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PREFACE

It is common to calculate forest inventory
estimates and their error by procedures which
ignore the error of tree volume or biomass
tables. For this reason, the error of forest
inventory estimates as calculated do not usually
.include errors due to table development. This
technique has become acceptable for volume
estimates because the age of volume tables
prevent calculating errors associated with table
development, but this argument does not apply to
biomass tables. The sample data from which
biomass tables were constructed are still
available and can be used to estimate the error
of biomass regression functions from which the
tables were constructed.

Procedures exist to include the error of
biomass tables when the error of the biomass
inventory estimates are calculated, but they are
not readily available. This initiated the
present workshop jointly sponsored by the State
University of New York, the USDA Forest Service,
and the Society of American Foresters: held in
Syracuse, New York, May 26-30, 1986.

The error associated with table development,
be it volume, biomass, or some other measure, may
have a significant influence on the total
sampling error of an estimate. But how much does
the error of table development contribute to the
total error of the estimates? In some cases, it
may have more of an influence than the error
associated with field plots or points that are
used to collect resource information. The degree
of influence is not always known, and not
including the error associated with table
development along with errors that result from
sample plots or points may be costly.

It is the hope of the planning committee to
present techniques whereby the errors associated
with table development, specifically biomass
tables, may be combined with the error assoclated
with sample plots used in resource inventories.
With this knowledge, reasonably sound judgements
can be made about the validity of the inferences
made concerning the error of the forest biomass
inventory.

To this end, the primary topics discussed at
the workshop included methods for sample tree
selection, tree biomass measurement, the
construction of biomass tables, the estimation of
the error associated with biomass tables, and
combining the error of biomass tables with those
of sample plots. These topics were covered
during lecture and discussion sessions conducted
by Tiberius Cunia, Faculty of Forestry, State
University of New York, College of Environmental
Science and Forestry.

Because most of the material contained in the
lecture sessions is either not published, or if
published is in the form of research papers, we
have included ten papers covering the lecture
notes in Part I of the proceedings. The first
section (two papers) introduces a procedure for
combining the error of sample plots with that of
biomass regressions. The second section (three
papers) shows how to apply the weighted least
squares method and calculate the required
statistics of the biomass regressions when (1)
the sample trees are assumed to be selected by
random sampling, cluster sampling, and double
sampling; and (2) some of the independent
variables are allowed to be qualitative, such as
when sample trees as classified into several
groups. The third section (five papers) show how
to calculate the required statistics of the
sample plot data so that the error of the sample
plots would be expressed in a form suitable for
combination with the error of biomass regression.

We have considered the case of sample plots
selected by simple random sampling, stratified
sampling, double sampling for stratification,
two-stage sampling, and double sampling with
regression estimators. We have considered
estimates of average biomass and biomass growth
per acre calculated from Continuous Forest
Inventory Systems with or without Sampling with
Partial Replacement (SPR).

Also discussed were varilous aspects of
biomass research that is being conducted in the
United States, Canada, and abroad. The workshop
provided a forum for researchers to present many
different aspects of biomass research that is
currently being conducted. Papers that were
submitted for publication within these
proceedings, but not presented during the
workshop, are footnoted as contributed papers.

The research papers are presented in Part II
of the proceedings. These papers included
discussions of (1) measurement error in biomass
table construction, (2) sampling the biomass of
understory vegetation, (3) biomass regression
functions and their application to the forest
inventories of the eastern United States, (#)
biomass studies outside the United States, and
(5) the use of simulation techniques to evaluate
the validity of inferences made concerning the
error of the biomass regressions.

The planning committee would like to express
its sincere thanks to the workshop participants
for their time, knowledge, and experience that
they provided, all of which greatly contributed
to the success of the workshop.
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ERROR OF FOREST INVENTORY ESTIMATES: ITS MAIN
COMPONENTSY/

Tiberius Cunia

Professor of Statistics and Operations Research

SUNY College of Environmental Science and Fores-
try, Syracuse, NY, 13210

Most sampling designs of forest inventory
consist of two major phases; a first phase where
the trees are measured for diameter alone and a
second phase where the trees are measured for
biomass in addition to diameter. A biomass re-
gression function estimated from the second phase
sample is applied to the tree data of the first
phase to estimate the average biomass per unit
area. A technique is shown whereby the errors of
the first and second phase samples are combined
when the error of the average biomass per unit
area is calculated. This technique is applied to
the case where (i) the sampling technique of the
first and second phase is simple random sampling,
(ii) the samples of the two phases are statisti-
cally independent and (iii) the biomass regres-
sion function of the second phase is estimated by
the weighted least squares linear regression
techniques. Numerical examples are also given. .

Introduction

Most sampling designs of forest inventory
consist of two major phases. In the first phase,
a relatively large sample of trees is selected
(usually in clusters defined in terms of sample
plots of fixed area or sample points) and the
trees are measured, among other things, for their
diameter at breast height 4. These trees are not
measured for their biomass y. In the second
phase, a relatively small sample of trees is
selected and the trees are measured for biomass
in addition to diameter. These trees are used to
estimate a relationship between tree diameter and
biomass, usually but not necessarily expressed as
the regression function of tree biomass on diam-
eter. This relationship is then applied to the
trees of the first phase sample to calculate
forest inventory estimates of average biomass per
unit area.

When previously constructed biomass regres-
sion functions are available, the second phase
sample is no longer necessary. Implicitly then,
a critical assumption is being made that the tree
population for which the regression function was

1/

—~ Paper based on a set of lecture notes "On
the error of biomass estimates in forest inven-
tories; Part 1l: Its major components". Faculty
of Forestry Miscellaneous Publication Number 8
(ESF 85-004). SUNY College of Environmental
Science and Forestry, Syracuse, NY.

calculated and the tree population being current-
ly inventoried are very similar, if not identi-
cal. This is a big assumption to make, since it
is generally true that the regression functions
may vary considerably from one to the next forest
area, even though the two areas may be expected
to be similar.

Because of the basic structure of the sam~
pling design the error of the forest inventory
estimates has two main components. There is
first the component due to the random selection
of the sample units of the first phase. Succes-
sive applications of the same selection procedure
to the same forest area result in different sets
of sample trees and, thus, different sets of
estimates. The size of this component is greatly
affected by (i) the sampling design of the first
phase, (ii) the sample size, (iii) the type of
estimator used (for given sample data and re-
quired parameter to estimate, there are generally
several estimators, each estimator having its own
precision) and (iv) the inherent variation be-
tween the sample units (as determined by the
geographical distribution of trees, variation
between tree biomass as well as the population
frame and sampling design used). The second
component is associated with the sample of the
second phase, more specifically with the error of
the biomass regression . The size of this compo-
nent is also affected by (i) the sampling design
used to select the trees of the second phase,

(ii) the sample size, (iii) the estimation proce-
dure and (iv) the inherent variation of the tree
biomass values about the regression function.

These two components constitute what is
generally known as the sampling error. They are
different from other error components, one of
which, the measurement error, may become criti-
cally important with large samples. Defined as
the difference between the true, conceptual
value, and the recorded value of a sample unit,
the measurement error has a random and a system=-
atic part. The random part is expected to aver-
age to zero, in the long run, and can ordinarily
be included in the first two error components
above, even though conceptually different. The
systematic part, the measurement bias, is seldom
affected by the sample size, and for this reason
its effect may become critical with large sam-
ples.

Additional error components can also be
identified. One such component is that due to
the statistical model used in defining the esti-
mator. Changing the model will generally change
the estimates. Different statisticians working
with the same sample data will not necessarily
arrive at the same estimates. This is particu-
larly true in biomass tables construction where
several regression functions may fit equally well
the same sample tree data. However, when the
statistical model used fits reasonably well the
sample data, the error is generally small and can
be ignored.

The objective of the present paper is to
have a closer look at the two main error compo-
nents, those associated with the first and second



phase samples. We shall analyze their structure
and we shall present a procedure to combine them
into one, overall error value, provided that each
component is expressed in an appropriate form.
" The effect of all other sources of error, as for
example that due to measurement and statistical
model will be ignored.

A Specific Approach to Combine the Two Error
Components

The error of the estimators will be expres-
sed here as the variance. This is more conve-
nient to work with than standard error, mean
squares or confidence limits. Furthermore, the
variance can be split into additive components
with each component associated exclusively with
-one source of error, provided certain conditions
are satisfied.

To calculate forest biomass estimates, one
would combine statistics of the second phase
- (biomass regression coeffficients) with statis-
tics of the first phase (average number of trees
by size and quality classes). To calculate the
error of these estimates, we shall now propose
the following approach where, for convenience, we
shall refer to a specific biomass estimator, w.

We shall make the following assumptions:

(1) The statistics of the first phase that
enter into the calculation of the estimator w are

denoted as Zyr Zgs eens zp and estimates Sz.zJ

i
i,j =1, 2, ..., p, of their variances and cog
variances can be calculated from the sample data.

(2) The statistics of the second phase that
enter into the calculation of the estimator w are
denoted by bl' bz' sy b and estimates Sy b ,

j

m
i,j, =1, 2, ..., m, of their variances and
covariances can be calculated from the sample

data.

(3) The statistics of the first phase are
statistically independent of the statistics of
the second phase.

(4) The estimator w can be expressed as an
explicit function of statistics z and b, say
w = f(z,b).

Then the variance of w can be approximately
estimated by the expression, given among others
by Davies (1961),

P P Jgaf af
Sww = I L ( ) k ‘ sz z
i=1 j=1 1

Ll

+ terms 1nvolv1ng higher differentials

Because the random variables z are statisti-
cally independent of the random variables b, the
terms involving covariances Sz b. L i=1, 2, o,

pand j =1, 2, ..., m have been le%t out from

the formula above. Furthermore, the terms invol-
ving higher differentials are of a lower order of
magnitude whenever the coefficients of variation

2

of z and b are relatively small, say less than 20
percent, the usual case in forest inventory; and,
thus, all these terms can ordinarily be ignored.

The critical points of this approach are
those of (i) expressing w as a simple function of
variables z and b, and (ii) finding valid esti-
mates of their variances and covariances. When
the regression functions of the second phase are
non~-linear, the expression of w and that of its
variance may be so complex that it may become
extremely cumbersome to apply the formula above.
On the other hand, when the regression functions
are linear, the derivation of the formula of w,
and that of its variance becomes, most of the
time, relatively simple.

