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Abstract

Data from the USDA Forest Service's Eastwide forest inventory database (EWDB)
can be used to create general maps of several forest variables/attributes, including
tree species distribution, stand size classes, and modeled attributes like forest
disease susceptibility across a large part of the Eastern United States. This was
accomplished using both a simple moving window average and by incorporating
geostatistical techniques. A measure of the local variability was calculated to provide
some measure of both the spatial and attribute uncertainty contained within that
average value. Over such a large area, the full benefit of the geostatistical techniques
is not always being used because of the broad-scale averaging of the spatial structure
present in the data. However, when severe time constraints are imposed. this study
illustrates that an analysis as simple as calculating a moving window average of the
FIA inventory data does provide a picture of spatial distribution that is clearer and
potentially less misleading than a point map and that is of higher spatial resolution than
county summaries. in addition, using indicator kriging provides an estimate of the
probability of a condition, which is particularly useful when a specific threshold s of
interest, when the variables of interest are recorded in classes, or when the definition
of that threshold involves several variables. Using a few geostatistical techniques, we
can reduce the disadvantages of both point maps and county summaries, while
retaining the opportunity to take advantage of any spatial structural information that is
available in the data when sufficient time is available to do so. They are termed “first-
cut” maps because they do not contain any of the refinements, such as further utilizing
the spatial structure available, that are possible when additional time is available. This
report focuses on the analytical procedures that can be used to quickly generate such
large area “first cut” maps.
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Introduction

The Forest Inventory and Analysis (FIA) units of the USDA
Forest Service are responsible for providing periodic
assessments of the nation’s forest resources and conducting
inventories by state. or groups of states, in cycles that range
from 8 to 15 years. These inventories provide information on
the amount, status, and character of the forest resources
across the country. All states, except Alaska, have been
inventoried at least once, and most states east of the
Mississippi and some west (for example, CA, OR. WA) have
been inventoried at ieast three times. Tree-level data
(species, diameter, height, status. crown ratio, crown class,
damage. tree grade, tree class), stand-level data (stand age.
stand size, forest type, stand origin, owner group, land use,
disturbance, stand structure), and plot-level data (slope,
aspect, latitude. longitude) are collected at each location
(Hansen et al. 1992; Alerich 1996'). These data provide
detailed information on the composition and diversity of
existing forest vegetation across the United States, attributes
that cannot yet be identified effectively from remotely sensed
sources. Other sources of ground inventory data do exist,
but they usually lack sufficient detail, are based on smali
samples, combine studies with different sample designs and
sampling procedures, or are limited to political boundaries
{(McWilliams et al. 1993). Thus, the nationwide forest
inventory data collected by FIA represents an extensive
dataset of numerous forest characteristics across the
country that is extremely useful for broad regional- and
landscape-level analyses.

In addition to the forest inventory data, there is a need for
continuous spatial output of this type of forest information—
maps depicting where and how these forest attributes are
distributed across the landscape. Forest management and
regional planning are largely spatial problems, and research
into understanding forest change, mortality, habitat use, or
health, usually includes a spatial component. Thus, it is
desirable to display the FIA data spatially to present a
picture of where within states and regions certain variables
predominate (such as tree species) or where certain
conditions occur (such as older and larger stands of oak
potentially susceptible to oak wilt). This information may be
used simply as a focus for discussion; a catalyst for further
analysis: or directly as a critical dataset in other analyses,
decisions, and models. Because FIA data are only available

'Alerich, D. 1896. Field instructions for the fifth inventories of
New Hampshire and Vermont. Unpublishd report on file at U.S.
Department of Agriculture, Forest Service, Northeastern
Research Station, Forest inventory and Analysis Unit, Radnor,
PA. 90 p.

at sample plot focations, creating such a map requires a
model of the resource, so that we can interpolate
information between known locations.

