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LINKING HYPERSPECTRAL IMAGERY AND FOREST INVENTORIES FOR FOREST 
ASSESSMENT IN THE CENTRAL APPALACHIANS 

Jane R. Foster and Philip A. Townsend† 

ABSTRACT.—Hyperspectral imagery from EO-1 Hyperion and AVIRIS were used in conjunction 
with continuous forest inventory (CFI) data to map detailed forest composition in the state forests 
of Western Maryland. We developed a hierarchical vegetation classification that conformed to the 
National Vegetation Classification Standard (NVCS) at the Alliance level and mapped these forest 
types as a function of hyperspectral reflectance using decision trees. Overall classification accuracy 
for vegetation at the Alliance level was very high (60-80 percent), with field validation indicating 
accuracies ranging from 65-70 percent. In an area dominated by oaks, the hyperspectral imagery 
was able to accurately distinguish plots dominated by individual red oaks with acceptable success 
(>60 percent). Hyperspectral imagery also differentiated between conifers more than 70 percent of 
the time. Overall, the accuracies were improved over similar analyses conducted using multi-date 
Landsat data. Our research demonstrates the capacity for hyperspectral imagery to remotely 
monitor, map and model forest systems in the Central Appalachians. The resulting forest 
composition maps can inform forest management decisions with a level of information content not 
previously available. 

Mapping forest types is one of the primary applications of remote sensing data to forest management. In 
the past, standard satellite imagery available from Landsat era sensors has been limited in its ability to 
differentiate between specific hardwood forest types such as those described at the Alliance level of the 
National Vegetation Classification Standard (NVCS) (http://biology.usgs.gov/npsveg/nvcs.html). Forest 
maps with species level detail continue to be desired by forest managers and scientists alike, yet remain 
difficult to produce from satellite imagery without complex methods, extra data sources, and intense time 
and effort. Hyperspectral imagery improves upon the limits of Landsat data by measuring the reflectance of 
light in more than two hundred narrow bands, compared to Landsat TM’s seven wide bands. Specific 
portions of the hyperspectral spectrum have been linked to forest indicators such as forest stress measured 
by canopy chlorophyll content (Sampson et al. 2003) and the biophysical content of leaves (Townsend et al. 
2003, Smith et al. 2003). As such, the high data content found in hyperspectral data promises to greatly 
enhance forest mapping capabilities when used in conjunction with typical forest inventory data. We tested 
the ability of hyperspectral imagery from two sensors combined with Continuous Forest Inventory (CFI) 
data to map forest composition to the Alliance level and compared the results to a similar classification 
created from multi-season Landsat TM data. 

Study Area 
Green Ridge State Forest (GRSF) is a 16,000 ha working forest in Western Maryland (fig. 1). It is located 
in the Ridge and Valley physiographic province of the central Appalachian Mountains, and is characterized 
by steep northeast to southwest trending mountains, with many deep valleys. Elevation ranges from 200- 
700 m. Green Ridge lies in the rainshadow of the Allegany front, receiving only 91 cm of rainfall annually, 
the lowest amount in Maryland. Most of the soils at GRSF are derived from either shale or sandstone with 
a relatively low water holding capacity (Mash 1996). The forests were largely cleared around the turn of the 
twentieth century, and are now mostly intact and mature.  Scattered clearcuts and deferred harvest cuts at 
various stages of regrowth are located within the study area, though fewer than 100 ha are typically 
harvested annually. Large areas of uneven forest are located in places where gypsy moth defoliation over two 
decades has caused substantial tree mortality. Forests are comprised largely of deciduous oaks, with Virginia 
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pine (Pinus virginiana) and white pine (Pinus strobus) mixing in or forming pure stands and hemlock (Tsuga 
canadensis) growing on protected north-facing slopes. Of the key oak species, white oak (Quercus alba) and 
scarlet oak (Quercus coccinea) are both prominent on mesic slopes and at lower elevations. Red oak (Quercus 
rubra) and chestnut oak  (Quercus prinus) are abundant on ridge tops and rocky slopes, and black oak 
(Quercus velutina) dominates mostly on mesic lower slopes. The understory is largely open, although 
blueberry (Vaccinium spp.) can be locally abundant and greenbriar (Smilax spp.) frequently expands in 
Gypsy moth defoliated areas. 