Let us, therefore, make the following more
specific assumptions:

(1) The regression function of tree biomass
Yy on tree characteristics Xyr X eeey Xpy where
X, is usually, but not necessarily defined as
1éentica11y equal to 1, is of the linear form

Yy = 8% + Box, + ...t Bk = [B]fx]
where notation [ was used to denote matrices
and vectors, and [ ]' to denote their transposes.
Denote the estimate of [B]' as the vector

[bl' = [by by ... by

and the estimate of the covariance matrix beb]

of [b] as
S veee S
Sblbz Sblbm
b b “ttt Thob
[Sbb] = : 272 : 2
S cees S
b2bm bmbm

(2) There are statistics z., Zor eesr Zpy
calculated from the data of the first phase sam-
ple such that

w = blz1 + b222 + iee. + bmzm = [b]'[2])

and the estimator of the covariance matrix [0 ]
of[z]is denoted by

r-Szlzl Szlzz...... Szlzn:

Szlz2 Szbzz...... ?zzzm
st

[

(3) The vector [b] is statistically inde-
pendent of [z]. Then, it has been shown by Cunia
(1965) that



(1) the variance 0O,
expression

W of w is given by the

Oy = [B1719,,118] + [u 1" (0] (u,)

m m

*EI% e %
i=1 §=1 i j i

]

where [Uz] is the vector of the expected values

of Zys Zos eesr Zpg,

(2) an estimator of the variance wa of w
is given by

S = [b1'08,,1[b] + [2]'[s (2]

m m
- z I s

: s z I3 : : Iy
i=1 j§=1 i3 i3
and (3) the terms 5, , 5, , are relatively

i i
small compared to the co%respgnding terms

biPySz 2. OF 2i%3% b,

and can ordinarily be ignored.

Consequently, the variance of w can be esti-
mated from the sample values by the expression

B

Sy = [D]'18,,1[b] + [2]'[Sy (2]

m m
oI bbySy g+ 2izsSpp)
i=1 j=1 i3] ij

]

Note that in the above formula we have two
terms and that the first can be interpreted as
the error component of the first phase and the
second, the error component of the second phase
sample.

If one wants to ignore the error of the
biomass tables, that is, assume that [Sbb] = [0],
the variance of w reduces then to the first
component only; the second component vanishes.
This would be the case where the biomass tables
are thought to be sufficiently accurate so that
their error can be ignored or the case where the
error of biomass tables is not known, cannot be
calculated and, thus, one has to ignore it.

There is also the case where the error of
the first phase sample is equal to zero, or
sufficiently close to zero, so that it may be
reasonable to make [Szz] = [0)«For example, this
case may occur when one takes the inventory of a
small experimental forest area and every tree can
be measured for all characteristics but biomass.
Then the first error component vanishes and the
variance of w reduces to the second component
only.

It may be interesting to see what happens if
we use relative rather than absolute measures of
error. 1f we define the "percent error"” as the
ratio

standard error of w
w
and if we divide the variance of w by w

percent error =

2, that ‘is,

Sww [b1'[S,,11b]

W2 w2 w

[2]'(Spy) [2]
2

we obtain the relationship

(total percent error)2 = (percent error of first
component)
+ (percent error of second component)2

This shows that an estimate of the total error of
w (percent error or variance) can be obtained by
a simple formula, when separately calculated
estimates of the error components from the two
sources (the samples of the first and second
phase) are available in a percent error form.

There seems to be no problem with the deter-
mination of the percent error due to the sample
of the first phase. The variance of w = [b]'[z]
and the corresponding percent error component can
be calculated by the formula

(617 (5,51 151/ [b] " (2]

The problem is much more difficult, however, with
the calculation of the percent error of the bio-
mass regression function; it requires an estimate
of the expected value of [z] which may or may not
be calculated from the second phase sample. As
an example of how to approach this problem, con-
sider the following illustrative case.

Assume that (i) the second phase sample is
selected by simple random sampling, (ii) the true
regression function of the tree biomass y on
diameter d is of the parabolic form y = B1%1
+ Bzx2 + oeees + Xn (iii) all of the other basic
assumptions of the weighted least squares method
are satisfied and, thus, the estimator of [B] is
the usual weighted least squares estimator [b]
with covariance matrix estimated by [Sbb], and
(iv) an estimator of U = average biomass per
acre is required. Then, it can be shown, see
Cunia (1985), that the percent error of the
second phase sample can be estimated by the
formula

Vizitis 1 1%] / [b]'IR]

or
X1" 8,1 (X1 / [b]'[X]
where
le/n le
sz/n Ex2
(%] = . = [X]/n and [X] = :
IXy/n Z;‘m

with the summation sign I taken over the n sample
trees of the second phase.

Note that, when the trees are selected for
arbitrary values of x,, Koy eeer Xpo there seems
to be no way to determine the percent error from
the data of the second phasc sample alone.



Applications to a Simple Forest Inventory Design

Let us consider again the oversimplified
example of a forest area containing trees of a
given species. 1n the first phase, n_ sample
plots of fixed area (say "a" acres) are selected
by simple random sampling (with replacement) and
all their trees of the given species are measured
for their diameter d at breast height. If trees
of a different species are encountered, they are
simply ignored. There are n, trees in the h-th
plot and the diameter of the k-th tree in the
h-th plot is denoted by dhk' k=1, 2, ..., ny and
h=1, 2, ..., ny.

In the second phase, n, trees of the given
species are selected at random and measured for
their diameter d and volume y. Let us assume
that (i) the true regression function of tree
volume on diameter is of the parabolic form

y= 8 + B4+ 63d2, (ii) the conditional vari-
ance of y given d is proportional to d4® and (iii)
all other basic assumptions of the classical
linear regression model are satisfied. It is
then known that the best linear and unbiased
estimators of 31, 82 and B3 are obtained by the
weighted least squares method, described in more
detail by Cunia (1986a), among others.

Let us assume here that, the estimate of the
regression function is
y = by + byd + byd?
= blx1 + b2x2 + b3x3 = [b]"'[x]
where x1=1p x2=d and x3=d and the estimate of
the covariance matrix of [b] is

Syl = 1S, 5 Spp Spp

where Sy, b is the estimate of the covariance of

i3, .
bi and bj' i, j =1, 2, 3.

To calculate w, the estimate of the average
volume per acre, one can use one of the following
two approaches.

Approach 1 - The volume Yhk of the k~th tree
in the h-th plot is estimated by the regression
value

.
- 2
Ypk = Py + bydpy + bydpyy

The volume Vh of the plot h is estimated by the
sum of the volumes §hk of the n, trees, that is,

~
&

Vh = IWpg = ¥pg * ¥pp Foeeer * ¥y

2
blnh + b2)3dhk + b32d x

where I denotes summation over subscript k of all
the trees of the plot h. For convenience, let us
define the new variables

Sp1 = nh/a = (number of trees), on a per acre
basis, of plot h

Spy = gdhk/a = (sum of dhk)’ on a per acre basis,
of plot h

= zd%k/a = (sum of d%k)' on a per acre basis,
of plot h

A . A
and w, = vp/a = bysyy + bosy, + biyspgy = [b]'[sy]

n
=
w

i

it

estimator of the volume, on a per
acre basis, of plot h

The average volume per acre is now estimated as

W = Dbiz; + byz, + byzy = [b]'[z]

where
w = Z'wh/np
Z) =LSpy/n
= average (number of trees) per acre = §1
Zy = ISpy/n
= average (sum of diameters) per acre = §2
z3 =ISp3/n
= average (sum of squared diameters) per
acre = §h3

and I denotes summation over subscript h from 1
to n_.

p

Because the variances and covariance of the
variables z; and zj are estimated by expressions
of the form

sz'z_ = Z(Shi—si)(Shj—Sj)/np(np'l) = Sij/np
1]
the covariance matrix of the vector
[z]* = [z1 z, z3] is estimated by
5, 2 5; 2z 5, 2
11 12 13
(S50 = |S; 5 82 2 Sz 2 [Sij]/np
12 22 23
Sz 2 5, 2 8z 2
13 28 33

We are now in a position to apply the formu-
lae of the previous section and write that the
variance of w is estimated by

Syw = [b]'[Szz][b] + IZ]'[Sbb][Z] )
The terms S, » Sy p of lower order of magnitude
ij i3
have been left out of the formula above since
their value is relatively small.

It may be of interest here to mention the
fact that the common procedure for the estimation
of the variance of w is by the formula

S
where

~o 2
(535/np) /2

AN
SVV

(20 - %) %/n ) An -1)

estimate of the varfgnce of the esti-
mates vy of the individual plot vol-
umes vy,

and 3 denotes summation over subscript h from 1

to np.



By expressing vy as

T 2
vy = byny + bz):dhk + bgd%
= a(blshl + bzsh2 + b3sh3) = aw,

by evaluating 232 and (£v,)2 and by rearranging
terms, it can be shown that

oy 1
Sy = [Pl [s,,1[b]
This means that the common procedure for the
estimation of the variance of w is biased; the
variance component due to the error of the bio-
mass regression is completely ignored. Further-
more, if one wishes to ignore the error due to
biomass regression, he may use either of the two
formulae, that is, either

2

Sww

A A
va/npa
or

S

ww = [D1'[S,,11b]

Approach 2 - To calculate w, one can also
construct first a frequency table giving the
average number of trees per acre N, for the
diameter class c, where dc is the value of the
tree diameter corresponding to the class c.
There are as many diameter classes as there are
distinct diameter values. Then, the volume y.
corresponding to the average number N, of trees
per acre is estimated by

o 2
Yo = No(by + byd. + bydl)

and the average volume per acre (including all
diameter size trees) is estimated by

- A

WY Yyt eeee YL e+ Yy

2
bIZNc + bZZNCdc + b32chc

where ¥ means summation over all diamefer sizes.
Becau'se ZNc = ?1, Zchc =2Zq, a‘nd Z‘chc‘= z4, one
can finally write, as before with the first ap-
proach,

w = byz, + byzy + byzy = [b]'[z]

Note that the above formulae do not take
into account the effect of the measurement bias.
If the tree volume is measured so that a bias
exists in this measurement, the bias will be
preserved in the estimate of w and will not be
included in the estimate of the error of w.
Similarly, the error due to the selection of the
statistical model is not accounted for. It is
certain that the parabolic regression form as-
sumed here is not the true form and one may well
use a different form and obtain completely dif-
ferent estimates. In all cases, there will be a
discrepancy between the assumed and the true form
of the regression function. The error due to
this discrepancy is minimized by a judicious
choice of the regression function form.

For a numerical illustration of how these
formulae apply to an actual case consider the
following example.

Table 1 - Species group s and diameters d (to the
nearest one-tenth of an inch) of the
trees of the first phase sample plot 1.

s d |s d |s dls d|s d|s d
3 10.2|3 5.1]3 5.8}3 6.1]|3 19.8|1 20.1
1 5.112 12.0]2 12.2|3 6.5|3 5.213 5.1
1 16.1}3 8.1j1 14.113 6.4]|2 17.4{3 8.2
2 12.5|13 5.0|1 11.4})3 16.1{1 12.0{1 5.7
2 9.1]1 12.9|3 9.441 18.6}|3 5.7}- --
2 13.913 5.8|3 15.0}2 12.6]3 5.3!- --

Example 1 - In the first phase, n = 926
one-fifth acre sample plots are selected at ran-
dom from the New York State forest area, and all
their trees are classified by species group (1
for pines, 2 for maples, and 3 for all remaining
species) and measured for their diameter at
breast height 4 to the nearest one-tenth of an
inch. As an example, the species groups and
diameters of the trees of sample plot 1 are
listed in Table 1. In the second phase, n, = 353
trees are also selected at random from the same
forest area. Their species group, diameter d and
total above-ground biomass y (green weight to the
nearest pound) are listed by Cunia (1986a).

