IV. INFORMATION F
SUBSYSTEM EDIT.

by
Robert €. Peters and
Robert W. Wilson Jr.

U, 5. FOREST SERVICE RESEARCH PAPER NE-72
1967
NORTHEASTERN FOREST EXPERIMENT STATION, UPPER DARBY. PA.
FOREST SERVICE, U.S. DEPARTMENT OF AGRICULTURE
BICHARD O, LANE, DIRECTOR

About the Authors

ROBERT C. PETERS obtained his Bachelor’s degree from
the University of California in 1960 and his Master’s at Yale
University in 1961. He joined the Forest Service in 1961 as
a research forester, and was assigned to the Station’s bio-
metrics unit from 1961 until 1963, when the unit was discon-
tinued. Mr. Peters played a key role in the development of
the data-processing system reported herc.

ROBERT W. WILSON, JR. took his Bachelor's degree at
The Pennsylvania State University in 1947 and his Master's
and Ph.DD. degrees at Yale University in 1948 and 1965, re-
spectively, He joined the U. 8. Forest Service in 1948 and has
worked in various research capacities for the Nostheastern
Forest Experiment Station. From 1961 to 1965 he was in
charge of the Station's biometrics unit at New Haven, Conn.
He is assigned at present to the Forest Insect and Diseasc
Laboratory at West Haven, Conn.

THE NORTHEASTERN
FOREST-INVENTORY
DATA-PROCESSING SYSTEM.
V. INFORMATION FOR
PROGRAMMERS
SUBSYSTEM EDIT.

]
Contents
A, INTRODUCTION, 1
B. USE OF THE CALCULATE OPERATION. 2
C. MODIFICATION OF DIMENSIONED SPACE.. 3
Number of data fields per input record. 4
Number of program operations 4
Number of aput and output tables. 4
Number of cells in 2ll input and output tables ... 5
D. PROGRAMMING FEATURES 5
Tape assignments 5
Use of sense switches and sense lights. 6
Use of program halts G
Use of overlay feature6
Bit mamipulatton oL 6
Subprogram names and functions. 7

Important arcays and variables. 7

PREFACE

THIS paper is the fourth in a series of ten papers prepared to
describe the forest-inventory data-processing system of the
Northeastern Forest Experimient Station. This system was de-
vised for using modern, large-scale, high-speed computers in
processing forest-inventory data, The series will comprise the
following papers:

L

il
338
V.
V.
VL
VIIL
VIIL
IX.

Introduction,

Description of subsystern EDIT.

Operation of subsystem EDIT.

Information for programmers — subsystem EDIT.
Description of subsystem TABLE.

Operation of subsystem TABLE.

Information for programmers—subsystem TABLE.
Description of subsystem OUTPUT.

Operation of subsystem OUTPUT.

Information for programmers —
subsystem OUTPUT.

iv-A. INTRODUCTION

NE of the major projects of the U.S. Forest Service is a na-

tionwide forest survey, which is designed to obtain useful

and timely information about the timber resousrces of the United

States. In the course of the surveys, which are made mainly on a

state-by-state basis, great masses of detailed data are collected

about timber volumes, growth, timber cut, and other characteristics
of the timber resource.

In recent years the volume of information obtained from forest-
survey field plots has increased greatly. The task of compiling
and analyzing this mass of data with mechanical computing ma-
chines was both cumbersome and time-consuming.’

A solution to this problem was seen in the development of the
high-speed electronic computers. The Northeastern Forest Experi-
ment Station, which was responsible for conducting the forest
survey of the heavily forested Northeastern States, investigated
the possibilities and devised the Northeastern Forest-Inventory
Data-Processing System.

This paper presents information for programmers on a part of
the system. subsystem EDIT. A general description of program
EDIT and detailed instructions for its use in solving data-pro-
cessing problems are given in parts I, and III of this series. In
the following chapters will be found selected programming in-
formation that will be useful if the programs must be modified
for any reason. The program write-ups and information about the
program source decks may be obtained from the Northeastern
Forest Experiment Station, 6816 Market Street, Upper Darby,
Pennsylvania 19082.

