THE THEASTE
FOREST-INVENTORY
DATA-PROCESSING SYST
Vii. INFORMATION FOR
PROGRAMMERS
SUBSYSTEM TABLE.

by
Robert . Peters and
Robert W. Wiison Jr.

U. S, FOREST SERVICE RESEARCH PAPER NE.75
1967

NORTHEASTERN FOREST EXPERIMENT STATION. UPPER DARBY, PA.

FOREST SERVICE US. DEPARTMENT OF AGRICULTURE
RICHARD D. LANE, DIRECTOR

About the Authors

ROBERT C. PETERS obtained his Bachelor's degree from
the University of California in 1960 and his Master's at Yale
University in 1961, He joined the Forest Service in 1961 as
a research forester, and was assigned to the Station’s bio-
metrics unit from 1961 until 1963, when the unit was discon-
tinued. Mr. Peters played a key role in the development of
the data-processing system reported here.

ROBERT W, WILSON, JR. tock his Bachelor's degree at
The Pennsylvania State University in 1947 and his Master’s
and Ph.D, degrees at Yale University 1o 1948 and 1963, re-
spectively, He joined the U, 8. Forest Service in 1948 and has
worked in various research capacities for the Northeastern
Forest Experiment Station. From 1961 to 1965 he was in
charge of the Stationt’s biometrics unit at New Haven, Conn.
He 1s assigned at present to the Forest Insect and Disease
Laboratory at West Haven, Conn.

THE NORTHEASTERN
FOREST-INVENTORY
DATA-PROCESSING SYSTEM.
Vii. INFORMATION FOR
PROGRAMMERS
SUBSYSTEM TABLE.

Contents
A, INTRODUCTION 1
B. USE OF THE CALCULATE SUBROUTINE. 2
C. MODIFICATION OF DIMENSIONED SPACE.. 4
Number of input records per sampling unit. 5
Number of subunits per sampling umit. 5
Number of data fields per record. 5
Number of variable data fields per record. 6
Number of semivariable data fields per record. .. 7
Number of constant data fields per record .. . 7
Number of cells in all input and output tables. .. g
Number of input tables 9
Number of output tables 9
Number of output table exceptions 10
D. PROGRAMMING FEATURES 10
Tape assignments 10
Use of sense switches and sense lights 11
Use of program halts 11
Use of the overlay feature. i1
Bit manipulation oL 11
Subprogram names and functions 11
Important arrays and variables. 12
E. QUTPUT TABLE FORMATS 15

F. SUMMARY OF ESTIMATING PROCEDURES. . 18
OPTION 1. — Transform and sum s.lmplmg umt
attributes over sets of sampling units. . i9
OPTION 2. - - Tunsform and com;‘utc means or
sampling- umt Attf;butt‘; over sets of sampling units 20
OPTION 3. - Transform and compute means and
variances of >3mp!ing-unit attributes over sets of
sampling units L 20
OPTION 4. - OPTION 3 modified to include

computation of covariances for ratio estimates. .. 21

PREFACE

THIS paper is the seventh in a series of ten papers prepared
to describe the forest-inventory data-processing system of the
Northeastern Forest Experiment Station. This system was de-
vised for using modern, large-scale, high-speed computers i
processing forest-inventory data. The seties will comprise the
following papers:

I Introduction.

1L Description of subsystem EDIT.

III. Operation of subsystem EDIT.

IV. Information for programmers — subsystem EDIT.

V. Description of subsystem TABLE.

VI. Operation of subsystem TABLE.

VII. Information for programmers—subsystem TABLE.

VIIL Description of subsystem OUTPUT.

IX. Operation of subsystem OUTPUT.

X Information for programmers ——
subsystern QUTPUT.

Vil-A. INTRODUCTION

NE of the major projects of the U. §. Forest Service is a

nationwide forest survey, which is designed to obtain use-

ful and timely information about the timber resources of the

United States. In the course of the surveys, which are made mainly

on a state-by-state basis, great masses of detailed data are col-

lected about timber volumes, growth, timber cut, and other char-
acteristics of the timber resoutce.

In recent years the volume of information obtained from forest-
survey field plots has increased greatly. The task of compiling and
analyzing this mass of data with mechanical computing machines
was both cumbersome and time-consuming.

A solution to this problem was seen in the development of the
high-speed electronic computers. The Northeastern Forest Experi-
ment Station, which was responsible for conducting the forest
survey of the heavily forested Northeastern States, investigated
the possibilities and devised the Northeastern Forest-Inventory
Data-Processing System.

