hs_transfor variables u=tAr a‘ on
v1=sl/ ra“, v2=s2/ a® weeea vy=s AT a“. That

is, if we define the matrices of sample plot
values u and Vir Vs eeey Vo as [U] and [V] and
the matrices of the sums of crossproducts as
[T] = [v]'[V] and [P] = [V]'[U], then

(bl = (117 1P}

(5] = suu|v[T1‘1
where
Syu|v = (IUI'[U] = [b]'[P])/(q-m)

where g is the number of sample clusters.

Note what we are doing. We assume a linear
regression function t = [g]'[s] of the plot bio-
mass t on plot variables S1r Syr eees Sy and,
using the sample plot data, we calculate the esti-
mates [b] of [g] and [sbb] of the covariance
matrix of [b]. The total biomass in the forest
area can now be written successively as the follow-
ing expressions

N
It =3t = Z[R]'[s)
This is due to a property of the linear least

squares regressions; the sum of regression values
is equal to the sum of actual values.

2%=3§51+5}52+---+B§Sm

Blle +.B§x2 + ... + Bnpf‘m' because
the variables s; are defined as the sums
of the variables Xy in a given plot

(]

B Xy + By +., ..+ B X)) = IIB1'I[x]
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= Zi\/ = Xy, because sum of the tree bio-
mass (Zy) is identically equal to
the sum of the plot biomass (It).

The vector [B] of the function'? = [g]'[x] is not
the vector of coefficients of the regression
function of tree biomass on [x]; it is the vector
of the regression function of plot biomass on
[s]. Nevertheless, the function ¥y = [g]'[x] can
serve as an approximation or a substitute for the
true regression function of the tree biomass, and

[b]'[x] may serve as an estlmate of this
regres51on function. Whether y [b]l'[x] is a
good estimate of the true regression function of
y on [x] depends, among other things on how close
the vector [B] of the plot regression is to the
vector [g] of the tree regression. Only experi-
ence with actual forest biomass data will show
whether the proposed modified procedure above
yields acceptably good results.

It may be of interest to show that this
modified least squares method makes sense when
applied within the specific forest inventory
design having plots, not trees as the sampling
units. Consider, for example, the two-phase or
double sampling design consisting of (i) a first
phase, relatively large, simple random sample of
plots whose trees are measured for the variables
Ko Xgp eees Xp and (ii) a second phase, rela-
tively small, simple random sample of plots whose
trees are measured for the biomass y in addition
to the variables x,, Koy eeer X of the first
phase. The plots of the first phase provide plot
measurements 81r Sgr eer Sp and estimates [B]'

s S ] of the corresponding population
means ang [S-—] of the covariance matrix of [s].
The plots of the second phase provide estimators
[b] of [B] and [sbb]of the covariance matrix of
[b] associated with the biomass regression func-
tion

§ = Byxg + Byxy + ...+ Bpxy = [8]'[x]

by the modified procedure presented above.

Then, the estimate of the mean biomass per
plot is

T = [bl'[s]
and an estimate of the variance of t is
Sz = [b]'[s55]1 [b] + (81" (S, 1(5]

The estimator t is known as the double sampling
with (multiple linear) regression estimator. It
can be shown, see Cunia (1986a) that the same
estimator T can be obtained by the usual procedure
where (i) the biomass of each sample tree of the
first phase is calculated by the regression y =

[b]'[x], (ii) the biomass of each plot of the first

phase is calculated as the sum of the biomass 9 of
all its trees (this is the same as the value given

by the formula 2 = [bl'[s] applied to the variables

S1r Spy eees Bp of the given plot) and (iii) the
average T is calculated as the average of the plot
biomass values t.
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An Illustrative Example

To show how this procedure can be applied we
shall consider the following numerical example.

