V. BESGR@W@M OF

by
Robert W, Wilson Jr.
and Robert €. Peters

U. 5. FOREST SERVICE RESEARCH PAPER NE-73
1987

NORTHEASTERN FOREST EXPERIMENT STATION, UPPER DARBY, PA.
FORESY SERVICE, U.S. DEPARTMENT OF AGRICULTURE
RICHARD D, LANE, DIRECTOR



About the Authors

ROBERT W. WILSON, JR. tock his Bachelor's depree at
The Pennsylvania State University in 1947 and his Master's
and Ph.D. degrees at Yale University in 1948 and 1965, re-
spectively. He joined the U. S. Forest Service in 1948 and has
worked in various research capacities for the Northeastern
Forest Experiment Station. From 1961 to 1965 he was in
charge of the Station’s biometrics unit at New Haven, Conn.
He s assigned at present to the Forest Insect and Disease
Laboratory at West Haven, Conn.

ROBERT C, PETERS obtained his Bachelor's degree from
the University of California in 1960 and his Master's at Yale
Unversity in 1961, He joined the Forest Service in 1961 as
a research forester, and was assigned to the Station’s bio-
metrics unit from 1961 until 1965, when the unit was discon-
tinued. Mr. Peters played 2 key role in the development of
the data-processing systemn reposted here.



THE NORTHEASTERN
FOREST-INVENTORY
DATA-PROCESSING SYSTEM.
V. DESCRIPTION OF
SUBSYSTEM TABLE.

"

CONTENTS
A. INTRODUCTION . : : : !
B. PROGRAM OUTPUTS .. .. .. . 2
C. DATA INPUTS . . .. . . . 3
D. PROGRAM LOGIC AND PROCEDURES ... . *

F. CONCLUSION T 1t



PREFACE

THIS paper is the fifth in a series of ten papers prepared to
describe the forest-inventory dat&pm&ssi?ngwsysiim of the
Northeastern Forest Experiment Station, This system was de-
vised for using modern, large-scale, hugh-speed computers in
processing forest-inventory data. The series will comprise the
following papers:

L. Introduction.

If. Description of subsystem EDIT.

HI.  Operation of subsystem EDIT.

IV.  Information for programmers — subsystem EDIT.
V. Description of subsystem TABLE.

VI.  Opemtion of subsystem TABLE.

VII. Information for programmers—subsystem TABLE.
VIII.  Description of subsystem OUTPUT.

IX. Opemntion of subsystem OUTFUT.

X Information for programmers ——
subsystem OUTPUT.



V-A. INTRODUCTION

NE of the major projects of the U.S. Forest Service is a
O nationwide forest survey, which is designed to obtain useful
and timely information about the timber resources of the United
States. In the course of the surveys, which are made mainly on a
state-by-state basis, great masses of detailed data are collected
about timber volumes, growth, timber cut. and other character-
istics of the timber resource.

In recent years the volume of information obtained from forest-
sutvey field plots has increased greatly. The task of compiling and
analyzing this mass of data with mechanical computing machines
was both cumbersome and time-consuming.

A solution to this problem was seen in the development of the
high-speed electronic computers. The Northeastern Forest Experi-
ment Station, which was responsible for conducting the forest
survey of the heavily forested Northeastern States, investigated
the possibilities and devised the Northeastern Forest-Inventory
Data-Processing System.

This paper describes a part of the system, subsystemn TABLE,
that is designed specifically to reduce large amounts of sample
data to tables of statistics for the samples. In turn, sample sum-
mary output. 15 designed for use as mput to program OQUTPUT
{see part VI of this series) to produce tables of statistics for
the sampled populations.

The principal value of the program lies in its versatility. While
applying a standard. straightforward procedure to the reduction
of data, it provides a very great measure of freedom in fitting both
inputs and outputs to the requirements of particular data-reduction
problems. Within the context of the program. the origin of the
wput data i1s immaterial; a data set that is to be processed may
be sample data, but it need not be. The data set is simply a col-
lection of values for one or more attributes of one or more
cbjects (sampling units) that are to be reduced to tables of sta-
tistics that characterize the set. Similarly, the output tables may

1



summarize any aspect of the data set. Several different tables, each
representing all or a selected part of the input data, may be used
to form these summaries. And, in order that both the inputs and
the outputs may be variable, the details of the procedures by
which one is converted to the other are "also variable. Conse-
quently, the program can be applied to a wide variety of data-
reduction problems.