The program is written in the standard IBM FORTRAN IV
fanguage, and is operative at the Yale University Computer Center
on an IBM 7094/7040 Direct Coupled System under the IBSYS
DCS operating system with IBJOB processor.* It will operate with
little or no modification on other comparable sytems. The main
requirements for a machine on which to operate the standard

* Mention of a particular product should not be construed as an endorsement by the
Forest Service ar the UL S, Department of Agriculture.

version of the program are a 32K word core, 2 minimum of 36
bits per word, binary arithmetic capability, and 5 tape drives or
equivalent input/output devices.

IV-B. USE OF THE CALCULATE OPERATION

The standard version of program EDIT provides a dummy sub-
routine named CALCUL. This dummy subroutine may be replaced
by another of the same name programmed in FORTRAN IV to
generate values for new data fields in each record, or to change
the values in existing (input) data fields. The subroutine has the
following calling sequence and DIMENSION statement:

SUBROUTINE CALCUL (NDATA, PDATA, KKVAR)

DIMENSION NDATA(KKVAR), PDATA(KKVAR),
1 FDATA(27), FREOUT(27), KTITLE(12),

COMMON FDATA, FREOUT, KTITLE, ISTEP

The arrays NDATA and PDATA contain the data vector (the
unit record, as stored in the computer). In the standard version
of program EDIT, both arrays are 132 cells in length. To retrieve
or to store information, the user must reference either PDATA or
NDATA by appropriate data-field identification numbers. If the
information is a fixed-point quantity, the name NDATA is used.
If it is a floating-point quantity, the name PDATA is used.

For example, the following subroutine adds the values in data
fields 1 and 2, and stores the resulting value in data field 27; and
it divides the value in data field 101 by the value in data field 11,
and stores the resulting value in data field 15:

SUBROUTINE CALCUL (NDATA, PDATA, KKVAR)

DIMENSION NDATA(KKVAR), PDATA(KKVAR),
1 FDATA(27), FREOUT(27), KTITLE(12),

COMMON FDATA, FREOQUT, KTITLE, ISTEP
NDATA(27) = NDATA(1) + NDATA(2)
PDATA(15) = PDATA(101)/PDATA(11)
RETURN
END
The first (add) arithmetic statement illustrates an operation

done entirely in fixed-point arithmetic. The data fields in the right-
hand side of the statement must have been read as fixed-point
numbers or, if read as floating-point numbers, must have been
converted to fixed point by the FIX operation. The second (di-
vide) arithmetic statement illustrates an operation done entirely
in floating-point artthmetic. The data fields in the right-hand side
of the statement must have been read as floating-point numbers
or, if read as fixed-point numbers, must have been converted to
floating point by the FLOAT operation.

The variable ISTEP is the current program step. If more than
one calculate operation is used, ISTEP can be used tw branch to
the appropriate part of the calculate routine.

IVv-C. MODIFICATION OF DIMENSIONED SPACE

The standard version of program EDIT carries restrictions on
both the dimensions and the overall size of problem that can be
handled in a single processing run. These restrictions are a result
of the manner in which dimensioned space has been allocated
(table 1) and the total space available in a given operating system.
The program has been written so that all modifications of dimen-

Table 1. — Summary of dimensioned-space restrictions and associated
program variable and arrays

Ttem Restriction Varable Arrays

Maximum number of
cells in all input and 8,000 NDIMEN ZIMP, IMP
output table cntrics

Maximum number of

Y ; 132 KKVAR PDATA, NDATA
fields,‘record

Maximum number of

mnput and output 4 NTBLE NTAB, PNTAB
rabes

Maximum number of o NOVAR, NCONST,
program operations oo NOPER NAME, PNAME,

CONST, IPROG

sioned space can be made in the subprogram called MAINE. No
other parts of the program need be touched for this purpose. The
use of dimensioned space and the means of changing dimensions
are discussed in detail below.