FIA data frequently have been summarized by county for a
quick look at forest variables across large areas (for
example, Beltz et al. 1992), However, for some questions,
the spatial resolution of counties is too coarse and can be
misleading. It can mask subtle or contrasting distributions
simply because the area size or shape crosses into several
different local spatial patterns (Monmonier 1991). This is
particularly common when administrative boundaries are
used to describe ecological features. Also, such averages
are typically not provided with a picture of the spatial
variability that actually exists in the landscape—iocal
variability, which can be an extremely important factor in
both planning decisions and research assumptions. At the
other extreme, presenting the values themselves in a point
map can result in a map that is difficult to interpret because
of the intimate mix of high and low values, and difficuit to
create effectively because of its sensitivity to the
cartographic presentation of point sizes and colors. There is,
however, enough spatial information available in the FIA
inventory to summarize these data to a finer resolution.
There are a sufficient number of plots available, for example,
to aggregate the data relatively quickly to spatial units
smaller than counties. This is accomplished by taking
advantage of the known spatial location of each sample plot
and a few spatial analytical techniques such as moving
window analyses and geostatistical technigues, or both.

Geostatistics is a branch of statistics that studies
phenomena in space. It offers a set of tools and technigues
that can be applied when trying to understand the spatial
characteristics of a phenomenon, or when trying to estimate
it in a spatial context at unsampled locations. Geostatistical
techniques include measures or descriptions of spatial
dependence, such as the variogram, and methods of
interpolation, such as kriging or simulation. Kriging, and the
related routines of conditional simuiation, offer a way of
creating a relatively continuous surface of estimated values
that take advantage of the spatial structure inherent in the
sample dataset. Kriging estimates are essentially weighted
moving averages of the original data values, taking the
distance, direction, and redundancy of neighboring points
into account using a model defined from the sample
variogram. Many useful references exist within the earth
sciences where geostatistics have been widely used and
developed (Isaaks and Srivastava 1989; Deutsch and
Journef 1392; Srivastava 1994; Wackernagel 1995;
Goovaerts 1997). and increasingly in ecology and forestry
{Samra et al. 1989; Rossi et al. 1892; Fouquet, C. de. and
Mandallaz 1993; Liebhold et al. 1993; Mowrer 1994;
Riemann Hershey et al. 1997). Geostatistics is a field of
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even at the scale of sampling of FIA 0
data (Riemann Hershey et al. 1997). if
we are able to utilize the spatial
structure present in the sample data,
we should be able to improve our
estimates of those values (Biondi et
al. 1994).

This study illustrates a simple procedure

for displaying FIA data spatially over large areas. The
procedure takes more advantage of the known plot locations
than previous county summaries. This report focuses on the
analytical procedures used to generate such large area first-
cut maps.?

Methods

Data

The sample plot data were from the national FIA inventory.
The intensity of sampling varies by region and state, but
averages one field plot for every 5,000 acres (individual
state averages range from approximately 1,200 to 8,000
acres). For those states included in the study, the distance
between forested plois and their nearest neighbor averages
3,300 meters with a range of 1,800 to 5,900 meters. The
data are from the most recent inventory collected in each
state and are available in the Eastwide Database (EWDB).
The actual dates of data collection range from 1980 to 1995.

2The methods used in this study are described in detail in Rossi
et al. (1993) and Isaaks and Srivastava (1989); the geostatistical
analysis was performed using GSLIB routines (Deutsch and
Journel 1992) with some additional routines written by R.E.
Rossi.

SFiA photointerpretation data are collected on a much more
intensive grid of approximately one point for every 285 acres.
Riemann Hershey, Rachel; Drake, D.A.; Ramirez, M.A.
Producing a forest/nonforest map from the FlA
photointerpretation data using Indicator Kriging. Unpublished
report on file at USDA Forest Service, Northeastern Research
Station, Forest Inventory and Analysis Unit, Radnor, PA.
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Figure 1.—The components of a sample variogram, and two possible models.

For tree species occurrence, an importance vatue of percent
basal area/acre (%ba/acre) was used, indicating the
proportion of a plot that is occupied by that species in terms
of basal area/acre.

A forest/nonforest overlay was used as a mask on ali final
maps to limit the visual impression of those counties and
cells in primarily nonforested areas. The difference is
particularly noticeable in central Minnesota and Wisconsin
where a few forested plots amidst predominately farmiand
can have a large effect. This mask is necessary because the
FIA inventory data alone are not a sufficiently intense
sampie to reflect the fine spatial scale at which forest/
nonforest occurs as a result of the physical geography and
current and historical land use patterns. The ridge and valley
area in Pennsylvania, for example, is an area of farmed
valleys and forested hilltops not resolvable by the intensity of
FIA ground plots. For that purpose, a more detailed dataset
such as that derived from satellite imagery or FIA
photointerpretation data® is required. The dataset used as
the forest/nonforest mask in Figures 3 to 6 was derived from
1991 AVHRR {Advanced Very High Resolution Radiometer)
data {(Zhu 1982).