Example 1. Consider the data from the 353
sample trees used by Cunia (1986b) to estimate
the following biomass regression,

= 2
y = b1 + b2d + b3d
= byX; + byx, + byxy = [b]'[x]

y = total above ground tree biomass (pounds
of green weight)

d = tree diameter at breast height (inches)

[b]' = [5.1818118 -25.653078 12.988357])
= estimate of the vector [8] of regression
coefficients
and
8715.8855 -2222.4882 128.69992
[Sbb] =] =-2222.4882 581,99570 -34.776995
128.69992 ~34.776995 2.1744582

= estimate of the covariance matrix of (b].

These trees have been assumed to have been
selected by simple random sampling in order for
Cunia (1986b) to illustrate the application of
the ordinary weighted least squares method. In
reality they were selected by simulated cluster
sampling; more specifically by a two-stage simu-
lated sampling procedure. In the first stage, 30
one-fifth acre sample plots were selected at
random and without replacement, in the second
stage 30 percent of their trees were selected,
again by simple random sampling without replace-
ment. As there is a total of 353 trees in the
sample, the average number of sample trees per
cluster is about 12; the number vary from a low
of 1 to a high of 22 trees.

To apply the modified least squares proce-
dure shown here we start with the grouping of the
trees in clusters by plot number and the calcula-
tions of the following plot variables

t

plot biomass (Cy)

1]
number of trees (31) per plot

81
§, = sum of tree diameters (Id) per plot

§3 = sum of squared diameters (zdz) per plot
and
Zd4 = a2 = the value, such that the condi-
tional variance of t given [sl] is
assumed proportional to.

Note that the ordinary weighted least squares
method used by Cunia (1986b) assumes that the
cond%tional variance of y given 4 is proportional
to d~.

We continue with the ¢ ulation of ¢t ew
transformed variables u=t//Zd~ and vi=84 rda=,
i=1,2,3. The plot variables t, S1r Sy S3



a =J Zdl, u, vy, v, and v3 are listed in Table 1.
For convenience, some of the values were reported
with a limited number of significant digits, even
though, to calculate them the computer used dou-

ble precision.

The matrices of the sums of cross products

are
.04887035 .38092564 3.2785336

[T] = [VI'[V] =] .38092564 3.0330882 26.811322
3.2785336 26.811322 245.29889
33.258523

[P] = [V]'[U]l =} 273.51112
2520.8582

and the inverse of [T] is

12250.429 -2696.1925 130.96286
[T]_1 = | -2696.1925 603.15120 -29.888939
130.96286 -29.888939 1.5205770

As [U]'[U] = 26860.109, we finally determine the
statistics of interest

[b}’

suu|v

[131.33607 -48.59752 13.833052]
33.809815

414184.73 -91157.769 4427.8299
[Sbb] =] -91157.769 20392.431 -1010.5395
4427.8299 -1010.5395 51.410428

At first sight these values look quite dif~
ferent from the values [b] and [Sbb] calculated
by the ordinary weighted least squares method.
However, we never work with individual values of
the regression coefficients or their error; we
always work with linear combinations. For exam-
ple, if we wish to calculate the regression esti-
mate of the tree biomass of a 10 inch diameter
tree (that is, to calculate the estimate of the
average biomass of all 10 inch trees in the
forest) we use the formula

y = b1 + 10b2 + 100b3

Using the ordinary weighted least squares as
applied by Cunia (1986b) we obtain the value

5.18 ~ (10)(25.653) + (100) (12.9884)
1047 pounds

y

I

The modified weighted least squares method pre-
sented here yields the value

131.34 - (10) (48.600) + (100) (13.8331)
1029

y

The difference is about 2 percent, well within
the inherent sampling error.

The regression estimates and their 95 per-
cent confidence limits, as calculated by the
ordinary and the modified least squares proce-
dures are shown in Table 2. Note that the 95
percent confidence limits are defined by the
formula

bl'[x] * 2yfix]" [Sppl [x]

where

x]'=[1 4 a2
for d = 4, 5, ..., 26

For example, if d =10, [X]'=[1 10 100] and
the 95 percent confidence limits become

1047.487 +39.813

for a lower and upper limit of 1007.674 and
1087.300 respectively for the ordinary least
squares and

1028.666 *+ 188.294

for a lower and upper limit of 840.372 and
1216.960 respectively for the modified least
squares.