A statistical analysis of the data of the
second phase sample showed that, for all species
groups combined,

(1) a parabolic function of the form
Yy = By + Bd + 33d2 = ByX; + ByXy + p3x3 = B1'[x]

is a satisfactory expression for the regression
function of the tree biomass y on diameter 4,
where Xy = 1, Xy = d, and Xy = d<, and

(2) the conditional variance of y given d is
approximately proportional to the fourth power of
d, that is, for unknown ¢

fat

Using these assumptions (in addition to the
other assumptions of the linear least squares
regression method ) and the sample data of the 353
trees , Cunia (1986a) shows that'for the three
species combined,

Oyylx =

5.1818118
[b] = ~25.653078 and
12.988357

8715.8855 -2222.4882 128.69992
~2222.4882 581.99570 -34.776995
128.69992 -34.776995 2.1744582

To calculate an estimate of the average
biomass per acre for all species combined, when

the same biomass regression function is used for
all species, we shall apply first the usual pro-
cedure consisting of the following steps

(1) Each individual tree biomass §hk' where
h=1, 2, ey 926 is the plot number and k = 1,



2, eeey ny is the tree number within the given
plot h, is estimated by the regression function
as R

- 2
Ypk = by + bydp + badly

For example, to estimate the biomass of the trees
of ‘plot 1 of Table 1, we calculate successively

y11=5.181812--(25.653078)(10.2)+(12.988357)(10.2)2
=1094.8291

= estimate of the biomass of the first tree of
plot 1

y12==5.181812—(25.653078)(5.1)+(12.988357)(5.1)2
=.212.17827

= estimate of the biomass of the second tree
of plot 1

.

-

¥y 34°5.181812-(25.653078) (5.7)+(12.988357) (5.7) 2
'"=280.95098

= estimate of the biomass of the last tree of
plot 1

(2) Each individual plot biomass ;h' h=1,
2, «.., 926 is calculated by summing up the
individual tree biomass within the plot. For
example, the biomass of the first sample plot is
estimated by the value
v,=1094.8291+212.17827+....+280.95098=48845.674

(3) By calculating first

ZGh = 22312916 and Z%f = 963042020000

where & means summation over h = 1, 2, ..., 926,
we calculate successively

G = EGh/np = 22312916/926 = 24096.022

= estimate of the average biomass per
plot, say W,

Syy = Evy - 6)2/(np-1) = 459880550

= estimate of the varjance of the esti-
mated plot biomass i

Sgp = va/np = 496631.26

= estimate of the variance of ¥
It is customary to report these estimates on a

"per acre" basis. As the plot size is one-fifth
of an acre, we can write

V/{(1/5) = 120480.11
estimate of the average biomass per acre

w

and
(L _ 2 _
S SVG/(I/S) = 12415782

= estimate of the variance of w

It is also customary to calculate the 95 percent
confidence limits of u, the true average biomass
per acre. Using, for convenience, a t-value of
2, we have calculated the 95 percent interval as
equal to

w+ 2y = 120480 + 7047

This statement implies that the true mean u lies,
with a .95 confidence, somewhere between a lower
limit of 120480 - 7047 = 113433 and an upper
limit of 120480 + 7047 = 127527 pounds.

However, it can be shown that the value Sgg
as calculated above contains only the error of
the first phase sample; the error of the biomass
regression function calculated from the tree data
of the second phase sample is being ignored. We
shall now calculate the same value w by the
procedure outlined in this paper and show how we
can include the error components from the samples
of both phases, when estimating the error of w.
Note that the superscript (1) of Sw% refers to
the error component of the first phase; we shall
use superscript (2) to denote the corresponding
error component of the second phase.

We start with the calculation of the indi-
vidual plot variables defined as

Sy = (number of trees) per acre of plot h

Shy = (sum of tree diameters) per acre of
plot h, and

Sp3 = (sum of squared tree diameters) per

acre of plot h

For example, for the sample data of plot 1
of Table 1 we have

s11 = 0y/(1/5) = (5)(34) = 170
15 = (Zd)/(1/5) = (5)(354.5) = 1772.5
s13 = (2d%)/(1/5) = (5)(4447.33) = 22236.65

The biomass of the plot h expressed on a
"per acre" basis is estimated by

” = 5]t =
Wy [b] [sh]. blshl + b2sh2 + b3sh3
For plot 1 we have

&1 = (5.1818118) (170) - (25.653078) (1772.5)
+ (12.988357) (22236.65) = 244228.37

~

is five times larger than the value vy found
above. There is no need, however, to estimate
the biomass of each individual sample plot.

As the reader can verify, the value 61 found here

Using standard procedures, we calculate the
sample means, variances and covariances of the
variables shi,j.= 1, 2, 3, for the sample plot
data of the first phase. Then, for I denoting
summation over h =1, 2, ..., 926, we have

§1 = Zshl/np = 114540/926 = 123.69330



Eshz/np = 1009986/926 = 1090.6982

83 = Esh3/np = 1053694/926 = 11380.879

-2
S,. = L(8.,-8)2/(n_-1) = 9610968.9/925
11 h
= 10356.237 F
§15 = I (8,-B)) (8,,-85)/(n-1) = 83216060/925
= 89963,308
S13 = Hsyp=5y) (8,3-53)/(n,-1) = 799124260/925
= 863918.12
S., = I8, .,-8,)2/(n_-1) = 767822580/925
22 h 2 §o)
= 830078.46
Sy3 = Z(sh%-sz)(sh3-s3)/(np-1) = 7975575200/925
= 8622343%4
833 = E(shg-§3)2/(np-1) = 91041895000/925
= 9842367
As z; = §; and sz:i.zj = Sij/“p for i, j =1,

2, 3, we can write immediately the vector [z] and
the matrix [szz]' the estimate of the covariance
matrix of (z] as

z 123.69330

[z] = 2,1 = 1090.6982 | = estimate of the average
vector [u z]

Zy 11380.879

and _
11.220558 97.152600 932.95694

[S,,] =] 79.152600 896,41303 9311.2780

22z

932.95694 9311.2780 106289.06

=

= estimate of the covariance matrix
[9,,] of [z]

We are now ready to calculate

w = [b]'[z] = (5.1818118) (123.69330)
-~ (25.653078) (1090.6982)
+ (12.988357) (11380.879)

= 120480.1084 = estimate of the average
biomass per acre

1 :
s{1) « [b]'(s,,11b] = 12415782

= first variance component (due to
first phase sample)

2 : .
§{2) = [2]'[S,p] (2] = 6643784.4

= second variance component (due to
second phase sample)
si3 = 1my s, , =112902.170
ij i3
= component of the error that is being
ignored

As the reader can verify (i) w and %}3) are

the same values as those obtained before, (ii)
the values of the variance terms (of the third
component) that are being ignored are small with
respect to the first and the second component,
and (iii) an estimate of the variance of w is

S = S+ 5(2) = 19059566
ww wWwW
It may be interesting to show the additivity
of the relative errors due to the first and
second phase samples. If

IOOJ[b]'[Szz][b]/w 100J52415782/120480.89

= 2.9246161

]

percent error due to
the sample plots of the
first phase

IOOViz]'[Sbb][z]/w = 100#%643784.4/120480.89

= 2.1393882

= percent error due to
the sample trees of the
second phase

and

100y/19059566,/120480.89
3.623584

1005, /v

total percent error
then, one can verify that

(percent error of sample plots)2

+ (percent error of sample trees)
= 8,5533795 + 4.576982 = 13.13036
= (3.623584)2
= (total percent error)2

Using a t-value of 2, we can calculate the
95 percent confidence limits as

w + 2¢Sww = 120480 + 8731
that is, a lower limit of 120480 - 8731 = 111749
and an upper limit of 120480 + 8731 = 129211

Note that ignoring the error in the biomass
regression function leads to an underestimation
of the variance by

{100) ( 19059566 - 124157821 _ 664378400
19059566 19059566

= 34.86 percent

In terms of standard error, the underestimation
is equal to

(100) (V19059566 - v12415782)= 19.29 percent

V19059566

Extension to the Case of More than One Species

The extension to more than one, say p>l
species is straightforward. We start by defining
the "giant size" vector [B] containing the p
individual species vectors of regression coeffi-
cients [bl], i =1, 2, ..., P



[B]" = [[bll' 2] ... ..., [bP]]

The covariance matrix of [B] is estimated by the
"giant size" matrix

-
11 12 1p
[Sbb] [Sbb] et [Sbb]
- 12,, 22 2p
[Sgpl (5,1" (8221 enn (82P)
ipg. 2p,, -pp
-[S ] [Sbb] cene [sbb{

where [q;g] is the estimate of the covariance
matrix of [bll and [bJ], i,j =1,2, ..., p. When
[b1] and [bJ] are statisticlly independent, [%ﬁg]
= [0]. This may be the case when biomass regres-
sions are estimated separately by species from
statistically independent samples. When the
samples are not independent, or the regression
functions are not calculated independently of
each other, the problem of calculating [Ség] may
become difficult, if at all possible, to solve.
We define now the mp variables $117 S127---Spm
for each sample plot h. The first m
belong to the first, the next m to the second,
and the last m to the p-th species. The m varia-
bles of each species denote the sums of values
Xpr Xoy eenp X of plot h expressed on a per acre
basis and they are calculated as shown above for
a single species. In the same way, the averages
per acre values Z99+ Zyge sees 2, are calculated
as 'well as their covariance matrices (s%)1. This
yields the vector [Z] of estimates and covariance
matrix [Szz], that is

[z]" = [[21]' 221" .... [2P]"
and

F[511] 1s1?) .... 1s'p)

zz 2Z zZ

- 124, 22 2p

[Sgy] (s1?) [s221 ... 1s%P)
(stPjr (s2P)'. ... [sPP)

zZZ b-44 44

Because each plot has mp variables s, the covari-
ances [le] are generally different from zero.
zz

Consequently, one can use the formulae of
the previous section and obtain

w = [B]'[Z]
= estimate of the average volume per acre

(total of the p species)
and

n
]

ww = [BI'[S;51(B] + [2]'[sgy] (2]

]

estimate of the variance of w

Note that one can calculate, if he so
wishes, the average value per acre for a given
species. For example, for the first species one

can define

Wy = bl1'(z1] = estimate of the average
volume per acre for the first species,
where

1 =
[bl]: : [b11 b12 veea blm] and
[22]" = [297 255 «.ee 23]

The variance of wq is estimated as usual, by the
formula

W w

s = (pr10 (sl 1y + (2110 qsilyqal)
11 zz bb

where [511] is the covariance matrix of [zll.
zz

Furthermore, the covariance of L and wj can
be estimated by the formula

= (piyrrgidy(pd iyepgiiyg,d
Swiwj [b™} [SZZ][b 1+ [z7] [Sbb][z ]

To illustrate how the above formulae apply
to an actual case, consider the following numeri-~
cal example,

Example 2 - Using the sample data of Example
1, let us calculate the estimates of (i) the
average biomass per acre for each species group
separately, and (ii) the average biomass per acre
of all species combined when three, statistically
independent biomass regression functions are
calculated from the data of the first phase sam-
ple, one for each species group. 1In this last
case we shall also compare the present estimates
with those obtained in Example 1 where a single
biomass regression function is used for all three
species groups.