Methods 
Field Data 
Continuous Forest Inventory (CFI) data from the Maryland Department of Natural Resources was used to 
sample the image data to classify forest types based on image spectra. The CFI database includes 432 plots 
in GRSF, all of which were sampled in 2000 or 2001. Each CFI plot is a 0.08 ha circular area on which all 
trees > 12 cm diameter are identified and measured. The CFI plots are arrayed on a regular grid at 
approximately 550 m intervals, yielding a statistical sample of the population of forest properties within the 
study area. All plots were geographically referenced using a Trimble Pro XR GPS. 

Image Data 
Hyperspectral images from sensors on two separate platforms were acquired for this research. A summer 
Hyperion image was acquired from the EO-1 satellite on 24 July 2001. An AVIRIS image was collected 
from an ER-2 aircraft on 14 May 2000. Hyperion has a spatial resolution of 30 m and covers a swath 7.68 
km wide. It measures 210 bands at approximately 10 nm intervals from 400 nm to 2500 nm.  High 
altitude AVIRIS pixels have approximately 17 m spatial resolution and 224 bands at 10 nm intervals 
between 400-2500 nm.  Hyperion and AVIRIS images were converted to reflectance and referenced to 
UTM map coordinates as described in Townsend et al. (2003).  The Hyperion image was also corrected for 
terrain illumination effects while the AVIRIS data used for this study was not (Townsend and Foster 2002). 
Four reflectance spectra were extracted from the hyperspectral images for each CFI plot. These spectral 
“bundles” were linked without averaging to their respective CFI plot data to create the hierarchical 
classification trees we used to map forest alliances. 423 plots overlapped with the AVIRIS image area and 
283 plots overlapped with the narrower Hyperion image. 

Figure 1.—Location of Green Ridge State 
Forest, Maryland. 
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A time-series of Landsat TM images from three dates was used to test the ability of multi-temporal Landsat 
data to map forest alliances.  The time-series included an early spring image from 16 April 1997, an early 
summer image from 31 May 1996, and a mid-summer image from 24 July 2001. Each Landsat image was 
converted to planetary reflectance, orthorectified to UTM map coordinates, and corrected for terrain 
illumination effects using a Cosine correction (Meyer et al. 1993, Allen 2000).  Both Landsat and Hyperion 
images were spatially accurate to within 30 m. Reflectance from TM bands 1-5 and 7 for each date for a 
total of 18 bands were extracted as described above and put into the CART analysis. 426 CFI plots 
overlapped with the TM image area. 

Vegetation Classification 
Vegetation types were assigned based upon the clustering of floristic data from 15,033 forest samples from 
the Central Appalachian region acquired from several sources, including data we have collected (3,813 
plots), samples from the USFS Forest Inventory and Analysis (FIA) database (10,140 plots), and from the 
CFI database (1,080 plots).  Sample areas and number of trees tallied were comparable among datasets, 
which permitted merging the data from multiple sources. Once the data sets were assembled, species names 
were standardized and relative basal area was computed by species by plot. The data were clustered using 
Ward’s hierarchical agglomerative method (Lance and Williams 1967), with a small proportion of the plots 
eliminated as outliers. The classification yielded 41 forest alliances, of which 28 occurred in the Green 
Ridge study area (table 1). Subsequent to developing the vegetation classification, the image spectra 

Table 1.—Forest associations found at GRSF. (Shaded classes were not validated in the field for this study and are 
not discussed in the results). 