This paper presents information for programmers about part of
the system, subsystem TABLE. Program TABLE is designed
specifically to reduce large volumes of sample data to tables of
statistics for the samples. The output of these sample summaries,
in turn, is designed for use with program QUTPUT (see part VIII
of this series) to produce equivalent tables of statistics for the
sampled populations.

A general description of the program and detailed instructions
for its use in solving data-processing problems are given in parts
V and V1 of this series. In the following chapters will be found
selected programming information that will be useful if the pro-
grams must be modified for any reason. The program writeups
and information on the program source decks may be obtained
from the Northeastern Forest Experiment Station, 6816 Market
Street, Upper Darby, Pennsylvania 19082.

This program is written in the standard IBM FORTRAN IV
language, and is operative at the Yale University Computer Cen-
ter on an IBM 7094/7040 direct coupled system under the IBSYS
DCS operating system with IBJOB processor.® It will operate with
little or no modification on other comparable systems. The main
requirements for a machine on which to operate the standard
version of the program are 2 32K word core, a minimum of 36 bits
per word, binary arithmetic capability, and S tape drives or equiva-
lent input/output devices.

Vil-B. USE OF CALCULATE SUBROUTINE

The normal version of program TABLE provides 2 dummy
calculate routine named CALCUL. If the user wishes, he may
program this routine either to generate new data fields in the input
matrix or to change existing data fields. The subroutine which he
must substitute for the dummy has the following calling sequence
and DIMENSION statement:

SUBROUTINE CALCUL(TREE, ITREE, PLOT, IPLOT, POINT,
IPOINT, NCORR, LTRCD, LTRVR, LPLVR, LPTCRD, LPTVR,
2 NZAPS, NCARD, KPOINT)

DIMENSION TREE(LTRCD, LTRVR), ITREE(LTRCD, LTRVR),
1 PLOT(LPLVR), IPLOT(LPLVR), POINT(LPTCRD, LPTVR),
2 IPOINT(LPTCRD, LPTVR), NCORR(NZAPS)

Two additional subroutines are provided to retrieve (GETNO)
and to store (STONO) data fields from the input matrix. All the
user need do is supply the appropriate information in the calling
sequence of these routines to carry out either operation. These
routines are called in the following manner:

Pt

CALL GETNO (NDAFL, NFXFL, ANS, IANS, NXE, TREE,
1 ITREE, PLOT, IPLOT, POINT, IPOINT, NCORR, LTRCD,
LTRVR, LPLVR. LPTCRD, LPTVR, NZAPS, NCARD. KPOINT)
CALL STONO (NDAFL, NFXFL, ANS, 1ANS, NXF, TREE,
1 ITREE, PLOT. IPLOT, POINT, IPOINT, NCORR, LTRCD,
LTRVR, LPLVR)

to

[;83

The user supplies values for the variables NDAFL, NFXFL,
ANS, TANS, and NXF. They mean the following:

* Mention of a particular product should not be construed as an endorsement by
the Forest Service or the U. §. Department of Agriculture.

/3

VARIABLE STONG GETNG
NDAFL Number of darz feld to be Number of data field to be

stored in matrix. retrieved from matrix.
NFXFL Mode of data feld to be Mode of data field to be re-
stored : trieved:
1 == fixed; 2 — floated 1 = fixed; 2 = floated
ANS 1f mode is 2, value of data If mode is 2, value of data
field to be stored. field retrieved.
TANS If mode 15 1, value of data If mode is 1, value of data
field to be stored. field retrieved.
NXF Index to determine position of

data field in matrix. If data
field to be stored has been de-
fined on the CONSTANT
{item 337}, level NXF = 0.
If data field to be stored has
been defined on SEMI VARI-
ABLE LEVEL (itern 336),
NXF runs from 1 to KPOINT.
If data field to be stored has
been defined on VARIABLE
level (item 335), NXF runs
from 1 to NCARD.

For example, a routine used to test GETNO and STONO is the
following:
SUBROUTINE CALCUL (TREE, ITREE, . . .
DIMENSION TREE(LTRCD, LTRVR), . . .
DO 11 = 1, NCARD
NXF =1
CALL GETNO (10, 2, ANS, TANS, NXF . . .
STOAN -= ANS * 10
CALL STONO (10, 2. STOAN, TANS, NXF . ..
1 CONTINUE
RETURN
END
This routine takes data field number 10, which is a floating-
point number and has been defined on the VARIABLE card (part
VI, item 335), and multiplies it by 10.0 and then stores the prod-
uct of data field 10 and the constant 10.0 back into data field 10.
This 1s done NCARD times thus performing the operation on data
field 10 in each of the records making up the sampling unit.