Applying to each species group separately
the weighted least squares method, Cunia (1986b)
gives the following statistics from the second
phase sample, where the superscript refers to the
species group number

295.60183

~256.70604 18.800242

[bY1=(-107.06967 |, (b%1=| 40.050701], (b3]=20.693393

16.882552 9.1695394 13.156786
[ 13256.622  -3494.4363 211.95740]
[s;;] =] -3494.4363  943.83938  -58.826156
211.95740  -58.826156 3.8046237|
25911.067 -6691.9889 393.93612]
[%331 =| -6691.9889  1777.8435  -108.29003
393.93612  -108.29003 6.9277172
™ 25197.692  -6243.4168 347.66044
[%33] =| -6243.4168  1587.0539  -91.114812
| 347.66044 -91.114812 5.4758847




For convenience, we shall arrange the nine
regression coefficients in a giant-size vector
[B] defined as
(bl]
(8] =| v
b3

and the covariance matrix of [B] is the giant-
size matrix

sty o1 (ol

bb
(sgg) =| 101 (s221 (o]
33
(0] o1 s

where [0] denotes a 3 by 3 zero matrix.

The corresponding statistics of the first
phase sample are similarly calculated. For each
sample plot there are now nine variables, three
for each species group. If the superscript re-
fers again to the species group number, and if,
as an example, we use the data of the plot 1
given in Table 1, we can write

sl (9)/(1/5) = 45 = number of trees per acre
11 of species group 1

L}

sl (116)/(1/5) = 580 = sum of diameters per
12 acre of species group 1

&3

33

]

(1553.84)/(1/5) = 7769.20 = sum of squared
tree diameters per acre of species group 3

Note that the first subscript 1, 2 or 3 refers to
the species group 1, 2 or 3, while the second
subscript 1, 2 and 3 refers to the variable Sqs
s, and S3 respectively.

The averages of the nine plot variables are
the elements of the three species group vectors

—
28.4395257 average number of trees per|
acre of species group 1
[z1] = 1245.73704 =]average sum of diameters
per acre of species group 1
2592.1076 average sum of (diameters)?
ad - per acre of species group 1
- .

and similarly defined
[39.994600]

[22] = | 352.64039 for species group 2
L3665.4591
and - -
55.259179

[z3] = 1492.32073 for species group 3

[ 5133.3124§

For convenience, the nine averages z are
arranged in the giant-size vector [Z]) defined as

To calculate the covariance matrix of the
giant~size vector [Z], we shall use the procedure
applied in Example 1 to a vector [z] of size 3.
If.[szjl denotes the covariance matrix of vector
[zll with vector [zJ], that is, if

s s s
213215 “21i22§ Z1iZ3j

(st =] s s S
2z 22i21§ 22i22§ Z2i%3j

S S S
Z3i215 23i229 Z3iZ3j

we have the sample value of the estimate of the
giant size covariance matrix of [2] equal to

i R o I et

z2z V44 A4

[s551 = |1s?l1  1s?2) (823

. A4 ZZ V44

(s3] (s32) (833

2z 2Z 2z

where _

1 3.3631663  30.013346 299.99303
[s1] = |30.013376 278.99377 2924.2532
2z 299.99303  2924.2532 32478.880

= estimate of the covariance matrix of [z1]
12 ~.13931796 -1.1649666 -12.653270
{871 =]-.85774773 -6.1741338 -58.815740

2z -10.140402 -65.157745 -488,21114
= estimate of the covariance matrix of [z1]
with [z2]
13 [-.028807992 ~.17263912 ~2.4404317
[Szzl =] .26017525 3.8362467 43 326113
.78247233  28.612932  406.69373
= estimate of the covariance matrix of [zll
with [z7]
9o 3.3088844  27.803629  263.44704
[s““] =|27.803629 249.16870 2570.5596
2z 263.44704 2570.5596  29632.556
= estimate of the covariance matrix of [z2]
23 [.57702562  6.0188741  69.996561
[s°]1 =] 4.0090757 46.423683 590.72494
2z 27.971175 388.40702 5613.8833
= estimate of the covariance matrix of [z2]
with [z3]
33 3.7307078  31.242824  296.00076
[s°°] =]31.242824 280.07896 2889.3678
zz 296.00076  2889.3678  33112.894

= estimate of the covariance matrix of [z3]



[821] = [512]' = estimate of the covariance ma-
g:' ;3 trix of [2z°] with [zl]

[S°"] = [87°)' = estimate of the covariance ma-
2z z trix of [z3] with [zl]

and

[832] = [523]' = estimate of the covariance ma-
zz. oz trix of [23] with [22]

We have now all the elements needed for the
calculation of the average biomass per acre for
each species group separately and their sum.
Using the usual formulae, we find the following
statistics:

wa = [bl101z])

25857.183 = average biomass
per acre of species group 1

w, = [b2]'[2z?]

37375.515 = average biomass
per acre of species group 2

(b31'123)

€
]

[}

58388.993 = average biomass
per acre of species group 3

w = [B]'[Z] = 121621.69 = average biomass
per acre of all species com-
bined

= 25857.183 + 37375.515 + 58388.993
=wl+W2+W3
The variances of w,, Wor Wy and w = w, + Wy + W
are also calculateé by the usual formulae as

11§ rplyegellyfnd 1i47glly,1
Sww = [b~] [Szz][b ] + [27] [Sbb][Z ]

+3271962.1 + 746466.01 = 4018428.1

522 = (6211 (522)[b2] + [22]'[522][22]
ww zz bb
= 3185350.8 + 2338326.6 = 5523677.4
33 3 33 3 3 33 3
s = b 1 ] .
2111821 0%) + 12311331 12°)

4401941.3 + 2899185.7 = 7301127.0
and

Sww = [BI'[S5,1[B] + [2]'[sy,]12]

12145981 + 5983978.3 = 18129960
As the reader can verify,
Syw ¥ 521 + 522 4 $33 = 16843232
ww ww ww o
This is because wj, w,, and w, are not statisti-
cally independent. The right relatiionship con-

tains also the covariances of n&, wby and wb,
more specifically

s12 = pl)0[s121162] + [21]0(s12)(22)
ww zZ bb
= -52560.39 + 0 i 12,
0 + (since [sbb] [01)
s13 = b1 is131 (03] + [22)1(s13) (23
ww zZZ bb

18934.588 + 0 (since [sii] = [0])

and

10

23

= (62118231 (b3] + [22]'1523)(23)
ww zz ) bb

876989.48 + 0

(since [Sii] = [0])

The reader can now verify that

Suw = sl s22 4 g33 4 2(sl2 + S13 + 523)
WW  wWw ww wWWw ww wWwW
= 18129960

Using a t-value of 2, the 95 percent confidence
limits are now calculated as

wt 2fS = 121622 + 8516

It may be interesting to find out what the
error will be when the error of the biomass
regression functions is being ignored. Then,

Syw = [B1'[S,;11B] = 12145981

This means that the variance is underestimated by
about
(100) (5983978.3/18129960) = 33.01 percent

Let us now compare the results of Examples
1 and 2. There is a difference between the two
estimates of the average biomass per acre of

(121621.69 - 120480.89) = 1140.80

That is, about .9 percent. Because the biomass
regression functions are constructed by species,
we would expect the estimate w of Example 3 to be
more precise than that of Example 1. The in-
crease in precision is not large, however. It is
estimated as the difference between the two vari-
ances, that is,

(19059566 - 18129960) = 929606

or about 4.8 perent. This is to say that using
biomass regressions by species improves the esti-
mate of the average biomass per acre by less than
5 percent, a relatively small improvement.

It should be noted here, however, that the
classification of the species of our artificial
population into three species groups was made
rather arbitrarily. We simply wanted to have a
set of three sufficiently large subsamples of
trees to allow us the calculation of three sepa-
rate regressions. We did not group the species
according to their similarities. As a result,
the conditional variance of the tree biomass
within species groups was found to be only
slightly smaller, on the average than the condi-
tional variance for all species combined.

An Illustrating Example Using Sample Points

We shall consider now a sampling design
which, with the exception of the type of sampling
unit of the first phase, is identically defined
to the design of the previous sections. Instead
of using fixed area sample plots, it is common to
use relascope sample points, where sample trees
are selected with probability proportional to
their basal area (or, what is the same thing, to



their squared diameter) and the number of trees
counted at a given point multiplied by the basal
area expansion factor (BAF), say c, represents a
measure of the basal area in square feet ' per
acre. With a little change in the procedure for
calculating the variables Spyr Spor and Sp3 of
the sample point h, h =1, 2, ..., n_, the ap-
proach described in the previous sec%ion for the
calculation of w and its error can be applied to
the present sampling design as well.

More specifically, let us define the point
variables

= I (l/ahk)

9]
=2
-

I

= E(dhk/ahk), and

n
o
N

[

= Tia2
Sp3 = (A Jap)

where I is taken over all the trees counted by
relascope at the sample point h, and apy is the
value by which the measurements of the hk-th
sample tree are divided to bring these measure-
ments to a per acre basis. Basically ap is the
area of the imaginary plot by which all trees of
diameter 4 are being sampled. Its value can be
found by going back to the theory of point sam-
pling. Or its value can be determined by the
following indirect method.