The program is written in the standard FORTRAN IV lan-
guage, and is operative at the Yale University Computer Center
on an IBM 7094 /7040 Direct Coupled System under the IBSYS
operating system with IBJOB processor.' It will operate with little
or no modification on other comparable systems.

Part VII in this series contains a selection of programming in-
formation that will be useful if the standard version of the pro-
gram must be modihed for any reason. Detailed instructions for
setting up and executing jobs with the standard version are given
in part VL. Copies of these publications and information on the
FORTRAN IV source decks for the program can be obtained
from the Northeastern Forest Experiment Station, 6816 Market
Street, Upper Darby, Pennsylvania 19082.

v-B. PROGRAM OUTPUTS

The primary outputs from the program are sets of statistical
tables. One set of output tables is produced for each set of sample
input data. An output set may consist of up to 40 two-dimensional
tables. No table in the set may have more than 50 rows and S0
columns, including the row and column totals that are formed
automatically for every table”

The content of the tables in an output set depends entirely upon
the demands of the particular application. Any attribute of the
sampling units in a data set (see part V-C) can be summarized by
categories determined from other sampling-unit attributes (see
part V-D}.

* Mention of a particular product should not be construed as an endorsement by the
Forest Service or the U, S. Department of Agriculture,

* There is also an overall restriction on the total number of cells in 2 set of output
tables which is explained in part VII-C.

z



In addition, there is a choice of statistics to be provided for every
cell of each table in the output set. The choices are:*

Simple sums over sampling units.

Means over sampling units.

Means and their variances over sampling units.

Means, their variances, and their covariances with the grand
mean over the sampling units (for use when the data set sum-
maries are to be used to make ratio estimates).

Ll Lo

All output sets from a program run are written in a single mag-
netic tape file of binary records for rapid transmission to program
OUTPUT,* in which the tables are labeled and printed as popula-
tion statistics after appropriate weighting and summing. For the
purpose of debugging the job control deck, the alternative of print-
ing the tables in block form as BCD records is also available. No
binary tape is written in this option.

During execution, the program prints a job summary consisting
of messages of three types: those that identify errors in the job
control deck that have halted execution, those identifying errors
in input records (or the job control deck) that cause the record
to be deleted but processing to continue, and those that signal
successful reading of the job control deck and identify the data
sets and numbers of sampling units that have been processed.

v-C. DATA INPUTS

The data input to the program consists of a single magnetic
tape file of ordered unit records. Each record in the file must have
exactly the same format as every other record. The file contains
the data from sets of observed sampling units. Just how the sam-
pling units are represented by the unit records depends upon
the characteristics of the particular problem. The key is the way
in which the field observations were made.

I all attributes were actually observed on the sampling unit
as a whole (a plot, for example), the sampling unit observation
7 3?31(:;;2&(;;\% and the cormputations arried out for cach, are explained in detail

in part VII-F.

CThe format of the output sets 15 described in detail in part VIE-E.

)



would consist of a single value for each attribute. The sampling
unit observation could then be represented by a single unit record.

If, on the other hand, all attributes were observed on sub-
divisions of the sampling unit (on trees in the plot, for example),
then there would be several values for each attribute. In this case,
one unit record would be required to represent each observed value
of the set of attributes, so the sampling unit as 2 whole would be
represented by a set of unit records equal in number to the number
of subdivisions on which observations were made.

Generally, attributes of both kinds are observed on sampling
units. In this case, there must still be a unit record to represent
each subdivision observed, but the unit record format must also
provide for entry of the single-valued attributes observed on the
sampling unit as a whole. These values are repeated in every unit
record of the set representing the sampling unit.

An additional possibility arises if attributes are actually ob-
served on the sampling unit as a whole, on subunits of the sam-
pling unit, and on subdivisions of the subunits. This is simply an
extension of the previous case. The unit-record format must pro-
vide for recording the values of all three kinds of attributes. There
will be one unit record representing each observed subdivision of
the subunits. The values of attributes observed on the subunits
will be repeated in each record of the subset representing the sub-
unit; and, as before, the values of attributes observed on the
sampling unit as a whole will be repeated in each record of the
whole set representing the sampling unit.

In summary then, the individual unit record always represents
the least subdivision of a sampling unit that has been directly
observed, whatever that may be. The standard version of the pro-
gram allows up to 160 unit-records in the sets representing sam-
pling unit sets. The unit records must have a common format,
and appropriate values for each of up to three kinds of attributes
actually observed in a sampling unit must be recorded in every
unit record. There is no provision for header cards of any kind.