A look at Table 2 shows that the confidence
limits calculated by the modified least squares
are much wider. We did expect to have them wider
but not by that much. One of the reasons may be
the sampling error; we happened to work with a
highly unusual sample. Another reason may be
that the simulated tree population from which the
sample trees were selected is not representative
of the real life populations; we have, in the
simulated population a much larger variance "be-
tween" clusters (relative to the variance "with-
in" clusters) than what we ordinarily have in
real life. A third reason is the fact that the
two sets of confidence limits refer to two dif-
ferent things; for the ordinary least squares the
limits refer to the average biomass per tree for
the class of all population trees that have the
same diameter, while for the modified least
squares they refer to the average biomass per
plot (cluster) of all population plots that have
One tree of the given diameter. As our sample
has no such plot (and plots with one tree only
are very rare), the biomass table constructed by
the modified least squares contains regression
estimates calculated for values of the indepen-
dent variables s that fall outside the sample
data.

It may be of interest to see the impact of
the least squares estimation procedure on the
estimates of the mean biomass per acre and its
error when the biomass regression is applied to
an actual forest inventory data. Let us refer to
Example 1 of Cunia (1986a) where the ordinary
weighted least squares biomass regression was
applied to a sample of 926 one-fifth acre plots.
He has then found the following results

w = 120480 pounds
= estimate of the mean biomass per acre

S(1) = 12415782 = estimate of the variance of w
ww when the error of the biomass regression
is ignored

S = 19059566 = estimate of the variance of w
when the error of the biomass regression
is accounted for

As the reader can verify, 65.1 percent of the
variance is associated with the error of the
sample plots and 34.9 percent is associated with
the error of the biomass regression.
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Table 1 - The plot variables t = biomass ounds) , S1 = number of trees, s, = sum of diameters 4, S3 = sum
of squared diameters d<, a==VZdE, u=t/a, v = si1/a, Va2 = sp/a and vy = s3/a used in Example 1.

Plot t S1 ) S3 a u vy vy v3
1l 11726 - 13 110.4 1018.98 333.19 35.19 .03902 .3313 3.058
795 2 15.0 118.98 92.39 8.60 .02165 .1624 1.288

3 16870 le 151.7 1545.77 437.49 38.56 .03657 .3467 3.533
4 6580 3 33.6 571.58 512.61 12.84 .00585 .0655 1.115
5 12705 12 97.3 854.09 296.55 42.84 .04046 .3281 2.880
6 20753 21 164.2 1605.20 595.35 34.86 .03527 .2758 2.696
7 9859 12 92.2 783.68 278.50 35.40 +04309 .3311 2.814
8 10083 10 86.1 827.35 315.37 31.97 .03171 .2730 2.623
9 355 1 6.6 43.56 43.56 8.15 .02296 .1515 1.000
10 3599 6 47.6 414.86 201.19 17.89 .02982 .2366 2.062
11 1813 2 15.4 133.16 111.01 16.33 .01802 .1387 1.200
12 7902 ) 108.9 767.25 205.49 38.45 .07786 .5299 3.734
13 6220 6 57.0 671.34 398.56 15.61 .01505 .1430 1.684
14 16828 22 189.4 1752.98 434,61 38.72 .05062 .4358 4.033
15 16512 18 164.9 1627.29 443.43 37.24 .04059 .3719 3.670
16 20102 22 202.4 2094.80 550.56 36.51 ,03996 .3676 3.805
17 15420 11 119.3 1604.55 712.55 21.64 .01544 .1674 2.252
18 4727 14 95.6 695.42 215.76 21.91 .06489 .4431 3.223
19 7270 15 108.9 825.61 229.83 31.63 .06527 .4738 3.592
20 18169 11 134.2 1912.90 767.99 23.66 .Ql432 .1747 2.491
21 10737 16 123.4 1040.30 321.68 33.38 .04974 .3836 3.234
22 9043 19 163.1 1505.33 400.50 22.58 .04744 .4072 3.759
23 12248 13 109.5 1096.81 404.10 30.31 .03217 .2710 2.714
24 8074 15 101.1 695.29 186.88 43.20 .08027 .5410 3.721
25 327 2 12.0 72.00 50.91 6.42 .03928 +2357 1.414
26 16994 13 135.8 1503.48 465.06 36.54 .02795 +2920 3.233
27 14575 9 99.1 1208.87 469.34 31.05 .01918 .2111 2.576
28 13405 6 75.9 1097.79 592.85 22,61 .01012 .1280 1.852
29 18541 17 160.0 1667.92 482.82 38.40 .03521 .3314 3.455
30 9699 10 96.0 995.70 358.77 27.03 .02787 .2676 2.775