Class # Class Name Common Names N (CFI Plots) 

1 Quercus rubra Red Oak 11 

 
3 Quercus rubra - Quercus spp. - Carya Red Oak - Oak species - Hickories 32 
4 Pinus virginiana Virginia Pine 36
5 Pinus virginiana / deciduous mix Virginia Pine / Deciduous Mix 23 
6 Quercus prinus - Quercus coccinea Chestnut Oak - Scarlet Oak 7 
7 Quercus coccinea / mix Scarlet Oak / Mix 35 
8 Pinus rigida Pitch Pine 4 
9 Quercus velutina / mix Black Oak / Mix 52 

10 Quercus alba White Oak 75 
11 Quercus prinus - Quercus spp. / mix Chestnut Oak - Oak species / Mix 53 
12 Quercus prinus - Acer rubrum / mix Chestnut Oak - Red Maple / Mix 2 
14 Quercus prinus Chestnut Oak 21 
15 Prunus serotina Black Cherry 3 
25 Fraxinus spp. Ash species 1 
33 Sassafras albidum Sassafras 2 
40 Robinia pseudoacacia / mix Black Locust / Mix 3 
42 Fraxinus americana / mix White Ash / Mix 6 
43 Carya sp. Hickory species 14 
44 Acer saccharum / Quercus rubra Sugar Maple / Red Oak 6 
45 Tilia americana / Acer saccharum American Linden / Sugar Maple 1 
49 Pinus strobus White Pine 6 
50 Pinus strobus / Quercus mix White Pine / Oak Mix 24 
52 Tsuga canadensis Eastern Hemlock 5 
53 Liriodendron tulipifera Tulip Poplar 2 
54 Liriodendron tulipifera / mix Tulip Poplar / Mix 1 
55 Acer saccharum Sugar Maple 1 
56 Acer saccharum / Fagus - Fraxinus mix Sugar Maple / Beech - Ash Mix 5 
59 Acer rubrum / Fagus - Acer saccharum mix Red Maple / Beech - Sugar Maple Mix 1 

TOTAL 432 
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extracted for each of the CFI plots in GRSF were used to develop target hyperspectral signatures for the 28 
associations. The spectral data were then used with decision trees to develop stand type maps. 

Statistical Methods 
We used classification and regression trees (CART) to map the Alliance level forest classes from spectral 
signature bundles. A variety of approaches have been used to map forest composition with hyperspectral 
data in mountainous landscapes (Martin et al. 1998) and with mixed forests (van Aardt and Wynne 2001). 
CART is being used increasingly for mapping from remotely sensed imagery (Friedl and Brodley 1997, 
Friedl et al. 1999, Hess et al. 1995, Cairns 2001) and is only generally described here. Classification trees – 
also known as decision trees – are fitted by binary recursive partitioning, in which data sets are 
consecutively divided into smaller subsets with increasing statistical homogeneity (Clark and Pregibon 
1993). CART approaches are desirable because they are less sensitive to non-linearities in the input data 
than methods that require assumptions of Gaussian distributions (as do many image classification 
techniques) (Clark and Pregibon 1993, Venables and Ripley 1994). In addition, CART is an extremely 
valuable approach for data exploration when a very large set of independent predictor variables are 
available, e.g. with hyperspectral data sets. CART does not require data reduction, tests for normality or 
data transformations. One limitation to CART is that its performance is most robust and repeatable with 
large data sets, such as the CFI vegetation database that we used. 

Field Validation 
Forest maps created from the CART classification were validated using the “fuzzy sets” methodology 
originally proposed by Gopal and Woodcock (1994, also Townsend and Walsh 2001). Traditional measures 
of accuracy assessment that report simple “yes-no” accuracy are limited in applicability to complex forest 
landscapes because they assume all locations on a map can be unambiguously mapped to a single category. 
In addition, traditional methods do not convey the degree of error or mismatch between mapped categories 
and actual composition.  Forest communities in the Appalachians are naturally heterogeneous and highly 
variable, grading across types in terms of both species dominance and presence. For this reason, forest 
composition can be described as “fuzzy,” and it can be acknowledged that for any one location it either may 
be difficult to identify any single best community type label or, alternatively, a location may be reasonably 
classified into two or more types.  For example, in this work, we attempt to map forests dominated by 
black, red and scarlet oaks, whereas in many locations forests contain a mix of the three species.  To 
accommodate this, in an accuracy assessment using fuzzy sets, all validation locations are assigned a fuzzy 
membership rating in all possible classes (from 1, completely wrong, to 5, absolutely right); fuzzy 
membership scores are then used to assess the magnitude and sources of confusion and ambiguity in the 
classification.  We report 3 assessments of accuracy using the method of Gopal and Woodcock (1994): (1) 
percent accuracy for mapping to the “best” class vs. mapping to an “acceptable, but not necessarily the best” 
class), (2) the mean magnitude of errors by class, and (3) the source of errors (the average number of classes 
with acceptable membership for a given class). 