The order of the unit records in the input file also depends upon
the characteristics of the problem. The unit records must always
be ordered by subunits, if any, within sampling units. In turn, the

4



sampling unit sets must always be ordered into data sets. The
significance of the data set is that it contains all the data required
to make one set of output tables. What the data set represents in
terms of the population that has been sampled depends upon the
methods of sampling and of compilation that are employed. In
stratified sampling, it will represent a sampling stratum. In other
types of sampling, it will generally represent any kind of geo-
graphical or other unit for which output tables of statistics are
required. Any number of data sets may be contained in the input
file.

If required by the problem, the data sets themselves may be
ordered into groups; and these groups, in turn, into still larger
groups. For example, if stratified sampling has been employed in
each of several survey units covering the population sampled, then
the data sets must be ordered by survey unit. However, it must be
remembered that all data sets processed in a single production
run are subject to the same set of processing rules.

V-D. PROGRAM LOGIC AND PROCEDURES

The program consists of seven principal phases or steps con-
nected in a simple and straightforward manner (fig. 1). The first
step simply reads and stores in the computer all of the control
information contained in the job control deck (part VI-C).

The second step reads a set of unit records representing a sam-
pling unit and stores all of the data in blocks, according to the
kind of attribute represented in each data field (see part V-C and
part VI-C, sec. 330). Consequently, all input data for a sampling
unit is available throughout the processing of that sampling unit.

The third step executes the CALCUL subroutine (part VII-B).
This step is provided expressly to permit the calculation of data
field values from information in more than one unit record of
the sampling unit set, since this kind of operation cannot be per-
formed in a unit-record editing process.

The fourth step produces the facsimile output tables at the
sampling-unit level. This key step in the compilation process will
be discussed in some detail below.



STARY
TABLE

TRANSFORM

£

o
Yoo TY,

CALCULATE

| OTHER SAMPLING-

UNRIT ATTRIBUTES,
iF MECESSARY

UM COVER SEY
- & “ s e
Yoo Y2 Yaya

COMPUTE

- Figure 1. — Generalized flow chart of TABLE.




The fifth step adds the completed sampling-unit tables to the
output tables being accumulated for the data set; and if required,
also adds tables of squares and of cross-products (of cells with
totals) to special data set tables used to compute variances and
covariances.

Steps two to five are repeated until every sampling unit in the
data set has been processed. Then, the sixth step computes the
required statistics for each output table from the sums that have
been accurnulated. The tabulated statistics are written on magnetic
tape in binary mode (or printed, if the debugging output option
has been taken) in the seventh and final step.

If there are additional data sets to be processed, the program
then returns to step two and the cycle is repeated for each suc-
cessive set.

The formation of final output tables begins with the formation
of facsimile output tables for each input sampling unit, in se-
quence. The formation of these tables is governed entirely by a
general table-making procedure provided in the program; in con-
junction with information about the relationships between sam-
pling unit data and output tables in a given application that is
conveyed to the program in the job control deck.®

The general procedure (fig. 2) provides that each observed
value of a given attribute® is summed (entered) into a given fac-

" The process of forming the facsimile output tables for the sampling units is
similar in concept {0 a matrix transformation:

O 3

Y = TY
where

<

Y = a given two-dimension facsimile output table in which an input attribute
is tabulated according to the values of two other attributes;

T = the transform that controls the process, consisting of the general table-
making procedure and the control information for a given fob; and

¥

Y = a two-dimension array of sampling unit input in which the data are

tabulated according to observation (rows) and attribute {columns).

* The number of entries of a given attribute per sampling unit depends upon the
kind of attribute and the number of subdivisions of the sampling unit on which it
was observed (see part 'V C). If the attribute was observed on the sampling unit as a .
whole, it has only one value, so only one entry is made in the appropriate facsimile
tables. If the attribute was observed on a subdivision of a sampling unit, there will
be as many values (and as many entries in the table) as there were subdivisions of
the sampling unit. The general procedure automatically enters each observed value
of an attribute. using information about the attribute classification furnished with
the mput record description in the control deck (part VI, sec. 330).



OBTAIN TABLE
£
ENTRIES ¥, -
TABLE ENTRY CARD

15 ENTRY
EXCEPTEDY 1

Figure 2. — Flow chart of

the transform operations
in TABLE.