Vii-C. MODIFICATION OF DIMENSIONED SPACE

The standard version of program TABLE carries restrictions on
both the dimensions and the overall size of problem that can be
handled in a single-processing run. These restrictions are a result
of the manner in which dimensioned space has been aliocated
(table 1) and the total space available in a given operating sys-
tem. The program has been written so that all modifications of

Table 1. — Summary of dimensioned space restrictions, and associated
program variables and arrays

Item Restrictions Variable Arrays
Maximum number of input TREE,
records per sampling unit 160 LTRCD ITREE
Maximum number of subunits POINT,
per sampling unit 106 LPTCRD IPOINT
Maximum number of data R
fields per record 132 LIVR*

Maximum number of TREE,
variable data fields 24 + 1 LTRVR® ITREE
Maximun number of POINT,
semi-variable data fields 24 + 1 LPTVR* IPOINT,
LPOINT
Maximum number of PLOT,
constant data fields 24 + i LPLVR* IPLOT,
LPLOT
Maximum number of cells in AIMP,
all input and output tables 10,000 NDIMEN IMP
Maximum number of) NTAB
input tables 80 LINTB
Maximum number of INF,
output tables 40 LDETB NADD,
TNAME
Maximum number of output EXCEP,
table exceptions 150 LNEX NEXCEP

* NZAPS must always be equal either to LIVR of to the sum of the values of
LTRVR, LPTVE, and LPLVR, whichever is larger. In the DIMENSION statement,
the dimension of NCORR must always be equal to NZAPS, also.

4

dimensioned space can be made in the subprogram called MAINT.
No other parts of the program need be touched for this purpose.
The use of dimensioned space and the means of changing dimen-
sions are discussed in detail below.

Number of Input Records
per Sampling Unit
In the standard version of program TABLE, up to 160 input

records may be processed per sampling unit. To change this maxi-

mum, the following steps (and only these) must be taken:

1. In the subprogram called MAINT, the variable named LTRCD
must be set equal to the desired maximum value.

2. In the subprogram called MAINT, the DIMENSION state-
ment must be changed so that the first dimension of the arrays
TREE and ITREE equals the new value of LTRCD.

Number of Subunits
per Sampling Unit
In the standard version of program TABLE, up to 10 subunits

may be processed per sampling unit. To change this maximum,

the following steps (and only these) must be taken:

1. In the subprogram called MAINT, the variable named
LPTCRD must be set equal to the desired maximum value.

2. In the subprogram called MAINT, the DIMENSION state-
ment must be changed so that the first dimension of the arrays
POINT and IPOINT equals the value of LPTCRD.

Number of Datoa
Fields per Record

In the standard version of program TABLE, up to 132 data
fields may be contained in a record. To change this maximum, the
following steps (and only these) must be taken:

1. In the subprogram called MAINT, the variable named LIVR
must be set equal to the desired maximum value.
2. In the subprogram called MAINT, the DIMENSION state-

ment must be changed so that the dimension of the array R
equals the new value of LIVR.

Number of Variable
Data Fields per Record

In the standard version of program TABLE, up to 24 data fieids

may be specified as containing variable values (see item 335). To
change this maximum, the following steps (and only these) must
be taken:

1.

In the subprogram called MAINT, the variable named LTRVR
must be set equal to the desired maximum value plus one.

In the subprogram called MAINT, the DIMENSION state-
ment must be changed so that the dimension of LTREE and
the second dimension of arrays TREE and ITREE equals the
new value of LTRVR.

In the subprogram called MAINT, the variable named NZAPS
must be set equal either to LIVR or to the sum of the values
of the constants LTRVR, LPTVR, and LPLVR, whichever is
greater.

In the subprogram called MAINT, the DIMENSION state-
ment must be changed so that the dimension of array NCORR
equals the new value of NZAPS.

In the control deck, if the desired maximum value is greater
than 24, the input record variable fields card (item 335) must
be followed by additional cards of the following format:

Columns Contain — Explanation

1-3 XXX == 3 numeric characters, giving the identifica-

tion number of the 25th data field that con-
tains variable values, as described for item
335.

478 XXX ... X = Repetitions of columns 1-3 format, giving

the identification numbers of the remaining
data ficlds that contain variable wvalues.

Number of Semivariable
Data Fields per Record
In the standard version of program TABLE, up to 24 data fields

may be specified as containing semivariable values (see item 336}.

To change this maximum, the following steps (and only these)

must be taken:

1. In the subprogram called MAINT, the variable named LPTVR
must be set equal to the desired maximum valuve plus one.

2. In the subprogram called MAINT, the DIMENSION state-
ment must be changed so that the second dimension of arrays
POINT and IPOINT equals the new value of LPTVR.