If ¢ represents the known BAF by which the
number of trees counted at the point is multi-
plied to yield the basal area per acre at that
point and because the tree basal area is equal to
#d“/4, then we have to solve for ape the relation-
ship

(ra%/4)/a,, = c

This yields the value
ap, = ﬂd2/4c

In this formula one must express d in an appro-
priate unit of measurement so that the unit of
apk is the acre. Recall that ¢ represents the
number of square feet of basal area per acre
corresponding to a given tree. In North America,
the diameter is measured in inches and the basal
area in square feet. Then we must express the
value of ap, as

ayny = Tr(dhk/lz)2 square feet/4c(square feet/acre)
2
=(mgd 576c)acres

( hk/
The reader can verify the formula of a by
assuming that the tree measurement of interest is
the tree basal area. Then, for a tree of diame-~
ter d (expressed in the appropriate unit) we have
(tree basal area)/(ﬂd2/4c)= (nd2/4)And2/4c) = c

In Europe, however, one uses the metric
system. Let us assume first that 4 is expressed

in meters. Then

apg = 1T(dhk meters)z/(4c(square meters) /hectare)

2
Td 4c)hectares
( hk/ )

But if qhk
must write

is measured in centimeters, then we

T(dy, centimeters/(100 centimeters/meter)) 2

3k ~
4c(square meters/hectare)

"dzhk square meters/10000

e
4c square meters/hectare

= (ﬂdi£40000c) hectares

From here on, everything is the same as for
the case with fixed area plot of the previous
section, that is

~

¥p = P1Spy ¥ Paspy + Pyspz = [b]'[sy)

volume on a per acre basis at the sam-
ple point h

w = blz1 + b222 + b3z3 = [b]"'[z]

where w, Zyr 2y, and z, have the same definitions
and where the covariance terms S5z;z:are calcu-
lated by the same formulae. This yields the
variance of w, the same as before,

S¢w = [bl'[Szz]Ib] + [z]'[SbeIZJ
+ terms whose values are usually ignored.

Let us illustrate now the application of
these formulae to a numerical case.

Example 3 ~ In the first phase 4313 clusters
of ten Bitterlich point samples (with each point
sample taken with a factor c = 37.5 square
feet/acre) are selected at random from the New
York State forest area, and all the trees counted
by the relascope are: measured, among other
things, for their diameters 4 at breast height
(nearest one-tenth of an inch). 1In the second
phase n_ = 353 trees are also selected at random
and their diameter d and total above ground bio~
mass y (green weight to the nearest pound) are
both measured. Let Table 2 list the tree diame-
ters of the first cluster and assume that the
trees of the second phase sample are those used
in Example 1 for which the biomass regression
function of the parabolic form has already been

Table 2 - Diameters 4 (to the nearest one-tenth
of an inch) of the trees counted at the
first phase cluster number 1 of ten
Bitterlich sample points.

Point d Point d Point d
1 - 5 1n.7 6 11.2
2 16.3 5 7.8 7 14.8
3 5.0 5 U2 7 10.0
3 6.8 5 10.0 8 -
3 10.3 5 9.5 9 7.4
4 10.3 6 6.2 9 6.5
4 2.6 6 10.8 9 10.3
4 9.9 6 7.8 10 6.8
5 8.7 6 11.8 10 8.3
5 6.5 6 11.7 - -
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calculated. For the numerical values of the
statistics [b] and [Sbb] that are needed here,
the reader is referred to Example 1. Let us then
calculate an estimate w of the average biomass
per acre U and its variance Sww that includes the
error from both first and second phase samples,

We start by calculating the cluster
variables

Sp1 = Z(l/loahk) = {number of trees) per
acre at cluster h
Spo = E(dhk/loahk) = (sum of tree diameters)

per acre at cluster h

and
Spy = Z(dﬁk/loahk) = (sum of squared diame-
ters) per acre at cluster h,

where I is taken over the trees k, k=1, 2, ...,
ny counted at the cluster h of size nh,2 divisor
apy for a diameter 4 is equal to (Trq‘k/576c), c
is the BAF of 37.5 and 10 is the number of point
samples in a cluster. Note that the three varia-
bles Sh1r Spor and S5 can also be written as

]

7]
=
j=

L

= I(576c/10md2 687.549355 (1/42
( c/ hk) (1/ hk)

L(576c/10mdy, ) = 687.549355(1/d,,) and

= L(576c/10T) = 687.54935nh

n
)l
W

il

As an illustration, the reader can verify
that, for cluster number 1 (of Table 2) we obtain
the values

687.54935(1/(16,3)2 + 1£5.0)2 + ....

811 <
3
+ 1/(8.3)%)s 275.67758
Sy, = 687.54935(1/16.3 + 1/5.0 + ....
+ 1/8.3) = 2171.6585
Sy3 = (687.54935)(1 + 1 + .... + 1)

= 18563.833

These represent the measured values at clus-
ter 1 of the number of trees per acre, sum of
tree diameters per acre and sum of squared tree
diameters per acre respectively.

To calculate the estimate w of the average
biomass per acre u and the estimate S,y Of its
variance, we shall apply from here on, the proce-
dure already used in Example 1. More specifical-

ly, we proceed as follows.

(1) We calculate first the sums, sums of
squares and sums of cross products of the
variables shl"shZ' and 53 as

Eshl = sSSlfoég;;Ggsrz = 3077217.2,
Eh3-— 4

2 _ =

Is = 716096§Z%§;?%;?2 =

Zshlsh3 = 900,

Is? = 5164432500, Is. _s 3= 51276564000,
h2 gs2 . = 52475686808

601337690,

where I is taken over all 4313 clusters h of the
first phase sample. Using these values it is then

12

easy to calculate

(358160.27) /(4313) = 83.042029

estimate of the average number of trees
per acre

= (71609667 - (358160.27)2/4313)/(4312)
= 9709.4878

13}
-
[

L

v estimate of the variance of the clus-
ter number of trees per acre

(601337690 -~ (358160.27) (3077217.2)
/4313) /(4312)

80194.650 = estimate of the covariance

of the two cluster variables Sn1 (the
nunber of trees per acre) and Sy (the
sum of tree diameters per acre)

and similarly

S, = 713.47489 = estimate of the average
sum of tree diameters per acre

85 = 7135.6560 = estimate of the average
sum of squared tree diameters per acre

522 = 688523.95 = estimate of the variance
of Sho (sum of diameters per acre)

513 = 757520.27 = estimate of the covariance
of Sph1 and Sh3

S33 = 70767465 = estimate of the variance of
8,3 (sum of squared diameters per acre)
and
S,53 = 6799304.4 = estimate of the covariance
of Sy and Sph1

Dividing the variance and covariance terms
by the total number 4313 of clusters in the first
phase sample, and arranging all the values in a
vector and matrix form, we obtain

§1 83.042029
[z] = §2 = 713.47489
§3 7135.6560

and -

3.2512144 18.593705 175.63651

[s 18.593705 159.63922 1576.4675

zz) =

|175.63651  1576.4675 16407.945

(2) We already know, from the calculations
of Example 1, the values [b] and [sbb]. Then, we
can further calculate

#

w [b]'[z] = 74807.927 pounds per acre i

estimate of the average biomass per acre p
s = [byvis, 11b] = 1841261.6
ww 44

= estimate of the error component due
to the first phase sample



s{2) = [z]'[8,,]112] = 2145377.6

= estimate of the error component due
to the second phase sample

(3) 2 =
S = zzsb_b_sz_z. = 1119.6811
13 1]

= estimate of the third error compo-
nent which is being ignored

Sy = 51 4 s{2) - 1841261.6 + 2145377.6
ww WW = 3986639.1

estimate of the variance of w

it

2\/Sww

(2) (1996.656985) = 3993.3140

half-width of the 95 percent confi-
dence interval of u

Consequently, the point and 95 percent con-
fidence interval of W, the average biomass per
acre are equal to

wt ZJSww = (74808 + 3993) pounds

It may be interesting to note in this exam-
ple that with a phase 1 sample of 4313 clusters
and a phase 2 sample of 353 trees, more than 50
percent of the error (expressed as variance) is
associated with the biomass regressions. If the
error of the biomass regression is ignored, the
variance of w is underestimated by

(2145377.6) (100) /(3986639.1) = 53.8 percent

If the underestimation is calculated in terms of
standard error (or confidence interval) then we
obtain

(1996.6570 -~ 41841261.6)(100)/(1996.6570)
= 32.0 percent

It may also be interesting to note that the
same biomass regression may yield different size
error components in both, absolute and relative
terms. In Example 1 the absolute value of the
error component was estimated as equal to
6643784. This is over three times as large as
the corresponding value of 2145377.6 of the pre-
sent example. The relative value as found in
Example 1 is

100y¥6643784/120480.89 = 2.14 percent

while in the present example the relative value
is

100¥2145377.6/74807.927 = 1.96 percent
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AN OPTIMIZATION MODEL TO CALCULATE THE NUMBER OF
SAMPLE TREES AND PLOTSA/

Tiberius Cunia

Professor of Statistics and Operations Research,

State University of New York College of Environ-
mental Science and Forestry, Syracuse, NY 13210

The error of the estimates of forest biomass
inventory has two major components; one due to
the sample of plots (where the trees are measured
for diameter but not for biomass) and one due to
the sample of trees (measured for both diameter
and biomass) from which the biomass regression
function was calculated. The size of the erxror
is affected, among other things by (i) the size
of the sample of plots and (ii) the size of the
sample of trees. An approach is described for
the calculation of optimum number of plots and
trees to select so that either (i) minimum sam-
pling costs are obtained for a given required
precision in the estimate of the average biomass
per acre or (ii) maximum precision is obtained
when the costs of sampling are fixed.

Introduction

In a previous paper, Cunia (1986a) considers
sampling designs for forest inventory consisting
of two major phases; a first phase where the
trees of sample plots are measured for diameter
(but not for biomass) and a second phase where
the trees are measured for diameter and biomass.
The second phase trees provide a tree biomass
regression function on diameter, which applied to
the first phase trees yields estimates of the
average biomass per acre. He has also presented
a method to combine the error of the biomass
regression of the second phase with that of the
sample plots of the first phase, when the error
of the average biomass per acre is calculated.
His method assumes that (i) the sample plots and
sample trees of the first and second phase re-
spectively are selected independently of each
other by simple random sampling and (ii) the
regression function of biomass on diameter is
linear and satisfies the usual assumptions of the
weighted least squares method, in particular the
assumption that the conditional variance of the
tree biomass for given diameter is proportional
to the fourth power of the tree diameter.

The procedure requires that the estimator w
of the average biomass per acre y be of the form

l/Paper'based on a set of lecture notes "On
the error of biomass studies in forest inven-
tories; Part 1l: Its major components". Faculty
of Porestry Miscellaneous Publication Number 8
(ESF 85-004). SUNY College of Environmental
Science and Forestry, Syracuse, NY.

w o= blz1 + b222 + ... + bmzm = [b]l'[z]

where [b] is the estimator of the vector [81]1 of
coefficients of the regression function of tree
biomass y on tree variables Xqs KXoy eeer Xpo that
is,

y = Byxy + Boxy, + ... 4+ Box, = [B]'[x]
calculated from the data of the second phase
sample, and [z] is a vector of statistics calcu-
lated from the data of the first phase sample.
Note that [ ] and [ ]' notation is used to denote
vectors or matrices and transposed vectors or
matrices respectively. It can be shown that, for
the present case where w estimates the average
biomass per acre, the statistics z are nothing
but the estimators of the averages of the corres-
ponding variables x expressed on a "per acre”
basis.