Assessment of Spatiat Dependence

Both a variogram and an indicator variogram were
calculated to assess the spatial dependence present in the
data. The variogram summarizes spatial continuity, and
essentially depicts the variation between sample data values
at increasing distances from each other (Isaaks and
Srivastava 1989). Spatial dependence is present if the
nugget (that is, that variation tha! remains unexplained by
neighboring values) is less than the sill {the globai variation
calculated for ait values in the dataset). The range is that
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routines. A pure nugget model is one
where there is no spatial dependence,
and the variation at all distances,
even those close together, is the
same as the sill or global variation
(dataset variance).

Spatial Estimation

Three spatial estimation technigues were used: ordinary
kriging (OK) using a model of the spatial structure present,
ordinary kriging with a pure nugget model (= a moving
window average). and indicator knging (IK). In all of the
estimation techniques used, the results were calculated to a
resolution of 10-km x 10-km grid ceils (100 km?), using a
search radius of 10-km (314 km?). The search radius (and
the shape of the search area) defines the maximum distance
and direction for points 1o be included in the estimation. The
search radius used here was chosen to be large enough to
capture a minimum of five plots in all areas not subject to the
nonforest mask, but small enough to minimize the smoothing
effect of averaging. The few exceptions to this occur where
the search area borders either a large body of water or
nonforested land. The sampling intensity varies considerably
between the states in the Eastern United States, with New
Jersey, lowa, tllinois, and Alabama limiting how small this
averaged area could be. Many of the Lake States and
Southern States contain sampling intensities that could
support averaging using a search radius much smaller than
5 km, The size of the reporting area (that is, the resolution of
the output dataset) is not as critical to the final results as the
search radius, but the smaller the reporting cell size is
compared to the search radius, the more gradual the
transition between cell values and thus the smoother the
display of the output. A relationship of 1:3 was used here.

Ordinary kriging was the first technique used to estimate/
summarize the EWDB variables. Kriging estimates are
essentially weighted moving averages of the original data
values—1taking the distance, direction, and redundancy of
neighboring samptle points into account, based on the model
defined from the variogram of the sample data. No
anisotrepy was observed and an omnidirectional variogram
was used. Ordinary kriging was run first using a model! of the
spatial dependence/structure found in the variogram. The
model used included two structures in addition to the nugget
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Figure 2.—The indicator variogram calculated for oak occurrence, using a cutoff
of .001 percent basal area/acre {essentially 0).

to describe the short- and long-range structures observed in
the variogram (Fig. 1). The parameters of the model were:

Number of Nugget

Structures  effect  Function  Range (m) Component
2 .028 spherical 38,000 .0063
spherical 250,000 0145

Next, OK was run with a pure nugget model (that is, where
the nugget = the sill). Here, the sill was calculated simply as
the variance (%) of the entire dataset, or the average
squared difference of the observed values (x) from their
mean {m), where n is the number of points in the entire
dataset.

n
3 )
o= l/nZ(.\‘[ -my©

=1

In this situation, OK is the equivalent of a moving window
average, because no weighting is applied to the sample
plots used in the estimation. To do this, the total dataset
variance, or the sill, was used as the nugget. This is called a
‘pure nugget’ model, because the modei parameters are
now defined very simply as having a nugget of 52 and no
additional structures {Fig. 1). This represents a slightly
faster, easier technique that could be accomplished by many
different software packages and could be employed when
time constraints for generating a rough map are most
severe. The advantage of using OK is that if there is any
spatial structure present in the data, it can be incorporated
easily into the estimate.