ADD ENTRY YO
CUTPUT TABLE
©

Yau

simile table in a particular row and column (location), unless
conditions are specified under which cestain values of the attribute
are not to be entered. The procedure also provides that up to 4
attributes may be entered in a given table. The general procedure
can form almost any kind of tabulation of sampling unit data.

The information provided in the control deck (part VI-C, sec.
320) defines the particular set of output tables required. For each
output table, the following information is given:

1. A short, unique name by which the output table can be identi-
fied.

2. The dimensions {number of rows and number of columns) of
the table.



3. The attributes in the sampling unit data that are to be summed
into the table. The values of these attributes must be expressed
as floating-point numbers.

4. The attributes in the sampling unit data that determine the
row and the column (location) in the output table into which
each value of the entry attribute is to be summed. The values
of these attributes must be expressed as fixed-point numbers.

5. The operations (and input tables, if any) by which values of
the location attributes are converted to row and column in-
dexes; chosen from among the five operations that are avail-
able in the program:

(a) LIST, the operation that defines an index as the position
in a list occupted by a given value of a location attribute.
An input table contains the list of all values the given
attribute is permitted to assume. For example, assume the
following relationships between the values of a location
attribute and the rows of an output table into which an
entry is to be made: when the value is 1, the entry is in
the second row; when the value is 2, the entry is in the
third row; when the value is 4, the entry is in the fourth
row; and, when the value is 6, the entry is in the first row.
Because there are four possible values of the location at-
tribute in one-to-one correspondence with a row index,
there must be four entries in the input table: 0006, 0001,
0002, and 0004.

(b) RANGE, the operation that defines an index position in
a list occupied by a range of values that contains a given
value of a location attribute. An input table contains the
list of ranges that cover all possible values for the given
location attribute.

For example, assume the following relationships between
the values of a location attribute and the columns of an
output table into which an entry is to be made: when the
value of the location attribute is less than 50, the entry
15 to be made tn column 1; when the value lies between
S0 and 73, inclusive, the entry is to be made in column 2;

9



10

and, when the value lies between 74 and 99, inclusive,
the entry is in the third row. There must be three entries
in the input table:

00000049, 00500073 and 00740099

(c) LOOKUP, the operation that defines an index as the value
in one list of values whose position corresponds to the
position in another list occupied by a given value of a
location attribute. An input table provides both lists.
For example, assume the following relationships between
the values of a given location attribute and the rows of
an output table in which an entry is to be made: when
the value 1s 1 or 7, the entry is in the first row; when the
value is 2, 3, or 4, the entry is in the second row; and,
when the value 1s 5 or 6, the entry is in the third row.
Since seven values of the location attribute are permitted,
there must be seven entsies in the input table:

00010001, 00020002, 00030002, 00040002,
00050003, 00060003, and 00070001.

(d) EQUATE, the operation that defines an index as equal to
a given value of a location attribute. No input table is
required.

(e) CONST, the operation that defines an index as equal to a
given constant. No input table is required but the constant
must be specified along with the operation name.

The conditions under which a value of an entry attribute is
not to be summed into a given facsimile output table. These
conditions are referred to as exceptions. Fach condition re-
quires the specification of an attribute, a constant, and a rela-
tional operator. The exception (no entry) occurs whenever a
value of the attribute bears the specified relation to the con-
stant. Any number of conditions may be applied to any entry
attribute providing that the total number specified in the con-
trol deck does not exceed 150.



i-E. CONCLUSION

The foregoing chapters have described how program TABLE
is designed to carry out a general data-reduction process and to
incorporate a great many variations in detail automatically. This
design makes the program applicable to many different data-
reduction problems; but, its very flexibility means also that it
cannot provide a fully automatic solution to any problem.

The user always has the responsibility for preparation of the
job control deck in which the particulars of a given problem are
specified. The description of the deck in part VI can be used as a
check list in assembling the minimal information required; but
successful application of the program demands, in addition, a
thorough knowledge of the problem including the end-use of the
results and the origins of the data.

It will be found that the preparation and checking of the job
control deck is not easy. The deck contains a great deal of detailed
information about the problem, not all of which can be checked
by the program prior to test runs. Consequently, while the pro-
gram offers an efficient means to solve a variety of problems in-
volving large amounts of data or extensive tabulations of data,
some other means will generally be better for simpler problems.

11