3. In the subprogram called MAINT, the DIMENSION state-
ment must be changed so that the dimension of array LPOINT
equal the new value of LPTVR.

4. Inthe subprogram called MAINT, the variable named NZAPS
must be set equal either to LIVR or to the sum of the values of
the constants LTRVR, LPTVR, and LPLVR, whichever is
greater.

S. In the subprogram called MAINT, the DIMENSION state-
ment must be changed so that the dimension of the array
NCORR equals the new value of NZAPS.

6. In the control deck, if the desired maximum value is greater
than 24, the input record semivariable fields card (item 336)
must be followed by additional cards of the following format:

Columns Contain — Explanation
1-3 XXX = 3 numeric characters, giving the identifi-
cation number of the 25th data feld that
contains seri-variable values, as described
for item 336,

478 XXX ... X = Repetitions of the columns 1-3 format, giv-
ing the identification number of the re-
maining data fields which contain semi-
variable values.

Number of Constant
Daota Fields per Record

In the standard version of program TABLE, up to 24 data fields
may be specified as containing constant value (see item 337). To
change this maximum, the following steps (and only these) may
be taken:

1. In the subprogram called MAINT, the variable named LPLVR
must be set equal to the desired maximum value plus one.

2. In the suhprogram called MAINT, the DIMENSION state-
ment must be changed so that the dimension of the arrays
PLOT, IPLOT. and LPLOT equal the new value of LPLVR.

3. Inthe subprogram called MAINT, the variable named NZAPS
must be set equal either to LIVR or to the sum of the values of
the constants LTRVR, LPTVR, and LPLVR, whichever is
greater.

4. In the subprogram called MAINT, the DIMENSION state-
ment must be changed so that the dimension of the array
NCORR equals the new value of NZAPS.

5. In the control deck, if the desired maximum value is greater
than 24, the input record constant fields card (item 337) must
be followed by additional cards of the following format:

Colummns Contarn — Explanation

1-3 XX == 3 pumenc characters, giving the identifi-
cation number of the 25th data field that
contains constant values, as described for
item 337.

4.78 XXX .. . X — Repetitions of the columns 1-3 format,

giving the identification numbers of the
remaining data fields that contain constant
values.

NMumber of Celis in All
Input and Output Tables

In the standard version of program TABLE, up to 10,000 loca-
tions are available for storing all input and output tables. To
change this maximum, the following steps (and only these) must
be taken: '

1. In the subprogram called MAINT, the variable named
NDIMEN must be set equal to the desired maximum value.

2. In the subprogram called MAINT, the DIMENSION state-
ment must be changed so that the dimension of the arrays
AIMP and IMP equals the new value of NDIMEN.

If the space required for the input and output tables specified
in a given control deck exceeds the dimensioned space, message 3
or message 6 will be printed during the reading of the control

8

deck, and processing will halt. The space required can be com-
puted as follows:

m n
{2 @] +K[Y (o 1)X(at DI+
1 =1

e

[(fmes + 1) X (camsx + 1)}

where
m = the total number of input tables.
& = the total number of entries in the ith input table.
K = a multiplier, the value of which depends upon the output
option (item 302, column 9); as follows:

Option Value of K
lor2 1

3 : 2

4 3

n = the total number of output tables.

15 = the number of rows in the jth output table, as specified in
columns 24-25 of item 321.

¢ = the number of columns in the jth output table, as specified
in columns 27-28 of item 321.

fmax == the number of rows in the largest output table.

Cmax = the number of columns in the largest output table.

Number of Input Tables

In the standard version of program TABLE, up to 80 input
tables may appear in the control deck. To change this maximum,
the following steps (and only these) must be taken:

1. In the subprogram called MAINT, the variable named LINTB
must be set equal to the desired maximum value.

In the subprogram called MAINT, the DIMENSION state-
ment must be changed so that the first dimension of the array
NTAB equals the new value of LINTB.

12

Number of Qutput Tables

In the standard version of program TABLE, up to 40 output
tables may be specified in the control deck. To change this maxi-

9

mum, the following steps (and only these) must be taken:

1. In the subprogram called MAINT, the variable named LDETB
must be set equal to the desired maxmmum value.

2. In the subprogram called MAINT. the DIMENSION state-

ment must be changed so that the first dimension of the arrays

INF and NADD equals the new value of LDETB.

In the subprogram called MAINT, the DIMENSION state-

ment must be changed so that the dimension of the array

TNAME equals the new value of LDETB.