The third geostatistical technique employed was K. Indicator
kriging uses an indicator transform to divide the data into
two classes-—above and below a designated cutoff vaiue, or



based on whatever criteria are chosen. it is thus a
particularly useful technique when there is a specific
threshold of interest, such as 1) whether a species is
present or not (>0 percent basal area/acre), or 2) whether
there is a particular category of interest, such as sawtimber
stands. For each estimated cell, IK provides an estimate of
the probability that it falls above or below that cutoff value.
Thus, in the example used here, the output dataset indicates
the probability that a tree species occurs at that jocation.
Because of the lack of spatial structure in the indicator
variogram (Fig. 2), a pure nugget variogram was also used
in the IK. The sill was calculated simply as

P (1-p)
where p = the proportion of the dataset that falls below the
cutoff value of interest (Isaaks and Srivastava 1989: Deutsch
and Journel 1992; Rossi et al. 1993). As with OK, if there is
no spatial structure present and a pure nugget model is
used, the result of IK is essentially the same as a moving
window average of 0 to 1 data (that is, the data would have
to be first converted to 0's and 1's corresponding to below
and above the cutoff value).

Spatial Variability and Uncertainty

With any statistical summarization or estimation, high local
spatial variability contributes to the uncertainty that at any
given point within that cell the estimated value wil! be true. A
map of local statistics, such as the standard deviation of the
values encountered within the search radius at each
location, can give an effective picture of the magnitude and
location of the spatial variability and heterogeneity of that
attribute/phenomenon. To provide important uncertainty and
variability information along with the summarized maps, the
moving window approach was used to calculate the local
standard deviation for each grid cell. To provide this
information along with the county-level map, standard
deviation was also calculated for each county.

Results and Discussion

We know from previous studies that even with the relatively
sparse sampling intensity of the FIA inventory data there is
considerable spatial dependence among species percent
basal area/acre values in local areas {Riemann Hershey et
al. 1997; Riemann Hershey, in press). This structure is lost,
however, when an area this large is treated as a single
unit—effectively averaging the different spatial structures of
several different populations. Populations in a geostatistical
sense are those groups of sample plots that, when a
variogram is calculated separately for them, exhibit a
different amount of spatial dependence or variogram shape/
type, and thus would require a very different model to
describe that dependence. This could be true with oak, for
example, whose distribution and abundance patterns across
the more mountainous subregions of the central
Appalachians is very different spatially from its distribution
in the Coastal Plain or the dataset as a whole. A variogram
calculated from the entire dataset represents an average of
often several distinctly different component variograms. At
the scale of examination used in this study—the entire
Eastern United States—it is not expected that many of the

FIA variables will exhibit much spatial dependence or
structure. This is due to the number of substantially
different ecoregions included in this area, and the
correspondingly different ‘populations’ of each species that
are encountered and averaged together (Riemann Hershey
etal 1997).

in this study, the vaniograms calculated for the entire area
typically had very little spatial structure or dependence,
depicted by a noisy variogram at small lag distances and a
high nugget—60 to 70 percent of the sill {global variance) in
both the sample and indicator variograms for oak (Figs. 1
and 2). in general, where there is any spatial structure at all,
using it will improve the estimate. However, at times the
amount of information gained by incorporating the spatial
information is less than the effort required to incorporate it.
Whether it is incorporated depends upon the objectives of
the study. In addition, where it is known that the spatial
structure is actually an average of substantially different
populations in different areas (for example, oak distribution
in the coastal provinces vs. oak distribution in the central
Appalachians), using a mode! fitted to an average of that
data may not represent the real underlying spatial structure
in many local areas (see also Riemann Hershey, in press). In
such situations a simple moving window approach can be
both the fastest and most appropriate method for estimation
at this scale.

The results of a moving window average (here OK with a
pure nugget model) are presented in Figures 3 and 3a. in
this example, there was little advantage to incorporating a
model of that spatial structure into the estimate. When a map
was created using a model of that spatial structure that had
a spatial dependence of only 30 percent, the results
amounted to less than a 0.05 percent change in the final
map. This simply illustrates that when there is limited spatial
dependence in the sample variogram, there is a limited
effect in incorporating that into the estimation.