Table 2 - The biomass tables and their 95 percent confidence limits as constructed in Example 1 by the
ordinary weighted least squares (OWLS) and modified weighted least squares (MWLS); the above-
ground tree biomass is given in pounds of green weight.

OWLS MLS
diameter lower biomass upper lower biomass upper
inches limit estimate limit limit estimate limit
4 67 110- 154 0 158 541
5 118 202 225 3 234 465
6 304 319 334 223 337 453
7 443 462 482 396 469 542
8 605 631 657 513 628 743
9 794 826 859 655 814 974
10 1008 1047 1087 840 1029 1217
11 1244 1295 1345 1067 1271 1474
12 1500 1568 1635 1323 1540 1757
13 1775 1867 1958 1592 1837 2083
14 2070 2192 2313 1855 2162 2469
15 2385 2543 2701 2106 2515 2924
16 2719 2920 3121 2345 2895 3445
17 3073 3323 3573 2577 3303 4029
18 3446 3752 4057 2803 3738 4674
19 3840 4207 4573 3025 4202 5378
20 4254 4687 5121 3245 4693 6141
21 4687 5194 5701 3462 5211 6951
22 5141 5727 6314 77 5757 7838
23 5614 6286 6958 3890 6331 8772
24 6108 6871 7634 4102 6933 9763
25 6622 7482 8341 4313 7562 10811
26 7155 8118 9081 4522 8219 11916
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Using the biomass regression estimated by
the modified weighted least squares method and
the method and statistics of Cunia (1986a)
example, we find

w = 120672 pounds
estimate of the mean biomass per acre

(1
SWJ = 12280114 = estimate of the variance
of w when the error of the biomass
regression is ignored
Sw = 49544699 = estimate of the variance

of w when the error of the biomass
regression is accounted for

In this case, 24.8 percent of the error (expres-
sed as variance) is due to sample plots and 75.2
percent is due to the biomass regression.

In terms of the 95 percent confidence lim-
its, an expression that is more meaningful to the
layman, we have the following

(1) When the ordinary weighted least
squaregs method is applied
w+ 2 Son = (120480 + 7047) pounds

and
wt ZVSww = (120480 + 8731) pounds
(2) When the modified weighted least
squares _method is applied
W+ ZVSzIs = (120672 4+ 7009) pounds
and ww -

wt 2VSww = (120672 * 14078) pounds

As the reader can verify, the effect of the
estimation procedure has a negligible effect on
the value of the mean biomass per acre estimate,
but may have a critical effect on the estimation
of its error. Of course, the values above refer
to a simulated population and the corresponding
values for natural populations may be different.
However, these results may show that the estima-
tion may have a critical effect on the values of
the estimates of the error.