LU S

Number of Output Table Exceptions

In the standard version of program TABLE, up to 150 output
table exceptions (item 323) can appear in the control deck. To
change this maximum, the following steps (and only these) must
be taken:

1. In the subprogram called MAINT, the variable named LNEX
must be set equal to the desired maximum value.

2. In the subprogram called MAINT, the DIMENSION state-
ment must be changed so that the first dimension of the arrays
EXCEP and NEXCEP equals the new value of LNEX.

Vii-D. PROGRAMMING FEATURES

The following items will be of interest to programmers who
plan to modify the standard version of program TABLE for use
on other computers or under other operating systems.

Tape Assignments
In the standard version of program TABLE the FORTRAN

logical tape assignments are as follows:
Unit Use
5 Monitor input for program deck and job control deck.
& Monitor print for job summary and debug output.
15 Sorted input file in binary or BCD.
19 Output of sample summary tables in binary only.
These tape assignments can be changed to fit local conditions by
loading appropriate file routines with the program. See your sys-
tems representative or the section entitled FORTRAN files in the
IBM IBJOB processor manual, file number 7090-27.

10

Use of Sense Switches
and Sense Lights

No sense switches are used in program TABLE. All sense
switches will be set at normal monitor settings.
No sense lights are used.

Use of Program Halts

There are no halts in program TABLE.

Use of the Overiay Feature

The standard version of program TABLE is constructed so that
the overlay feature can be used when sufficient storage is not avail-
able for program and data. The configuration 1s as follows:

Link
4]

1
2

Contains Subprograms

MAINT

CONTRL

TABLE, CALCUL, STONO, GETNQ, VARIAN

Bit Manlpulation

Program TABLE uses 36-bit, fixed-point words for all input
table entries. Certain types of tables (LOOKUP and RANGE
operation) use several numbers packed in a single word. These
numbers are packed and unpacked by the use of binary arithmetic.
The program will not operate on a machine that uses either a
larger or smaller number of bits in fixed-point operation unless the
shift constants that are used to pack and unpack these words are
changed to correspond with the word length.

Subprogram Names and Functions

CONTRL
TABLE
VARIAN

CALCUL

STONO

GETNO

Reads all cards in the control deck and sets up storage array
for processing input data.

Reads input data“and forms tables defined in control deck
for each sample unit and data set.

Computes variances and means for a data set and writes final
table on tape 19. Called by subprogram TABLE.
User-written subprogram to compute attributes not present
in a usable form on the input data. Called by subprogram
TABLE.

Used to store calculated data field in the input matrix, Called
from subprogram CALCUL.

Used to retrieve data field from the input matrix. Called from
subprogram CALCUL.

11

MAINT Main calling program in which dimensions of all arrays are
set. Calls subprograms CONTROL and TABLE.

Iimportant Arrays and Varicbles

The following are the principal arrays and variables used in

progeam TABLE:

Array Dimension Description

AIMP, NDIMEN Floating- and fixed-point storage array for all

IMP input and output tables,

NTAB LINTB Indexing information for all input tables; where
x 4 LINTB is the number of input tables, and loca-

tions in the second dimension are used as follows:

the alphameric name of the input tables.

the beginning location of a table 1n IMP.

the last location of a table in IMP.

the number of entries in a table.

INF LDETB Indexing information for all cutput tables; where

x 35 LDETB is the number of output tables, and the

locations in the second dimension are used a3
follows:

1 == The number of rows in an output table,

1 ==
2 o=
3 =

4 =

2

3

10

12

plos 1.
The number of columns in an output

table, plus 1.

The beginning location in IMP of a
facsimile output table, Jess 1 plus the
number of rows in the table.

The beginning location in IMP of a
final output table, less one plus the
number of rows in the table.

The beginning location in IMP of the
sums of squares for a final output table,
less one plus the number of rows in
the table.

The beginning location in IMP of the
sums of cross-products, if any, less one
plus the number of rows in the table.
The number of entries to be made in
an output table.

The name of the input table, if any, to
be used in defining the column index
for the first entry in an output table,
The name of the operation to be used
in defining the column index for the
first entry in an output table.

The identification number of the datz
field of value of the constant to be used

L]

Array Dimension

EXCEP, LNEX
NEXCEP x 3

NADD LDETB
x 8

NCORR NZAPS

Description
in defining the column index for the
first entry i an output table,

11-13 = Same as 8-10, except that the informa-
tion relates to defining the row index of
the first entry in an output table,

14 = The identification number of the data
field to be used as the first entry in an
output table.

15-21 = Same as 8-14, except that the informa-
tion relates to the second entry to be
made in an output table, if any.