Number of Data Fields
per Input Record

In the standard version of program EDIT, up to 132 data fields
can be used for input and output. To change this maximum the
following steps must be taken:
1. In the subprogram MAINE, the variable named KKVAR must
be set to the desired maximum value.
In the subprogram MAINE. the DIMENSION statement must
be changed so that the dimension of arrays PDATA and
NDATA equal the desiced maximum value.

[

Number of Program Operations

In the standard version of program EDIT, up to 100 operations
can be used. To change this maximum, the following steps must
be taken:

1. In the subprogram MAINE, the variable named NOPER must
be set equal to the desired maximum value.

2. In the subprogram MAINE, the DIMENSION statement must
be changed so that the first dimension of arrays NOVAR,
NCONST. NAME, PNAME, and CONST, equals the desired
maximum value. The dimension of array IPROG must also
equal the desired maximum value.

Number of Input
and QOutput Tables

In the standard version of program EDIT, up to 30 input and
output tables are allowed. To change this maximum the following
steps must be taken:

1. In the subprogram MAINE, the variable named NTRLE must
be set to the desired maximum value.

2. In the subprogram MAINE, the DIMENSION statement must
be changed so that the first dimension of arrays NTAB and
PNTAB equal the desired maximum value.

Number of Cells in All
input and Output Tables

In the standard version of program EDIT, up to 8,000 locations
are available for storing all input and output tables. To change
this maximum the following steps must be taken:

1. In the subprogram MAINE, the variable named NDIMEN
must be set to the desired maximum value,

2. In the subprogram MAINE, the DIMENSION statement must
be changed so that the dimension of arrays, ZIMP and IMP
equal the desired maximum value.

If the space required for the input and output table specified in

a given control deck exceeds 8.000 locations, message 4 or message

23 (see part HI-C) will be printed during the reading of the con-

trol deck and processing will halt. The space required can be

computed as follows:

M N
s (IT) + ¥ (ADD)
1 == 1 ! o=

Where
M = Total number of input tables.
IT = Total number of entries in the ith input table.
N = Total number of output tables (tables defined in

an ADD operation).
ADD; = Total number of cells in the jth output table
(tables defined in an ADD operation).

IV-D. PROGRAMMING FEATURES

The following information will be helpful to programmers
who plan to modify the standard version of program EDIT for
use on other computers or under other operating systems.

Tape Assignments

In program EDIT the FORTRAN logical tape assignments are
as follows:

Unit Use

S Monttor input for program deck and job control deck.
6 Monitor print for crror records, other messages, and tables

-y

7 Monitor punch for update tables.
15 Input data in binary or BCD.
19 Output of correct records in binary or BCD

These tape assignments can be changed to fit local conditions by
loading appropriate file routines with the program. See your sys-
tems representative or the section entitled FORTRAN files in the
IBM IBJORB processor manual. file number 7090-27.

Use of Sense Switches
ond Sense Lights

No sense switches are used in program EDIT. All sense switches
will be set at normal monitor setting.

Sense light 1 1s turned on when an error is found in an input
record. Sense light 2 is turned on when an error is found in scan-
ning the job control deck. No other sense lights are used.

Use of Program Halts
Therc are no halts 1n program EDIT.

Use of the Overlay Feature

The standard version of the program is constructed so that the
overlay feature can be used when sufficient storage is not available
for the program and the data. The configuration is as follows:

Link Contarns Stubprograms
0 MAINE, PACK, UNPACK, RESTAR
1 MAGIC
> CONTRL
3 EDIT. LEFTAB, ALLTAB, ERCARD
4 ENDMAG

Bit Manipulotion

The standard version of program EDIT uses 36-bit fixed-point
words. Some input tables (those used in the cross check. cross
range check, generate. and add operations) are stored by packing
several fields into a single word. Some operation controls {those
for FIX, FLOAT, LOGIC, and ARITHE) are stored by packing

6

data-field identification numbers and operation options into the
same word.