NVC standards suggest visiting a minimum of 10 sites for each class when validating forest vegetation 
maps. Using an AVIRIS classification as a base map, we selected 10 validation sites for each class that was 
represented by more than 10 plots in the CFI plot data, for a total of 11 classes (see un-shaded classes in 
table 1). These sites were distributed widely and were generally accessible from forest roads. Incidental 
validation plots were added to replace inaccessible plots or when a unique forest type was observed. These 
plots increased the number of validated forest alliances to 15. Expert assessment was conducted 
independent of knowledge of the classification. We visited a total of 146 validation plots. Because of slight 
differences in the three maps from different sensors, the number of validation sites per forest type varies 
based on the map being analyzed. 

Results 
The results of the accuracy assessment of CART classification maps from each sensor are summarized in 
Tables 2 and 3, and require some explanation for those unfamiliar with fuzzy assessments. Table 2 shows 
different accuracy measures for all the field validated forest types. The learning accuracy for the CART 
classification trees is shown in the LEARN column and represents the percentage of the CFI forest plots 
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used to create the classification tree that were mapped to the correct class by that tree. According to learning 
accuracy, AVIRIS predicted CFI forest plot type with 80.9 percent accuracy overall, followed by Hyperion 
(64.4 percent) and Landsat (62 percent). AVIRIS mapped 10 of the 15 most abundant classes with a 
learning accuracy greater than 75 percent, of which 4 pine classes and the white oak class exceeded 90 
percent accuracy. In comparison, Hyperion mapped only 5 classes with learning accuracy near or greater 
than 75 percent. These forest types included Virginia pine, white oak, black oak mix, white pine/deciduous 
mix and eastern hemlock. Landsat TM had the lowest overall learning accuracy, mapping only 4 forest types 
well (> 75 percent). 

The remaining columns in Table 2 show the results of the fuzzy set analysis designed to measure the 
frequency of matches and mismatches between the mapped forest types and the independent validation 
data. The number of samples (N) corresponds to the number of validation sites visited for each class for a 
particular map. We include two accuracy metrics from the fuzzy set analysis in this table. The MAX metric 
represents the percentage of validation sites that were mapped to the absolute best class as seen in the field. 
The RIGHT metric represents the percentage of validation sites that were mapped to a good or acceptable 
forest type. This measure gives a better sense of map accuracy for the map user, because it illustrates the 
probability that a point on the map will be mapped to a class that agrees to a large extent with what is 
observed on the ground. The improvement in accuracy gained from the MAX to the RIGHT metric is 
shown in the IMP column. We can see that the RIGHT function improved the MAX accuracy by 20-25 
percent on average. 

According to MAX total, all three forest vegetation maps have a low overall validation accuracy ranging 
from 41.3 percent for Landsat to 46.5 percent for Hyperion. Fortunately, the RIGHT measure shows that 
the actual ability of the classifications to map good or acceptable classes ranges from 65.3 percent for 
Hyperion to 70.2 percent for AVIRIS. Hemlock stands, which are easy to distinguish both spectrally and in 
the field, were mapped to the best possible class with consistently high accuracy by each sensor. The forest 
type that was mapped with a relatively high RIGHT accuracy most consistently across platforms was the 
black oak mix class with 79.2 percent success for AVIRIS, 68 percent (Hyperion), and 82.1 percent 
(Landsat). AVIRIS mapped 9 out of 12 validated classes with 60 percent accuracy or greater. Hyperion 
mapped 7 out of 11 validated classes with 60 percent accuracy or greater and Landsat TM broke 60 percent 
accuracy with 7 out of 12 validated classes. Considering the degree of mixing among the forest vegetation 
classes being mapped, these accuracy levels are a promising accomplishment.  No previous studies have 
attempted to map such specific classes. 