For example, if the regression of tree bio-
mass on diameter is of the parabolic form

Y = Byx; + Byx, + Byxy = [B]'[x]

where X = 1, x, = tree diameter and Xy = squared
tree diameter, then (i) [b] is the estimator of
[8) calculated from the data of the second phase
sample and (ii) [z] is the estimator of the
vector [uz] defined as

u Ix,/acre
1 1
M_1 = M = Ix /acre
z 2 2
[ Ex3/acre

[ number of trees per acre
= sum of tree diameters per acre
sum of squared diameters per acre

calculated from the first phase sample.

If the covariance matrices of [b] and [z]
are denoted as [Ubb] and [Ozz] respectively, the
variance of w is approximately equal to

Toww = [BIVIO,1IB] + M, 110, 1(4,]

If estimators [Szz] and [Sbb] of these covariance
matrices are calculated from the data of the

first and second phase respectively, the variance
of w can be estimated by the approximate formula

Sww = [P1'[S,,1[b] + [2]'[Sy,1lz]
Expressed in this way, the variance of w can be
viewed as having two additive variance compo-
nents; the first [b]'[szz][b] containing the
error of the first phase sample, the second,
[z]'[sbb][z] containing the error of the second
sample.

The size of the first error component de-
pends on the sample size of the first phase,
among other things. Similarly, the size of the
second error component depends on the size of the
second phase sample. One of the most important
problems in survey sampling is that of deciding
how large the sample should be, in our case, how

15



large the samples of the first and second phase
should be. Samples that are too large in size
may yield estimates that are too precise for the
needs of the management and, thus, the sampling
process may be too wasteful of one's resources.
On the other hand, small samples may lead to poor
management decisions as the inventory estimates
may lack sufficient precision; and this may also
prove to be too costly. What one should do is to
determine the size of the first and second phase
samples that is expected to minimize the sum of
(1) sampling costs and (2) losses due to manage-
ment decisions based on inventory estimates.

Viewed this way, the problem may become too
complex to solve, since a management loss func-
tion may be extremely difficult, if at all possi-
ble to derive. What one can do instead, is to
approach the problem in the following way. Find
the sample size that would either (i) minimize
the sampling costs for required precision in the
estimates of interest (in our case the estimate
of the average biomass per acre), or (ii) maxi-
mize the precision (or minimize the error) of
these estimates for given allowable costs of
sampling., These two problems are equivalent,
since the solution of one can be generally de-
rived from the solution of the other.

A General Approach to the Optimization Process

To define a somewhat general optimization
approach we shall start with the following as-
sumptions.

(1) The variance V of the estimator of
interest can be split into two additive compo~
nents V, and V., associated with the samples of
the first and second phase respectively.

(2) The variance component Vv, can be writ-
ten as an explicit function of the various sizes
Ny1e Nyor eens of the first phase and, similarly,
the variance component vV, can also be written as
a function of the various sizes No1r Nogy eee of
the second phase sample. Let us write these
components as

Vl(nll' Nyoy ees ) and V2(n21, Nonr eee )

(3) The sampling costs of the first and
second phase can be expressed, at least approxi-
mately as the cost function

cl(nll' Nygr e ) and Cz(n21, Nogr eee )

respectively, and the total sampling costs as
their sum

C=C1+C2

Then the problem of calculation of optimum
sample size can be expressed as the following
problem.

Mathematical programming problem: Find the
values n,., nl2 ceer Ngqs Nooy eee that minimize
the cost function
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Cc = cl(nll' nlzl LI ) + C2(n21, n22, o e )

subject to

Vl(nll' Nyor eee ) + V2(n21, Nonr oo ) = V*

where- v* is the required variance of the estima-
tor of interest.

This is the problem of finding the sample
size that yields required precision at minimum
sampling costs. The equivalent problem of find-
ing the sample size that optimizes precision
(minimizes error) for a given cost can be simi-
larly expressed as follows.

Equivalent mathematical programming problem:
Find the values n,,, n o1 eees and Noqr Nogr eeey
that minimize the variance function

vV = Vl(nll’ Nigr oo ) + V2(n21, Ny ves)
subject to

Cl(nll’ Ny e ) + C2(n21, Noor eee ) = C*
where C* is the allowable cost of sampling.

There is no general solution to this general
mathematical programming problem. However, if
the functions Vir V2, Cy and C, have certain
properties, one can use calculus methods of opti-
mization and find the optimum solution. Such is
the case when the functions V and C are continu-
ous and have at least the first and second deri-
vatives. Then, the optimum solution is a solu-
tion of the following system of simultaneous
equations

aI-'/al'lij = acl/anl + Bcz/anij + ABVl/anij
+ A%v /dn;. =0 -

for af1 i*d 1,2,....ana § = 1,2,,..

and vV, Vv, = V¥,
where L is the Lagrangian function
L=Cy+Cy+ MV, +V, - V¥

It can be shown that one, conveniently selec~
ted solution of this system of simultaneous equa-
tions (with unknowns n,., Nyor eees Nyqr Nygyeeeee

.ss A ) is the optimum solution we seek, provided
some additional conditions involving the second
order derivatives (not mentioned here) are satis-
fied. These additional conditions are usually
satisfied, but to solve the system of equations
may require numerical methods. We shall now show
that, in our case the solution can be expressed
in a closed form as a set of formulae.

A Sample Size Optimization Model

Let us consider the oversimplified example
of a forest area containing trees of a single
species where (i) in the first phase n_ plots (or
points) are selected at random and all their
trees are measured for their diameter d at breast
height, (ii) in the second phase n, trees are
selected at random and measured for their biomass



y and diameter d, (iii) the regression of tree
biomass on diameter is assumedd to be of the
linear form

y = lel + B2x2 + oo+ Boxo o= [B]'[x]
where X = 1 and the otiier variables x are func-
tions of diameter and (iv) the average bio~
mass per acre is estimated by the statistic

w=Dyz; +byzy + ... + bz = [b]'[z]

where [b] is the weighted least squares estimator
of [B] calculated from the phase 2 data and [z]
is the estimator of the vector fu ] of the arith-
metic means “1, 91 sesesy Mg OF xl, Ko, eeey X
respectively expressed on a "per acre" basis,
calculated from the data of phase 1.

m

It has been stated above that the variance
v=_0 ww of w can be split 1nto two additive
components

v, = [B]'[0,,]I8]

which can be associated with the error of the
first phase sample and

V2 = [ uz] ' [cbb] [uz]

which can be associated with the error of the
biomass regression of the second phase. We shall
now show how to (i) sort out in explicit terms
the effect of the sample sizes n_ and n, in the
two variance components Vi and VP (ii) construct
a sampling cost function, (iii) construct an
optimization model for the calculation of the
sample size and (iv) solve the model and express
the optimum solution as a set of formulae.

Error Component Due to the Sample Plots of Phase 1

Under the assumption that the sample plots
(or points) of phase 1 are selected completely at
random (and with replacement), the covariance of
the z and z. variables can be written as
- where %: is the covariance of the plot (or p01ng)
variablés 53 and s;. The variable 54 is defined
as the variable X3 expressed on a per acre basis,
that is, sy = @xi/a) where "a" is the plot area
and L is taken over all the trees in the given
plot. For the definition of sy when we have a
Bitterlich sample point, the reader is referred
to Cunia (1985). For example, if the plot area
is one-fifth of an acre and x. = d (tree diame-
ter) then s; = (sum of the tree diameters in the
plot)/(.20). Consequently, the covariance matrix
of [z] can be written as

o
(e1/n,
where the ij-th element of {o] is the covariance

of z; and z. and the variance component Vv, can be
written as

=BI'bIB1/n, = 0y/n,

Error Component Due to the Biomass Regression of
Phase 2

Under the assumption that the trees of the
second phase sample are selected completely at
random and under the other usual assumptions of
the weighted least squares method of regression,
the covariance matrix of [b]} can be written as
approximately equal, on the average, to

(abb] = [e]/nt

where the definition of the matrix [0] is rela-
tively more complex. To better see the meaning
of {#] let us have a closer look at the method of
weighted least squares as described by Cunia
(1986b). The sample covariance matrix of [b],
expressed as [S,,] = Suu'v[T]' , is an estimate
of the true but unknown covariance matrix

(Opp! = Uuulv[T]-1 = Guulv[T]-I/nt

[(T] = [T)/n,

where

Because the ij-th element of [T] is the sum of

the cross~-products of the (transformed) variables
v1 and v, the corresponding ij-th element of [T]
is the aVerage cross-product viv 3 More formal-

ly, we can write
2 -
):vl/nt I:vlvz/nt veees Zvlvm/nt

z.vlvz/nt ng/nt seens szvm/nt

(m = . . .

I Vlvm/nt z vzvm/nt ceses T v:‘/nt |
Because the trees are selected completely at
random, the ij-th element of [T] estimates the
population mean value (expected value) of the
cross~product Vivie We shall define now the
matrix [TE] as thé matrix of the expected values
of the cross-—products_vivj and the matrix {g] as
the product ouulv[TE] . Of course, for a sample
of a given size n,, we do not obtain {8] but a
statistic S v[T] . "This is an estimate of the
matrix o [& which in turn is an estimate of

uulvlTE =Pkl

Consequently, the variance component vy
associated with the error of the biomass regres-
sion of the second phase can be written as

Vy = W, 01 ,l/n, = Q/n,

Cost Function

To optimize the sample size we need also
take into account the sampling costs. Although
the average costs of selecting one sample plot of
the first phase and measuring its trees may be
thought of as a function of sample size (the more
plots one has to select and measure, the smaller
the average sampling costs per plot tend to be,
since the average distance between plots and the
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travelling costs per plot tend to diminish) it
may be reasonable to ignore the fixed costs of
sampling and define, with an acceptable level of
approximation, the cost function for the first
phase sample as

Cy = Cplp
where c_ = average cost of selecting, travelling
and measuring a sample plot. Similar arguments
lead to the selection of the cost function of the
second phase as

Ca = C¢hy
where ¢y = average cost of selecting, travelling
and measuring a sample tree.

Consequently, the costs of sampling that are
affected by the sample sizes of the first and
second phase can be written as

C = C1 + C2 =cn_ + c.n

PP t't

Optimization Model

The mathematical programming problem can now
be expressed as the following model

Optimization model. Find the sample sizes

np and n, that minimize the cost function

C = C1 + C2 =cn_ + ¢

pp ¥ Ct”

t
subject to
Vit Vy = Qp/np + Q/n =V

where

0p = [81'[01181,
Qe + [M,1'(8101,], and

V* = required precision (expressed as the
variance) of the estimator w of the
average biomass per acrey .