Words are packed and unpacked by the use of binary arithmetic.
The program will not operate on a machine that uses either a
larger or smaller number of bits in fixed-point operations unless
the shift constants that are used to pack and unpack are changed
to correspond with the number of bits per word in the particular
machine,

Subprogram Names and Functions

MAINE. The main caalling sequence of program EDIT. Tt sets array
dimensions; and calls MAGIC, CONTRL, EDIT, and END-
MAG — in that order.

MAGIC. Reads all input table and operation cards. Checks for consist-
ency and sets up necessary information for using each operation
called.

CONTRL. Reads update table (if present) and all control cards containing
nput and out{put record description cards, Sets up all necessary
information for input/output.

EDIT. Processes all input data according to operation described in
control deck,

ENDMAG. Rcads all table output control cards and prints any table
requested.

PACK. Packs cach field in 1 table entry with a 36-hit word. Called by
EDITM and MAGIC.

ERCARD. Whrites out records which are in error.

LEFTAB. Searches in IMP, ZIMP, array when leftmost table field is the
argument.

ALLTAB. Scarches table in IMP, ZIMP array when entire entry is used
as an argument.

UNPACK. Unpacks a 36-at word composed of a packed data field or 2
table entry.

RESTAR. Punches out ADD tables (for restart or update) at end of
processing, or if nurhber of. errors is greater than expected.

CALCUL. A dummy subroutine which is called by the calculate operation.
It may be programmed by the user to perform any record proc-
essing operations not provided for by the other program
operations.,

important Arrays and Variables

The following are the principal arrays and variables used in
program EDIT:

Array

Nw, W
NPSTEP
ISTEP

IVAR
NTAB,
PNTAB

CvT
FMT
NWORK
IPROG

NOVAR

NCONST
CONST

NAME,
PNAME

FDATA

IMP,
ZIMP

NDATA,
PDATA
IWIDTH,
PWIDTH
FREOUT

Dimension

9
1
1

NTBLE
x 15

8

28

9
NOPER

NOPER
x 10
NOPER
x 2

NOPER
% 4

27

Description

Fixed and floating-point working storage

Total number of program operations.

The index or identification number (sequential} of

the program operation currently being executed.

The number of input data hclds.

Indexing information {or the named tables; where

NTBLE is the number of input tables and the sec-

ond dimension locations are used as follows:

1 = index of the first table value in IMP.

2 = index of the final table value 1n IMP.

3 = index of table mid-point.

4 == index of first quartile.

5 == index of third quartile.

6-14 = the number of positions, in octal, occupied

by each field of a table entry.

15 == the number of ficlds in a table entry.

Field widths in a table entry, in bits,

Working storage for gencral format specifications.

Working storage.

Identification number of the program operation used

in each program step.

Identification numbers of each data field used in each

program step, in order listed on operation cards.

Value of the constant used in each program step, if

any. The value referred to as CO1L on the operation

card is stored in the first location of the second di-

mension, and CO?2 is stored in the second location.

Identification of input tables used in each program

step, if any: where the lorations of the second di-

mension are used as follows:

1 == the identification number of the first table
used in the program step.

2 = the identification number of the second table
used in the program step.

3 = the alphameric name of the first table.

4 = the alphameric name of the second rable.

Storage for the read-in format specification for input
data andor error output,

NDIMEN Storuge array for all input and output tables,

KKVAR Storage array for all daa helds (input and gener-

13

27

ated) of the unit record currently being processed.
Storage array for output-table scale factors.

Storage array for correct record output format
specification.

KTITLE
NMODE
NTVAR

NCHAR

12

1

1

1

Storage array for the read-in title for all printed
output.

Number identifying the mode in which the input
data is written: 1 equals binary; 2 equals BCD.
Total number of data fields output for a correct
record.

Number identifying the output options:

1 = no correct record output.

2 == correct record output written in binary mode.

3 == correct record output written in BCD mode.

4 == correct record output punched.