22-28 = Same 25 8-14, except that the informa-
tion refates to the third entry to be made
in an output table, if any.

29-35 = Same as 8-14, except that the informa-
tion relates to the fourth entry to be
made in an output table, if any.

Stotage array for read-in information about table

entry exceptions, where INEX is the number of

exceptions in the job and the locations of the

second dimension are used as follows:

1 == The identification number of the data field
to which the exception applies.

2 == The value of the constant to be used in
making the exception.

3 == The relational operator to be used in mak-
ing the exception,

Indexing information for input table entry excep-
tions stored in EXCEP; where LDETB is the num-
ber of output tables, and the locations of the
second dimension are used as follows:

1 == The index of the row in EXCEP where
the first exception for the first entry in an
output table s stored.

== The number of sequential exceptions ap-
plying to the first entry in an output table.
3.4 = Safne as 1-2, except that the information
applies to the second entry in an output

table, if any.
5-6 == Same as 1-2, except that the information
applies to the third entry in an output

[
{

table, if any.

7-8 == Same as 1-2, except that the information
applies to the fourth entry in an output
table, if any.

Storage array for the storage (machine) locations
of the data fields of an input record, where NZAPS

13

Array
PLOT,
IPLOT

TREE.
ITREE

POINT,

IPOINT
R

LPLOT

LPOINT

LTREE

IDPLOT

IDPT

IDPI

IDPIO
1ZDPIO,
PIDPIO
IDPLO
KDP
FMT

IVAR
NREAD

NCOUT

MODE

14

Dimension

LPLVR

LTRCD

x LTRVR

LPTCRD
x LPTVR

LIVR

LPLVR

LPTVR

LTRVR

6

6

Description
is equal to or greater than the number of data fields
in the record.
Floating- and fixed-point storage array for data
fields in the input records defined as constant
fields {item 337).
Floating- and fixed-point storage array for data
fields in the input records defined as variable ficids
(item 33%).
Floating- and fixed-point storage array for data
fields defined as semivariable fields (item 336).
Storage array into which each individual input
record is read from the input tape, where LIVR
is the number of data fields in the record.
Storage array for the identification numbers of the
input data fields defined as constant fields (item
337).
Storage array for the identification numbers of the
data fields defined as semivariable fields (item
336).
Storage array for the identification numbers of the
data fields defined as variable ficlds (item 335).
Storage array for the identification numbers of the
input data fields defined as sampling-unit identifi-
cation {item 334),
Storaee for the identification number of the data
field defined as subunit identification, if any (item
3343.
Storage array for the identification numbers of the
data fields defined as data-set identification (item
334},
Sto-age arrav for the identification data fields for
the current data set.
S'orage array for the identification data fields for
the previous data set.

Seorage array for the identification data fields of
the current sampling unit.

Storage for the sdentification data field for the
current subunit,

Storane array for the read-in input record format
specification.

The number of data felds in each input record.
The total number of records to read from thc
input file.

The current number of records read from the
input file.

The mode in which the input file is written:
1 equals binary; 2 equals BCD.

Array Dimension Description

NPLOT 1 The number of sampling units processed 0 the
current data set.

KPOINT 1 The number of subunits read for the current
sampling unit.

NCARD 1 The numbcer of cecords read for the current-
sampling unit.

NPSTEP 1 The total number of output tables defined in the

control deck.

TNAME LDETB Storage array for the names (alphameric) of the
output tables in the order that they are defined
in the control deck.

ISTEP 1 The index number of the output table currently
being processed.
INDEX 2 Temporary storage for final table indexes.

Vii-E. OUTPUT TABLE FORMATS

Two alternative output table formats are available. The option
is exercised in columns 12-16 of the output option card (item
302).

In normal job processing, these columns are left blank (not
punched) and the table output is written on magnetic tape in
binary mode. This form of output provides for rapid transmission
of the output tables to the OUTPUT program in which they may
be weighted, summed, labeled and printed, according to the sam-
pling and table selection options available in that program.

If columns 12-16 of the output option card (item 302) are
punched with the word DEBUG, the table output will be prnted
in BCD mode (E specification}. As the control word implies, this
alternative will normally he used only in debugging program
changes or control decks. It does not provide for any fusther pro-
cessing of the output data.

The general order of the table output is the same for both
alternatives. All table output from the job is in a single file. For
the binary tape output. this means that there is only one end-of-file
mark in the output and it appears after the last record output from
the job.