To find the optimum solution we write first
the Lagrangian function

L = Cplp + Cyny + A(Qp/np + Qu/ng - V¥)

By taking the partial derivatives of L with re-
spect to n_, n, and A we obtain a system of three
equations in three unknowns which solved, yield
the optimum solution

n, = (\/Qp/np) (‘/chp + \/ctQt)/V*
ne = (VQu/ny) (ep0p + Vo) /v

and the value of A is of no interest. These are

the sample sizes that minimize the sampling costs
for the required error V* in the estimate w of
the mean biomass per acre Uu.

One may wish to find the sample sizes that
maximize the precision (minimize the error v*)
when the sampling costs are given. Then, he may
work with the mathematical programming problem
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expressed as the following equivalent model.

Equivalent optimization model. Find the
sample sizes n, and n, that minimize the variance
function

V= Qp/nt + Qu/ny
subject to

cn_ +c¢ = C*

p"p tit
where

C* = allowable costs of sampling.
The optimum solution of this model is
= *
ng = C* (/) / (e 0, + Ve 0y)
ne = C*(th/nt)/(Jchp + ctQt)

Of course, the optimum values n_ and n, we
select must be positive integers and? thus, the
nearest integer close to the values given by the
above formulae are usually selected. It is im-
plicitly understood that V* and C* are such that
the resulting sample size n_. is sufficiently
large to allow the calculation of the biomass
regression function. For more details about the
derivation of the above optimum solutions, the
interested reader is referred to Cunia (1985).

That these two sets of solutions are equiva-
lent can be seen from the fact that the ratio
np/nt is the same for both problems, that is

np/nt = VctQp/cht

This allows one to go from one to the other
solution by a simple and straightforward proce-
dure. For example, assume that to obtain an
estimate with a required variance V* one finds
the optimum sample sizes n_, and n_ for the sample
plots and sample trees respectively. This yields
an estimated cost of sampling of C* = c_n

+ cyn,. Suppose now that C* appears to be prohi-
bitively high and the management decided that it
cannot spend more than C** < C*, Then, the new
optimum sample sizes n** and n** that minimize
the error of the estimate for the given allowable
cost of sampling of C** can be determined by the
formulae

n** = pn*Crkk/C*
p P
and

n** = pkCk*/Ck

t t

To calculate these optimum sample sizes, one
must have prior estimates of fB],[l&], o1, {91,
c, and c.. This is seldom if ever the case.
Furthermore, we do not know how good these esti~
mates should be before the sample sizes as calcu-
lated would be of any value. It is possible that
small errors in the prior estimates of these
parameters may critically affect the optimum
sample size values. Good sensitivity studies are
needed to show whether the approach suggested
here has any practical value. There is no need
for theoretical studies; simulation techniques



can be used with great advantage.

Consequently, the formulae above should be
used with great care. Any results that one may
obtain from their use should be carefully ana-
lyzed. If they seem quite different from what is
expected from an intuitive point of view, chances
are that the results are indeed of questionable
value. There is one case, however, where the
formulae can be used to advantage. For example,
assume that data from sample plots and trees
become available and one is in a pesition to
analyze these data. He can get estimates of [B8],
Wz], [°1, (6] and costs c_ and c,. Then, these
estimates can be used in tge formulae above, and
one can verify whether, in a very approximate
way, the ratio

(actual number of plots/ actual number of trees)

is sufficiently close to the ratio of optimum
sample sizes.

Let us now illustrate the application of the
above procedure to a numerical example.

Example 1 - Calculate the optimum sample
sizes n_, the number of one-fifth acre sample
plots o% the first phase, and ng, the number of
trees of the second phase sample, when

(1) the sample plots of the first phase are
to be selected by simple random sampling (with
replacement), the sample trees of the second
phase are to be selected by simple random sam-
pling (with replacement) and the samples of the
two phases are statistically independent,

(2) the average cost of selecting and mea-
suring a sample plot is estimated as ¢, = $120,
the average cost of selecting and measuring a
sample tree is estimated as c¢. = $50 and the
function of sampling costs is well approximated
by the linear function

C = cpnp + Cy By

and (3) the regression function of the tree
biomass y on the tree diameter d is of the para-
bolic form

9 =B + Ba+ BaZ=8x; + Byx, + Byxy = [8]"[x)

with the obvious definitions for TR ITIR SY [B]
and [x].

Assume that

(1) the estimates of the mean vector and
the covariance matrix of the plot variables

8, = (number of trees in the plot) per acre

s, = (sum of tree diameters in the plot) per
acre, and

sy = (sum of squared tree diameters in the

plot) per acre

where s ( defined as xy expressed on a per

acre basis, i =1, 2, 3) are those calculated in
Example 1, of the earlier paper by Cunia (1986a)
that is

z, 123.69330
(M1 =] 25| = |1090.6982
z4 11380.879
and
511 812 513
ol =159, S22 S23
8513 S22 833
10390.237 89963.308 863918.12
= | 89963.308 830078.46 8622243.4
863918.12 8622243.4 98423671
and

(2) the estimates of the vector [g] of
regression coefficients and the matrix [6]
=0 v[T]— , are those given in the same Exam-
ple 1, that is,

by 5.1818118
Bl ={ b, =| -25.653078
b,y 12.988357

and

= -1 =
©1 = Syypy (T = ngisy)
3076707.6 -784538.32 45431.073
= |-784538.32  205444.48 -12276.279
45431.073 -12276.279 767.58376

since n, = 353 and
8715.8855 -2222.4882 128.69992

~2222.4882 581.99570 -34.776995
128.69992 -34.776995 2.1744582

[Sbb] =

Then, calculate the optimum future sample
sizes np and n, such that

(1) the minimum costs C of selecting and
measuring n_ and n, trees are obtained when the
desired variance of w, the estimator of the aver-
age bio%fss per acre, is Ouw = 20,000,000
{(pounds)“, and

(2) the optimum precision (minimum vari-
ance) of w, the estimator of the average biomass.
per acre y is obtained for a maximum allowable
cost of sampling of C = $120,000 of selecting and
measuring np plots and n, trees.

Also, show that

(3) the solutions of questions (1) and (2)
above are equivalent, that is, one can go from
one to the other problem solution by simple cal-

culations.

To solve these problems, we shall use the
formulae of the present section and some of the
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calculations already performed in Example 1 of
Cunia (1986a)

(1) The optimum sample sizes n_ and n_ that
minimize costs for desired precision”are given by
the formulae

Lt = (BT (g + g /v
ng = (VQp/cy) (Yo Qp + e Qp)/V*

where
cp = 120, ¢ = 50, V* = I = 20,000,000
Q, = [B]'[0][B] = 11497014000
P

and
Q¢ = [1,1'[8][n,] = 2345255900

Note that Q, and Q. can be calculated directly
from the estimates of [B1, fu,1, [9] and (O]
assumed above. But because of the identities

Qp = (926)([b]'[szz][b] of Example 1 of
Cunia (1986a))
= (926) (12415782 ) = 11497014000
and
Q = (353) ([z]'[Sy112] of Example 1 of

Cunia (1986a))

(353) (6643784.4) = 2345255900

we have used the calculations already performed
there.

As the intermediate ressults are

chQp = 47120)(11497014000) = 1174581.5
VEtQt = J(SO)(2345255900) = 342436.6
(chQp + \/ctQt)= 1174581.5 + 342436.6
= 1517018.1
VQp/cP = V11497014000/120 = 9788.1790
and .
VQt/ct = V§345255900/50 = 6848.7311

we calculate the optimum sample sizes nP and n, as

n, = (9788.1790) (1517018.1) /(20,000,000)
= 742.44 = 742
and
n, = (6848.7313) (1517018.1) /(20,000,000)

= 519.48 = 519

(2) - The optimum sample sizes n_ and ng that
maximize precision for the allowable sampling
costs of $120,000 are given by the formulae

» ny, = C*(VRp/ep) / (Ve 0 + VerQy)
ne = C* (Y@ /cy) / (Ve 9 + Yo o)
where

C* = 120,000 and all other intermediate
results have already been calculated in (1)
above. Then,
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np = (120,000)(2788.1790)/(1517018.1)
= 774.27 =774
and
ng = (120000) (6848.7313)/(1517018.1)

541.75 =542

(3) The reader can verify that the solu-
tions in (1) and (2) above are eguivalent by
calculating the ratios of the sample sizes n_/n..
In both cases, the ratio is approximately 1.4292.
If one wants to go from the solution of (1) to
the solution of (2), he proceeds as follows

Step 1 - The sampling costs in (1) above are
(742.44) (120) + (519.48) (50) = 115067

Step 2 - The sample sizes of (2) above
are calculated as

n

p (120000/115067) (742.44) =774.27
and

774

(120000/115067) (519.48) = 541.75 542

ne

Extension to the Case of More than One Species

The extension to more than one species is
straightforward. Each species has a different
biomass regression function and the interest lies
in the estimation of the average biomass per unit
area (acre) U for all species combined. The
procedure for calculating w, the estimator of yu
and that of calculating an estimator of the vari-
ance of w is given by Cunia (1986a) for the case
where (i) the first phase sample of plots and the
second phase g samples of trees (one for each of
the g species), are selected by simple random
sampling method (ii) the (q+l1) samples of plots
and trees are statistically independent and (iii)
the biomass regression functions are linear. He
shows that if

(1) [bll, [b2], veee; [b9] represent the
sample vectors of the regression coefficients of
the q species and [s%g], [SéL], cany [a%?] the
estimators of their covariance matrices,

(2) [zll, 1221, ..., [29] represent the
estimators of the first phase sample such that,
w; = [bY1'[21] defines the estimator of the mean
biomass per unit area of species i, and [%;3] is
the estimator of the covariance matrix of [zl]

and [(zJ], for i, 3 =1, 2, ..., 4, and

(3) the (g+l1) samples of plots and trees -
are statistically independent of each other, that
is, the covariance matrices [5;3] and [le] that
is, of [b'] with [bJ], and [(b*] with 1231 respec~
tively are all zero, then

(1) w= [B]'[Z] = Wy + W, + veee + wq
= estimator of j, the mean biomass
per acre of all species 1, 2,
«eey @ combined, and
[2)s = [Bl' 1¢ '
W [SZZ][B] + [2]1'[s__11[2]

B
. 17 1? 1
(81" [S,,][B] +[z11' IS 1(z"]

24y227 [22 : 20 ' [s™ (2™
[z ][Sbe[z 1+ ...+ [2M [Sbb][z ]

+



= estimator of the variance of w

where
(B]' = { bY1'  [b21'  .... 9] ]
(z1' = [ (2410 (2210 ... 1291 )
<11 .
rlsbbl [0} cee.[0]
22
[?] [§bb] [(:)]
S = | P :
0 T aq
| to] (0] ceen [Sbb[
and - -
sty Ll sie
zz zz zz
(570 =| 18211 (221 ... (%9
«ZZ :ZZ :ZZ
(sl [s9?] ... 1599
L zz 22 ZZJ

Let us now give the formulae for the calcu-
lation of the optimum sample sizes

n, = number of sample plots of the first
phase, and

n. = number of sample trees of species i of
the second phase, for i =1, 2, ..., q,

when the (gq+l) samples of plots and trees are
statistically independent, and they are all selec-
ted by simple random sampling (with replacement).
We shall assume that

(1) The costs of sampling are sufficiently
well approximated by the linear cost function

C = cpnp + € nq + c,n, + ... cqnq
where n_ = average cost of selecting and measur-
ing a sample plot
n; = average cost of selecting and measuring
a sample tree of species i, i =1, 2,

ceer 4

and C = (total sampling costs ~ fixed costs of
sampling)

(2) The variance of the estimator w
= [B]'[2] of U, the average biomass per acre
is given by a formula of the form

V=V_ + Vl + V2 + e + V

P q
where
Vp = [B1'[01[B)/n, = /n/
Vi= LLEN /g
= Qi/ni' for i =1, 2, ..., q,
B1* = [ 81 8% ... g9 )

[Ui] = expected value of [zi]

and [g] and [8'%] are matrices of the type de-
fined for one species in the previous section.
Of course, matrix [0] contains the covariances of
a much larger number of variables s and [611]
refers to the matrix [0] =0, v[’["]-1 of the
species i. Under these assumptions, Cunia (1965)
gives the following solutions to two equivalent
problems of optimization of future sample size.