Table 3 illustrates the average magnitude and direction of the map validation errors (MAG) and the average 
fuzzy membership statistic (MEMBER). Where a mismatch occurs between the best forest type in the field 
and the actual forest type found on the map, the MAG statistic shows the average difference between the 
maximum score given for a forest type at a given site and the next highest score given for other possible 
forest types. For example, a site mapped as chestnut oak – oak species / mix turned out to actually fit the 
exact description of the chestnut oak – scarlet oak class when visited in the field. In this case, the maximum 
score given was a 5 to the chestnut oak – scarlet oak class and the second highest score was a 4 for the 
chestnut oak – oak species / mix class. The difference value for this particular site would be the score for the 
mapped forest type (4) minus the maximum score (5) resulting in a value of –1. A case where a site is 
accurately mapped as the best possible class with no other reasonable choices would give a difference of 5-1, 
or +4. A MAG value of zero indicates that a site was accurately mapped to the best possible class. Thus 
MAG values close to zero are desirable.  Slightly negative values show that although the best class was not 
correctly mapped for that site, it was actually mapped to the next best choice. Given the specificity and 
mixing characteristic of our forest alliances, we did not expect to find many cases where there were strongly 
positive differences except for very distinct classes such as the hemlock, which had slightly positive MAG 
values for AVIRIS and Hyperion. 

The average difference values for each sensor hover around a value of –1 with AVIRIS having the least 
negative difference, indicating that when the best forest type was not matched by the map, the mapped 
class had a score only 1 unit below the best. This result confirms that our forest types are generally not 
distinct classes with discrete boundaries, but rather mixes dominated by sets of species that vary 
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compositionally across the landscape. Most individual classes validated by more than 5 sites had difference 
magnitudes close to -1. 

We also include an average membership statistic in Table 3 that indicates the degree of fuzziness for each 
forest type as mapped by the three different sensors. The MEMBER column shows the average number of 
classes – including the mapped class – that were potentially acceptable choices for a given site (for example, 
classes 4 and 5 in Table 1 are both dominated by Virginia pine and it is reasonable to assume that each 
could potentially be misclassified as the other). A class with high average membership values has a fuzzier 
distinction from other classes than a class with a relatively low membership value. Most of our forest 
alliances had an average membership ranging from 4-6 classes. The lowest membership was found in the 
eastern hemlock class. Of the oaks, the white oak alliance was the most distinct, having the lowest average 
membership. 

Figure 2 shows the forest type map derived from the CART classification tree of AVIRIS data for Green 
Ridge State Forest. GRSF is bounded on the east by the meandering Potomac River and on the west by a 
smaller creek, and it is bisected in its northern half by the interstate. Non-forest areas have been masked out 
in black.  Conifers and conifer/deciduous mixes are shown in shades of green, white oak is shown in light 
blue, and red oak and red oak mix are shown in shades of red.  Black oak mix is shown in brown, scarlet 
oak mix in maroon, and chestnut oak and its mixes in shades of yellow and orange. Rare classes that have 
not been discussed here are shown in other colors. 

The classification map itself can inform us about its ability to predict the distribution of forest associations 
at the Alliance level. A few characteristics of this particular map suggest that it is in fact mapping these 
forest classes with reasonable success before even considering the accuracy assessment. First, related mixed 
forest types tend to occur adjacent to each other or as mixes. This is especially evident with the red oak 
(Class 1) and red oak – oak species – hickory mix class (Class 3). Where relatively large contiguous patches 
of red oak dominated forests occur, they almost always occur next to or mixed with the red oak mix class. 
The same can be said of chestnut oak and its mixes, shown by shades of yellow and orange. In addition, the 
classes which are mixes of pines and deciduous species often occur as transition zones between the pine 
dominated forest types and the deciduous forest types. These patterns are expected based on the knowledge 
of how forest composition changes across species and environmental gradients. Finally, there is a distinct 

Table 3.—Fuzzy set validation statistics showing the magnitude and direction of errors (MAG) and the average 
membership per class (MEMBER). 