Within the file, the sets of output tables for each input data set
are in the same order as the data sets appear in the input file.
Within the data set, the output tables are in the same order as are

15

the corresponding output table definition cards (item 321) in the
control deck. The output for a given table varies with the output
option given in column 9 of the output option card (item 302).
If the option is:

1. Only the table sums are given for each output table.
2. Only the table of means s given for each output table.

3. The table of means, followed immediately by the table of the
variances of the means, is given for each output table.

4. The table of means, followed immediately by the table of the
variances of the means, in turn followed immediately by the
table of covariances of means, is given for each output table.

In the binary tape output, three types of record are used. The
first type is repeated as the first record of each data-set output. The
pair of records of the second and third types are repeated for every
output table within the data set. The three types of record are
described below.

Record Word

icriply
number number Description

1 1 A number equal to one plus the number
of identification words that follow in
this record. This number is one greater
than the number of data set identifica-
tion fields specified in columns 13-27 of
the input record identification fields card

(item 334).

The value of the data-set identification

field specified in columns 13-15 of the

input record identification fields card

{item 334).

3-6 Values of the remaining data-set identi-
cation fields specified in columns 16-27
of the input record identification fields
card (itemn 334).

7 The total number of output tables for
the data set which follow this record.
This number is equal to the number of
output table definition cards (item 321)
in the control deck.

o

8 The total number of sampling units in
the data set,

16

Record

nymber

[

Word
number

1

(r+1) — (rxc)

() + 1) —2({mxc)

(2{rxc) + 1) —3(rxc)

Description

An outnut table name, as given in col-
umns 14-19 of an output table defini-
tion card {itern 3213,

The number of rows, including column
totals, in the output table named in
word 1 of this record. This number 15
one greater than the number punched
in columns 24-25 of the output table
definition card (item 321) for this out-
put table.

The number of columns, including row
totals, in the output table named in
word 1 of this record. This number is
one greater than the number punched
in columns 27-28 of the output table
definition card (item 321) for this out-
put table.

The value in the first element or cell of
the first column of the output table
named in the preceding record 2, word
1. If the output option specified in col-
umn 9 of the output option card (item
302) is 1, the value will be a sum over
the sampling units of the data set.
Otherwise, it will be a mean over the
sampling units,

The values in the remaining cells of the
first column of the table, where r is the
number of rows given in the preceding
record 2, word 2.

The values in the cells of the remaining
columns of the output table, where r
and ¢ arc the numbers of rows and
columns given in the preceding record
2, words 2 and 3, respectively.

The values of the variances of the cells
of the output table named in the pre-
ceding record 2, word 1. These words
appear in the record only if output op-
tion 3 or 4 is punched in column 9 of
the output option card (item 302}.
Otherwise the record ends with word
(rxc).

The values of the covariances between
the cells and the total of the output
table named in the preceding record 2,

17

Record Word

Description
number number Her

word 1. These words appear in the
record only if output option 4 i
punched in column ¢ of the output
option card (item 302). Otherwise,
the record ends with word (rxc) (out-
put options 1 and 2} or with word 2
{rxc) (output option 3).

In the printed BCD output the numbers are in floating-point
format (E specification). Essentially the same arrangement is fol-
lowed as with the binary output, except that the output is broken
mnto lines. There are eight entries (or cells) per line in columnar
sequence, and as many lines are printed as necessary to record all
the table entries.

For example, a table that has been defined as having 10 rows
and 15 columns will appear printed in the following way: line 1
will represent column 1, rows 1-8; line 2 will represent column 1,
rows 9-11 and column 2, rows 1-5. Row 11 of column 1 is the total
of column 1 that has been provided by the program. The next line
represents column 2, rows 6-11, and column 3, rows 1-2, and so
forth through the entire table. If the option provides for tables of
variances, these follow the last element of the means; and if the
option provides for tables of covariances, these follow the last
element of the table of variances.

The table is identified by a printed line that gives the table
name, the entire number of rows and columns, and the entire num-
ber of cells represented in the printed tables. This number is
merely the number or rows plus one times the number of columns
plus one times the number of tables represented. If only means are
printed, the number is one; if means and variances are united the
number is two; if means, variances and covariances the number is
three.

Vii-F. SUMMARY OF ESTIMATING PROCEDURES

In this chapter the four output options available in program
TABLE are presented in detail.
Vector notation is used to make the presentation of computing

1
procedures compact and easy to read. An input vector, Y, is a one-

18

dimensional array representing a sampling unit attribute. An out-
O .
put vector, Y, represents an output table (in general, a two-dimen-

sional array or matrix) summarizing the sampling-unit attribute.