Compared to the county-leve! summary {Figs. 4 and 4a), the
maps resolved to 10-km grid cells {produced either with OK
or moving window average) offer a picture of species
distribution at a much higher resolution {~17x finer).
Counties in this area of the country average 1,750 km? in
size compared to the 100-km? grid cells used here. The
result is a much more heterogeneous and somewhat more
realistic picture of the distribution of oak across the Eastern
United States, without being s¢ noisy as to hide the
underlying farge-scale trends and patterns, which are
probably of interest at this scale of examination. The results
also illustrate that there is a noticeably lower uncertainty
associated with each area when values are averaged over a
smaller area (Figs. 3a and 4a). Compared to a point map
{Fig. 5}, the kriged maps are easier {o interpret, and provide
tree species cover information for easy overlay with other
data sources,

Figure 6 illustrates the results of IK in terms of the
probability of oak occurrence (defined as >0.1 percent basal
area/acre, capturing effectively anything greater than 0).
Depending on the objective, any probability couid be used
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Figure 5.—A point map displaying oak percent basal area/acre values by plot jocation. Although a very
useful analytical tool for examining the original data, its presentation is very sensitive {o point size, color,
and drawing order, and can be misleading.
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as the cutoff value. For example, if a particular insect is
known to live in hemiock stands and the objective is to fimit
the search to only those areas where there is a high
probability of finding suitable conditions for the insect
{minimizing errors of commission), we might set the cutoff at
the probability leve! of > 0.8. If, however, we are most
interested in finding all areas where the insect 1s likely to
occur (minimizing errors of omission), we might choose a
probability level for species occurrence much lower, for
example, > 0.4 {Riemann Hershey, in press).

There is uncertainty associated with any measurement or
estimate. Knowing the uncertainty is critical information and,
consequently, an important part of data collection, data
management, and data analysis. It affects how much weight
is given to different sources of data/information in both
subsequent decisions and analyses. And in datasets
modeled to broader spatial scales, where the spatial
resolution/detail being reported is necessarily a summary of
tocal conditions, the uncertainty provides an indication of the
magnitude of that local variation. Therefore, accompanying
each distribution map is a map of the local variability present
in the data. The maps describing this local uncertainty
associated with the average reported appear in the upper
right-hand corner of Figures 3 and 4. Each depicts the
standard deviation of the values encountered within the
search radius at each location in Figure 3 and within each
county in Figure 4. High local spatial variability contributes to
the uncertainty that at any given point within that ceil the
estimate being reported will be true. Local standard
dewiations provide a useful picture of the magnitude and
location of the spatial variability and heterogeneity of that
attribute/phenomenon. Frequently, the variables measured in
the FIA inventory do exhibit high spatial variation at the
sampling intensity of the FIA data. This information can be
used to determine where the uncertainty is too high to be
used in a certain decision. and where additional information
or sample data might be used to lower that uncertainty.

Conclusions

These maps provide far more spatiai resolution than
previous summaries of FIA variables by county. They also
provide clearer and potentially less misleading information
{depending upon the cartographic presentation) than when
the information is displayed as a point map. Investigations
into the spatial structure of tree species in individual states
and ecoregions reveal that considerable spatial information
is available in the data that is not being used in this analysis.
However, when severe time constraints are imposed, this
study illustrates that an analysis as simple as calculating a
moving window average of the national forest inventory data
does provide a picture of distnibution that 1s both clearer and
potentially less misleading than a point map, and of higher
spatial resofution than county summaries.

These maps provide only a broad-scale look at species
distribution in this area. They are termed “first-cut” species
gistribution maps because in working with such a large area,
much of the spatial pattern and structure present in
individual local areas is lost when the area is examined as a

whole, and any model that is fit to that averaged spatial
structure usually contains a very high nugget and is
relatively non-specific to any particular area. In general, the
larger the area incorporated into the calculation of a single
variogram, the more chance of averaging together two or
more different ‘populations’ of that tree species (or whatever
variable/phenomenon is being examined), each with a
different spatial structure. From previous studies of individual
states and individual ecoregions in the northeastern United
States. it is readily evident that tree species in these smaller
areas can exhibit dramatically different spatial structure
{Riemann Hershey et al. 1997). Thus, with tree species at
least, there is much potential for fine-tuning the modeis, and
correspondingly the final map, if time is available to examine
and incorporate the spatial structure in each local area.

However, such a cursory approach can be applied even
when there are severe time limitations. And if the limits of the
data are respected (here, with a 10-km cellsize and 10-km
search radius), the results can provide a broad-scale picture
of the distribution of many of the variables available in the
EWDB.

With any map, some measure of the uncertainty of the
estimate contributes to its usefulness. The uncertainty or
local variability maps accompanying each distribution map
provide essential information on the heterogeneity of the
phenomenon in each local area (as revealed by the current
level of sampling) and indicate how much smoothing was
essentially applied to create the summarized map.
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