AVIRIS EO-1 Landsat TM 
Class Name N MAG MEMBER N MAG MEMBER N MAG MEMBER 

Quercus rubra 2 0.00 8.00 7 -0.71 5.00 
Quercus rubra - Quercus spp. - Carya mix 5 -1.40 4.60 11 -1.09 5.36 5 -0.80 6.20 
Pinus virginiana 13 -0.92 5.62 18 -1.56 5.00 18 -1.28 5.00 
Pinus virginiana / deciduous mix 3 -3.00 2.00 
Quercus prinus - Quercus coccinea 1 -4.00 6.00 
Quercus coccinea / mix 13 -1.38 5.62 6 -1.50 5.67 9 -2.22 5.56 
Pinus rigida 3 -2.33 1.00 
Quercus velutina / mix 24 -0.75 6.34 25 -0.92 5.72 28 -0.93 5.89 
Quercus alba 20 -1.00 4.20 25 -1.28 5.08 22 -1.05 4.91 
Quercus prinus - Quercus spp. / mix 12 -1.83 5.67 1 -2.00 4.00 13 -2.62 5.85 
Quercus prinus 7 -1.00 5.71 3 -2.67 5.33 
Carya sp. 1 -4.00 3.00 
Pinus strobus 7 -0.57 4.29 4 -0.25 3.00 1 1.00 2.00 
Pinus strobus / Quercus mix 5 -1.00 6.00 1 -4.00 6.00 5 -2.00 4.80 
Tsuga canadensis 11 0.27 3.00 7 0.14 3.86 7 -0.71 3.86 
TOTAL 121 -1.00 5.09 101 -1.13 5.16 121 -1.37 5.21 
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dominance of white oak (light blue) in an oblong area running through the center of the state forest that is 
characterized by a shale substrate and more complex valley and drainage patterns than the rest of the area. 
In comparison, red oak classes in reds, browns, and yellows tend to dominate the long and linear sandstone 
mountains oriented northeast to southwest. These two distinct regions represent geological differences that 
seem to favor the dominance of either red oaks or white oaks. 

Discussion 
Using CART classification of hyperspectral and forest inventory data, we have produced Alliance level 
forest maps with accuracies unattainable from traditional methods. In the past, mapping of forest alliances 
from remotely sensed data typically resulted in accuracies of 40 percent or less (Czaplewski 2003). Our 
accuracies for maps from AVIRIS data averaged 80 percent for most alliances, which is a substantial 
increase in accuracy from past efforts. These successes are especially notable considering the various types of 
uncertainty confronted during this study. 

One perplexing result was that white oak was not validated with greater accuracy. This is surprising because 
it is the most abundant species represented in the CFI data and generally easy to identify in the field. One 
possible reason for this discrepancy is that the ubiquity of the white oak class across parts of GRSF affects 
the expert evaluation during the field validation. More than any other class of hardwoods, the white oak 
class at Green Ridge is dominated by its namesake, with 26 of the 75 white oak CFI plots having a white 
oak relative basal area of 40 percent or greater. When a large percentage of validation sites sample these 
relatively pure white oak forests, oak mixes with less conspicuous dominance of white oak may suffer by 
comparison and subsequently be scored higher as some other type of oak mix. This tendency suggests that 
the most abundant classes are also characterized by an extreme range of dominance levels and may in fact be 
more vulnerable to incorrect scoring during fuzzy validation. If this is the case, then the high learning 
accuracies reported for the white oak forest alliance (93 percent AVIRIS, 79 percent Hyperion, and 77 
percent Landsat) are probably closer to the true accuracy than the fuzzy validation values. 

Figure 2.—Map of forest alliances 
derived from CART classification 
of AVIRIS imagery. Only the field 
validated alliances are referenced 
in the classification key. 
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The somewhat low MAX accuracy values seen in Table 2 illustrate the difficulty of accurately mapping 
mixed deciduous forest alliances to the best possible class using hyperspectral data. Revisiting the 
descriptions of these forest classes in Table 1 underlines this. Several of the most abundant forest types are 
oak or pine mixes where the dominant species in the type frequently comprises from 30-40 percent of the 
basal area and occurs on almost all of the plots (Class 3, 5, 7, 9, 43). This level of dominance for a single 
species is common in Green Ridge’s mixed forests, while smaller pockets of forests dominated by 40-50 
percent or more relative basal area for a given species occur infrequently (except for white oak) (Class 1, 4, 
14, 50). The level of specificity and mixing in our forest alliances probably pushes hyperspectral data to the 
limits of its current ability to separate spectrally mixed classes using the methods described here. 