A final output vector, ‘: represents an estimate of the population
attribute that corresponds to the sampling-unit attribute. Elements
of these vectors are represented by yrh yf:), :'1

It must not be inferred from what fotlows that the arithmetic 1s
the arithmetic of vectors or matrices although, in general, it is cor-
rect vector arithmetic as shown. What is implied is simply the
sequential and independent application of the indicated operation
to each pair of equivalent elements from the two vectors. In this
sense, the procedures will generalize to the case of matrices; other-
wise they will not.

Other notational conventions adopted here are the use of a bar
over an attribute symbol (Y') to symbolize the arithmetic mean of
an attribute, and the use of a dot that replaces a subscript (y.x) to
indicate the sum over-all members of the set represented by the
subscript.

OPTION 1.—Transform and Sum Sampling-Unit Attributes
Over Sets of Sampling Units

o
Compute: Y,
1
Given: A set (j == 1) of Yy, and T
Where:
j == Subscript for the jth sample stratum or set of sampling units.

3
Y, =z An output vector (output table) containing the sum of the sam-
0

pling-unit output vectors, Yy, which represent a summary of the
I
sampling-unit attribute input vectors, Yy

i
Yy = An input vector containing a sampling-unit attribute (a data field
from the input-Jdata matrix for a sampling unit)

[
T iz A set of rules whereby the clements of the input data vector, Yy,
are redistoibuted (transformed) to form the output vector

]
(table), Y,

O]
Procedure: Y, - TY

19

[+ [s)

PS
Outp\xt: Y’. = E Y’k
k=1

OPTION 2.—Transform and Compute Means of Sampling-
Unit Attributes Over Sets of Sampling Units

O
Compute: Y.

Given: Sets of ‘;',k, Py and T

Where:
j == Subscript for the jth sample stratum set of sampling units
k = Subscript for the kth sampling unit

o
Y,. = An output vector (output table) containing the arithmetic mean of
(4]
the sampling-unit output vectors, Yy, which represent 2 sum-
1
mary of the sampling-unit attribute input vectors, Y,

X
Yq == An input vector containing a sampling-unit attribute (a data field
from the input-data matrix for a sampling unit)

P; = The number of input sampling units in the stratum or set

I
T == A set of rules whereby the elements of the input-data vector, Yy,
are redistributed (transformed) to form the output vector

(2]
(tabie) . ij

¥

o 1
Procedure: ij = TY“

Py o
2 Yn
k = 1

Output; ¥,
tput: Yy = —p,

OPTION 3.—Transform and Compute Means and Variances
of Sampling-Unit Attributes Over Sets of Sam-
pling Units

Compute: Y, VY,

I
Given: Sets of Yy, Py, and T
Where:
j = Subscript for the jth sample stratum or set of sampling units.

k == Subscript for the kth sampling unit

20

Y,. = An output vector {output table) containing the arithmetic mean of

[>]
the sampling-unit output vectors, Yy, which represent 2 sum-
1
mary of the sampling-unit attribute input vectors, Yy,

Q O
VY, = The variance of Y,

1
Yy == An input vector containing a sampling-unit attribute (a data field
from the input-data matrix for a sampling umt)

P; = The number of input-sampling units in the stratum or set

1
T = A set of rules whereby the elements of the input-data vector, Y,
are redistributed (transformed) to form the output vector

o
(table), Y,

8] 1
Procedure: Y, — TYy,

P o
S Y
Output: %,. o=
Py
PP o o
S (Ya— Y2
V% i ko1
g mE e .
Py (P;—1)

OPTION 4.—OPTION 3 Modified to Include Computation
of Covariances for Ratio Estimates

Compute: g’, v¥ . C%,

1
Given: Sets of Yy, Pyand T

Where:
j == Subscript for the jth sample stratum or set of sampling units

k = Subscript for the kth sampling unit

Y,. == An output vector (output table) containing the arithmetic mean of
8]
the sampling-unit output vectors, Yy, which represent 4 sum-

I
mary of the sampling-unit attribute input vector Yy,

Q . 2
VY. == The variance of Y ;.

21

o . . .8
CV,. == The mean covariance of output vectors for sampling units, Y},
o
and the sums (totals) of clements in these vectors, Y.,
Yy w= An input vector containing a sampling-unit attribute (a data field
from the input-data matrix for a sampling unit)

Py = The number of input-sampling units in the stratum or set

1
T = A set of rules wherchy the elemeats of the input-data vector, Yy,
are redistributed (transformed) to form the output vector

o
(table), Yy

O
Procedure: Y’k I ﬂ’jk

Py o
Ny,
O i
Output: Y, = jl.mi;ml ,,,,,
Py
O
VYJ e
O
CV,. = -

A
[