Sample Tree Selection by Double Sampling

A common method used in the selection of
sample trees (for biomass tables construction)
consists of two main phases. In the first phase,
a relatively small sample of trees is selected by
some random procedure, and the trees are measured
for diameter d, height h and biomass y. In the
second phase, a relatively large sample of trees
is selected, again by some random procedure and
the trees are measured for diameter @ and height
h alone; these trees are not measured for biomass
y. The data of the trees from the first phase
sample are used to estimate a relationship be-
tween biomass, diameter and height; the data of
the second phase sample trees are used to esti-
mate a relationship between tree height and diam-
eter; and finally, the two relationships are
combined, in some way, to estimate the regression
function of tree biomass on diameter.

There are two major computational procedures
to combine the data from the two phases. They

are described, among others, by Clutter et al
(1983) for forest mensurationists and by Cunia
(1982) for forest biometricians. Here is a short
description of these procedures.

Procedure 1 - The regression function of the
tree biomass y on diameter d and height h, say
y-r (d,h), is first estimated from the sample of
tree data of the first phase. The regress1on of
tree height h on tree diameter 4, say (d), is
estimated next from the data of the secong phase
sample trees. Then, the estimate of the regres—
sion function of the biomass y on diameter alone
d is defined as

A A
Yy = r(d) = r,(d,h) = £y (d,ry(d))

This means that the average biomass per tree of
given dlameter d, is estimated by the regression
value yo—rl(do,h0 , where 0 is calculated as
0—rz(do), the estimate of the average height of
the tree of the given diameter do.

This procedure has been used in forest in-
ventory for a long time. Data from a sample of
trees, usually selected from logging operations,
are used to construct a standard two-way volume
table (by diameter and height) by graphical first
and by least squares techniques later. The trees
from a second sample, usually selected from the
sample plots of the current inventory are mea-
sured for diameter and height. Their data are
used to estimate a relationship between tree
diameter and height, again by graphical or least
squares methods. The one-way local volume table
(on diameter alone) is finally constructed from
the standard two-way volume table as follows: the
average volume of a tree of diameter d, is esti-
mated as the volume given by the two-way table
for (i) the given diameter do and (ii) the height
h0 obtained from the relationship diameter-height
of the second sample above.

Procedure 2 - As in Procedure 1 above, the
sample trees of the first phase are measured for
biomass y, diameter d and height h and their data
are used to estimate the regression function
y—r (d,h). The second phase sample trees are
measured for diameter 4 and height h. Instead of
estimating a relationship diameter-height, how-
ever, the one way tree biomass table is con-
structed as follows. First, the biomass y of
each individual tree of the second phase sample
is estimated by the regression function y—rl(d h)
of the f1rst phase. And then, the regression
function % y=r(d) is estimated from the measured -
values d and the estimated values y of the second
phase trees by the usual (graphical or) least
squares techniques.

While the procedures for the estimation of
the volume or biomass regressions above were
known for a long time (and they are also of
common use today) little was done to estimate the
error of these regressions. An attempt was made
lately by Cunia (1982) who proposed two ap-
proaches to estimate the error of the regression
function of tree biomass on diameter, one for
each procedure above, when (i) the samples of the
two phases are statistically independent, (ii)
all regression functions are assumed to be linear

55



‘and (iii) valid estimates of the covariance
matrices of the regression coefficients of
§=rl(d,h) and h=r2(d) for Procedure 1 and
A .

y=r1(d,h) for Procedure 2 are given.

The approach for Procedure 1 was further
described, and its applicability demonstrated, by
Cunia and Michelakackis (1983). Using simulation
techniques, Cunia and Michelakackis (1986) have
shown that this approach leads to valid and re-
liable estimates of the error. It is this ap-
proach we shall discuss here. The other approach
devised for Procedure 2 has never been applied,
to my knowledge, and will not be considered here.