Nonetheless, it is important to remember that the field validation dataset consists of only one fourth the 
number of inventory plots used to create the classifications, and these were typically classified correctly at a 
much higher rate. The learning accuracy reported in Table 2 is more robust in this way because it is derived 
from a much larger sample size and from the quantitative forest inventory data. The field validation 
provides an independent assessment of the learning accuracy while also characterizing the fuzzy nature of 
our forest alliances. 

Fuzzy set validation proved extremely useful for validating our satellite based forest maps in the field. It is 
particularly relevant when mapping a heterogeneous mixed forest with satellite imagery, where the 
minimum mapping unit is a 17 or 30m2 pixel. An expert visiting a pixel-sized area on the ground will often 
find that multiple forest types are acceptable labels for that site. Although the map itself is limited to 
representing each pixel with only one discrete forest class, much of the forest area is covered by regularly 
varying mixes of the species that dominate the alliances in Table 1. The canopy reflectance measured for a 
forest pixel will be a combination of the reflectance from the crowns of all the trees in the pixel area. 
AVIRIS data samples a smaller area with fewer tree canopies, and thus can be expected to create the most 
accurate maps, since its pixels experience less spectral mixing than larger pixels. 

Sources of Uncertainty 
The greatest source of uncertainty for our classification and validation methods was geographic inaccuracy 
within our AVIRIS image dataset. The AVIRIS data caused the greatest concern because certain distortions 
in the data caused by the pitch and yaw of the aircraft could not be removed from the data completely. 
While using hundreds of ground control points created excellent spatial accuracy in most areas, some small 
regions in the AVIRIS image could be located as far as 80m away from their actual location. This 
uncertainty inevitably means that some of the spectra sampled from the AVIRIS image to represent certain 
CFI plots in the CART classification actually sampled the incorrect area.  As a result, some proportion of 
the spectral signatures used to train the classification might have been incorrectly labeled. These problems 
associated with geographic map errors tend to dampen map learning and validation accuracy values. 

We did not account for differences in basal area or forest age with our final classification maps except to 
mask out areas of recent forest harvests generally characterized by plot basal areas less than 10 m2ha-1. We 
chose instead to use all the CFI plot data available to map as many classes as possible, though we didn’t 
expect to be able to map classes represented by only one or two CFI plots with good accuracy. Other 
classification maps were created using only a subset of the data such as plots having a total basal area greater 
than or equal to 20 m2ha-1. These maps had lower overall accuracy and tended to map forest types to large 
contiguous areas that probably represented an oversimplification of the mixed forests at Green Ridge. While 
the forests of Green Ridge are generally even aged, variations in basal area and maturity can introduce 
variance into the spectral signature bundles representing a given forest type, adding to the difficulty of 
distinguishing among mixed forest types. 

Finally, sources of error are introduced into the dataset from the collection of the field data itself. It has 
been estimated that forest inventory data may only be about 80 percent accurate, with uncertainty generally 
coming in the form of misidentified or misrecorded tree species or incorrectly acquired or recorded 
geographic coordinates. 
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Conclusions 
We were able to map Alliance level forest associations with accuracies generally ranging from 60-90 percent 
using Hyperspectral imagery from AVIRIS. Hyperion data were more limited in mapping ability, possibly 
because of its lower signal-to-noise ratio compared to the other data sets (Green et al. 2003) or alternatively 
because only half as many CFI inventory plots were available for training because of its narrow swath 
width.  Multi-temporal Landsat TM achieved similar accuracy levels as Hyperion but were not as high as 
AVIRIS. Nevertheless, the ability to map Alliance level forest types with such a high level of accuracy opens 
up new opportunities to ask and answer questions about the spatial distribution of forest types and to use 
the information gained to improve forest management. 
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