Solution - The future sample sizes n_, ny,

that minimize the cost function

Npr weey Mg

C = cpnp + ¢yng + Gy + ooee t cqnq
subject to
Vp +Vy o+ V2 + oeees + vq = QP/n§ + Ql/nl
+ Q2/n2 + ...+ Qq/nq = V*
where V* is the required precision (expressed as

variance) of the estimator w can be calculated by
the formulae

n

p = (VQP/CP)(JCPQP + Vlel + JCZQZ PR
+egQy) /v

; = (\/Qi/ci)(\/chp + e 0, + Ve 0, + .en.

and

=}
|

+ chq)/V* for i =1, 2,

Equivalent solution - The future sample
sizes n_, Ny Ny, eeey nq that minimize the
variance of w

Vv = Qp/np + Ql/n1 + Q2/n2 + oaee. + Qq/nq
subject to

= C*%

c.n +c1n1+c2n2+....+cqnq—-

p'p
where C* is a given value for allowable total
cost of sampling, can be calculated by the formu-
lae

n, = C*(\/Qpcp)/(\lchp + Vlel + chQ2 + eeee
+ ¢ 0.)
and ~a
n. =

i C*(\IQi/ci)/(\/chp + o0, +He,0, + ..

+ chQq)for i=1,2, ..., q

As with the case of one species, to calcu-
late the optimum sample sizes, one must have
prior estimates of the parameters [R1], [u;], [o],
[611], c_, and cye This is seldom, if ever, the
case. But if this is the case, then, one can
use, from some previous sample data derived from
some similar forest areas, the estimators [B] of
(81, 12%] of {u’1, [S] of [o], and

Qp = npIB1'[Sy,1(B]

11 _ 22
ny s JTe @y = nplS 0 vy

= q
) Qq = nq[sgb]

Q1

R |
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where n_, Ny, Ny, .oy Dy are the sample sizes of
the previous sample data and not the optimum
sample sizes we seek to calculate.

Example 2 - Calculate the optimum sample
sizes
np = number of one-fifth acre sample plots
of the first phase
ny = number of trees of species group 1 of
the second phase sample

n, = number of trees of species group 2 of
the second phase sample
and
ng = number of trees of species group 3 of
the second phase sample
when
(1) all four samples of plots and trees of
various species are selected by simple random
sampling (with replacement) with all four samples
being statistically independent of each other,

(2) the average costs of selecting, measur-
ing and processing a sample plot or tree of a
given species are approximately equal to

cp = $120, c, = $30, c, = $50, and cy = $60

(3) the sampling costs function C is well
approximated by the linear function

C = cpnp + ¢ ny + Cyny + C4ng
and

(4) the regression functions of tree bio-
mass y on tree diameter d are of the parabolic
form _

y = Bil +Ba+8By a2 = B %y + B g%y

VB xy =B (x

for species group i = 1, 2, 3 where the defini-
tion of xj and vectors [81] and [x] is obvious.

Assume the following

(1) Rough estimates of the mean vector {us]
(which is sthe same as Blz]) and covariance
matrix [o] of the plot variables S1s Sy seer Sg
defined as

s, = (number of trees of species group 1 in
a given plot) per acre

s, = (sum of diameters of the trees of spe-
cies 1 in a given plot) per acre

s, = (sum of squared diameters of the trees

of species 1 in a given plot) per acre

with similar defintions for Sgr Sgr Sg (of spe-
cies group 2) and s,, Sg, Sg (for species group
3) are those calculated in Example 2 of Cunia
(1986a), that is,

et I Rt B Rt
ta =|p? 0% %3
31 32 33

[o77] [o771] o771

22

p—
—

[28.439525]

245.73704

2592.1076|

;[“;] _ -

5 39.994600

Wl =1l | = ||ss52.64039

[ugl }655.4591

[55.250179

492.32073

where _ 5133.3124

o ij] = (926)[Sij] of Example 2 of Cunia
2% (1986a), i, j =1, 2, 3

For example,
3.3631663 30.013376 299.99303

b 11] = (926) |30.013376 278.99377 2924.2532
299.99303 2924.2532 32478.880
3114.2920 27792.387 277793.55
= 27792.387 258348.23 2707858.4
277793.55 2707858.4 30075443
The multiplication of [Sij] by 926 = n, was
necessary because‘[sljl represented the covari-
ance matrix of [z1] with [zJ], the averages of
the 926 plot values [s*] and (s1.
(2) Rough estimates of the vectors [Bi] of

regression coefficients and matrices [611]
those calculated in Cunia (1986a), that is

295.60183 -256.70604
(8'1 = | -107.06967{ , (@1 =] 40.050701
16.882552 9.1695394
5 18.8002432
181 =| -20.693393
13.156786
ii, _ =1 _ ii .
and [87 "] = suulv[T]\ = n;I[s ] of Cunia

‘(1986a), i = 1, 2, 3, with

13256.622 ~-3494.4363 211.95740
(100) | -3494.4363 943.83938 ~-58.826156
211.95740 -58.826156 3.8046237

(o1l

1325662.2 -349443.63 21195.740
-349443.63 94383.938 -5882.6156
21195.740 -5882.6156 380.46237

fl

and similarly
25911.067 -6691.9889  393.93612
B 22] = (107)| -6691.9889 1777.8435  -108.29003
393.93612 -108.29003  6.9277171

and



25197.692 -6243.4168 347.66044
[933] = (146)| -6243.4168 1587.0539 -91.114812
347.66044 -91.114812 5.4758847

We shall calculate the optimum sample sizes
for the two cases of (1) minimizing the sampling
costs for a required variance of w of approxi-
mately equal to V* = 18129960 (pounds)® (same
precision as that obtained in Cunia (1986a)) and
(2) minimizing the variance of estimator w for
the allowable sampling costs of C* = $128230 (the
same costs of sampling as those of Cunia
(1986a)). For this we need estimates of Q , Q1
Qy/ «eer Q, as well as estimates of functighs of
the form Q /cp, vQi/¢i, Ve Qpr etc. These esti-
mates are calcilated as follows, where many of
the intermediate results are read from Cunia
(1986a) .

Qp = [B]'[o](B] = (926)[B]'[Sz J[B]
= (926) (12145981) = 11247179000

1,611 1 1,01g11y,1
Q = [271'[8771[[2z7] = (100) [27] [sbb][z !
= (100) (746466.01) = 74646601
Q, = (107) (2338326.6) = 250200950

Qy = (147) (2899185.7) = 426180290

IQp/cp = V11247179000/120 = 9681.2442

NQ;/cq = V74646601/30 = 1577.4093

VQy/c, = V250200950/50 = 2236.9665

VQ;/cy = V426180290/60 = 2665.1463

Voo, = V(120) (11247179000) = 1161749.3
V19, = {(30)(74646601) = 47322.28
Vc,Q, = Y(50) (250200950) = 111848.32

. Ve3Q3 = Y(60) (426180290) = 159908.78
an

VepQp + Ve1Q; +Ve0, +Veg0; = 1480828.7

Consequently, we are now ready to apply the for-
mulae of this section and find

(1) The optimum sample sizes that minimize
the sampling costs for a required precision of
V* = 18129960

n, = (9681.2442) (1480828.7) /(18129960) = 791

ny = (1577.4093) (1480828.7)/(18129960) = 129

(2236.9665) (1480828.7) /(18129960)

ny 183

n, (2665.1463) (1480828.7) /(18129960) = 218

(2) The optimum sample sizes that minimize
the variance of w for allowable costs of sampling
of C* = $128230

n, = (128230) (9681.2442) /(1480828.7) = 838

n; = (128230) (1577.4093)/(1480828.7) = 137

n, = (128230) (2236.9965)/(1480828.7) = 194
ny = (128230) (2665.1463)/(1480828.7) = 231

Note that the precision and costs of sam-
pling of the data of Example 2 of Cunia (1986a)
are equal to V = 18129660 (pounds)
and C = $128230 respectively. The
first set of optimum sample sizes n_ = 791, n
=129, n, = 183, and n, = 218 are expected to
yield the same precision V at the minimum sam-
pling costs of

C=(791) (120)+(129) (30)+(183) (50) +(218) (60)=121020

for a saving of $(128230-121020) = $7210 or
about (100)(7210)/(128230) = 5.6 percent. Simi~-
larly the second set of optimum sample sizes n

= 838, ny = 137, n, = 194, ny = 231 minimizes ghe
variance of the estimator w for the same sampling
costs of the data of Example 2 of Cunia 1986a.
The expected precision is about

V=gQ/n, + Q./n, +Q,/n, + Q./n
= 1%245179080/338 +274246601/137
+ 250200950/194 + 426180290,/231
= 13421455 + 544865 + 1289696 + 1844936
= 17100952

or, a reduction in variance of about

(100) (18129660 - 17100952)/(18129660)
= 5.6 percent

the same percent we have found with the first set
of sample sizes. This was expected.

Of course, all these statements ‘are strictly
correct only if the assumptions made about the
values of the variance and costs parameters are
also strictly correct. As this is not the case,
some sensitivity analysis should be made if one
desires to see by how much precision and costs
are affected by our assumptions. This is not
being done here. From a practical point of view,
however, we can say that the actual sample sizes
of Example 2 are not too far from optimum, since
the optimum sizes are expected to improve the
efficiency only by less than 6 percent.
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