Modification of the Least Squares Regression
Method: Trees Selected by Double Sampling

To simplify the description of the procedure
we shall assume that the three regressions are of
the form

§=xr,@mn =+ ozdzh + 03d + 4h + 0gdh

2
+ 0.d
A _ 2
h=x,(d) =Y + Y,d + Y,
and
9§ = r(@) = o+ a,a? (v, +7,d+1,8%)
2
+0ad + 0, (Y +Y,d+y,d )
2 2
+ 0 d (Y4 ,d4Y 53%) + a.d
=B, + B,d + ByaZ + Bad + Boat = 181" (x)
where
By = (0q+0,Y), By = (A340,Y,+0gY,)
By = (Y, +04Y3+05Y,+0g)
By = (RYp+05Y3), By = o5Y3

and the definition of [x] is straightforward. We
have used, for convenience, different notation to
denote the coefficients of the different regres-

sions.

Let us assume that we are given estimates [a]
of [a] and [¢] of [Y] and estimates [Sa ] and [SC
of their covariance matrices. Then, the estimate
[b] of [g] is easily derived as

al + a4c1
a3 + 8402 + ascl

[b] = a,cy + a,c, + agc, + ag

3202 + a503

22¢3 §
The objective now is to calculate [sbb]’ an esti-
mate of the covariance matrix of [b].

It can be shown, see Cunia (1982), Cunia and
Michelakackis (1983) and Michelakackis and Cunia
(1986) that [sbb] can be defined as

[Spp] = [CIIS,,1[CI" + [AI[SS.]IAl"
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where - -

a; a, 0 0
as ag a, 0
(]l =lag a, ag a,

1 0 0 ¢ 0 0

0 0 1 <, c 0

[cl 0 € 0 cq ¢, 1
0 Cy 0 0 Cq 0
0 c4 0 0 0 0-
L.
[saa] = estimator of the covariance matrix
of [a]
[Scc] = estimator of the covariance matrix
of [cl
and
N 0 [o]
[Sgel =
[ ]
[01' IS¢l

= estimator of the covariance
matrix of the extended vec-
tor [c*]' = [1 € ©, c3]

It may be interesting to note that, in matrix

notation
[b]' = [cl[a] = [A]llc*]

Some of the coefficients a and c may be made
equal to zero (when they are not significantly
different than zero). Then, the formulae above
still apply since the corresponding rows and
columns of [Saa] and [SCC] will also be made
equal to zero. As an example we shall assume
that a =a6=0, the case used in the example of the
next section. Then

(al' = la; a, a3 a, o 0]
[a, a; © 0]
ag 0 a, 0
[A] = 0 a, o] a,
0 0 a, 0
i 0 0 0 azJ )
-53131 5a1a2 Salaa sa134 ° 0
Saja; Sazaz sazaa Sazay ° 0
[Saal =] Saja; Sajas Sasas Sajay 00
Sajay Sajay Sajag Sagay ° °
) 0 0 0 0 0
L' 0 0 0 o 0 0]




and [c*] and [C] and [SZC“] remain the same.

An Tllustrative Example

To show how the procedure of the previous
section can be applied we shall use an example
already contained in a paper by Cunia and Michel~
akackis (1983). For more details the interested
reader should refer to it.

Example 2 - Between 1967 and 1969, two hun-
dred and eighty Neorway Black Spruce trees were
selected by ¢luster sampling from all over Fin-
land by the Finnish Forest Research Institute and
measured, among other things, for their diameter
at breast height d (cm), total height h (m) and
total biomass (kg). For illustration purposes,
the 280 trees were divided into two groups; a
first group of 56 trees (the first phase sample)
were assumed measured for y, d and h and a second
group of the remaining 224 trees (the second
rhase sample) were assumed measured for d and h
alone. For convenience we shall also assume that
the sample trees were selected by simple random
(not cluster) sampling and that the trees of the
first are statistically independent of the second
group.

We start with the first phase sample of 56
trees. Assuming that (i) the true regression
function of vy on d and h is

~

y=2a h + a_dh + a d2

2
+ azd h + a3d + a4 5 6

1
(ii) the conditional variance of y given 4 and h
is proportional to da4n? ana (iii) the null hypo-
thesis Gy = Qg = 0 has been accepted, Cunia and
Michelakackis (1983) have found the following
statistics (where, for convenience, we have re-
ported them with a relatively small number of
significant digits)

[a]' = [-3.42213 .0167680 3.72990 -~ 2.07425 0O 0]
= estimate of the vector [0]' of regression
coefficients
and
* (o]
s ] [saa] [ l]
aa .
[01] [02]
= estimate of the covariance matrix of [a],
where
[ 12.6354 .004429 -.985188 ~.919102
[S*-] = .004429 ,00000239 -.000492 ~.000249
aa -.985188 -.000492 .215943 -.060859
-.919102 -.000249 ~.060859 .203787
g g 0 0
[Ol] = lo o and [02] = o o
0 0

The data of the 224 trees of the second phase
sample was used to estimate the regression function

of the tree height on diameter. It was assumed
that the form of the regression function is
~ 2
h = Yl + de + y3d
and that the ¢tonditional variance of h given 4
is homogeneous, Cunia and Michelakackis (1983)
report the following least squares statistics,
[el' = [1,098167

.862612 -.005809]

= estimate of the vector [Y]' of
regression coefficients

and
) .855041 -.0931381 .0021821
IScc] = | ~.0931381 .0107251 -,00026127
,0021821 -,00026127 .000006658

We can now apply our procedure to estimate
the regression function of the tree biomass on
diameter alone and its error. We start with the
calculation of the vector [b] of coefficients of
the regression

r(d) = r (d, r (d))
17 g 3 4

= +
bl b2d + b3d + b4d + b5d

¥

For con?enience, the five elements of [b] are
listed individually as

bl = al + a4c1 = ~5.700010

b2 = a3 + a4c2 + a5c1 = 1.940622

by = a), +ac, +ac, +a = .0304628
b4 = azc2 + asc3 = .0l446426

b5 = azc3 = -.00009740065

To estimate the covariance matrix of [b] we
write first the vectors and matrices

[c*]' = [1  1.098167 .862612 ~-.005809]
0 0 0 0
[S;C] =lo .855041 -.0931381 .0021821
0  -.0931381 .0107251  ~.00026127
0 .0021821  -.00026127  .000006658
{a] and [S__] as shown above
aa
. -
1 0 0 1.098167 0 0
0 0 1 .862612 1.098167 O
[cl =] 0 1.098167 0 -.005809 .862612 1
0 .862612 0 0 ~.005809 1
| 0 -.005809 0 0 0 0
[-3.42213  -2.07425 0 0
3.72990 0 -2.07425 0
3] = 0 .0167680 0 -2.07425
0 0 .0167680 0
0 0 0 -0167680,

estimate of the covariance matrix of [c].
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Now the reader can verify that the previous
value of [b] is obtained by the matrix multipli-
cations

[bl = [Cl[a] = [A)[c*]

and that the elements of [Sbb], denoted here, for
convenience, as

8j5 = covariance of b; and b

are the following

i1 = 14.5413 , 8y, = -2.05253

Sy5 = -+011749 » S, = -0068236

S,5 = =-000100030 , §,, = .0308731

S,5 = -000671164 » S,, = --000983024
S,g = 000013195 + Sy = -000130202
Syq = - 000013585 1 Sy = 00000035829
8,4 = 000004797 ) 8,5 = —-00000008545
Sgg = -000000001953

One can estimate now the biomass table and
its 95 percent confidence limits by the formulae

¢ = [bl'[x]
s?? = [x]' [Sbb] [x]
P25y
where
[x]'"=[1 d d2 d3 d4]

for d =4, 5, ......

This table is reported by Cunia and Michelakackis
(1983) and, thus, it is not repeated here.
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