Fundamentally, these methods use the derivative as an estimate
of the slope of the function at any time and predict the next
value of the function as a linear excursion with this slope.

At the new value, prediction backwards is made and appropriate
corrections employed if the original and predicted values do not
agree. The correction procedure varies among the several methods,
but they are all designed to converge upon the true value of the
function within some stated accuracy limits.

Stability Analysis

There is an important analytic area that can be pursued when
analytic solutions for the system model cannot be found. This is
the matter of system stability. It may be of interest to discover
how the system will behave if it reaches the neighborhood of an
equilibrium point. An equilibrium point is defined as the set of
values of the system variables at which the rates of change are
zero—and thus a point at which the system does not change over
time. However, since there is always "noise” in any real system,
displacements from the equilibrium point will generally occur.
If after displacement, the system returns to the equilibrium point,
it is said to be stable; if it diverges, it is unstable; and if it remains
in the neighborhood of the point (say, oscillates about it) it is
marginally stable. A great deal of information about system
behavior can be obtained from an analysis of its stability at all
equilibrium points.

To investigate stability, one furst solves for the values of the
equilibrium points by using the simultaneous equations:

d

»««a’é‘tf- =f; (x,t) =0
dxe

=8 ¢ | =
& 2 (X1, t) 0
d)(n

—-— = £, (%, =
d (x,t) =0
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Then, a linearized model for small perturbations, Axi, in the

xi is obtained by constructing the Jacobean matrix:

cl I R R I A
dt d X1 X2 Xn X
[ daxs of: of: .afz /
“dr ox1 dxe O Xa f bz
) . . . L.
dAXn afn afn L afn A
dt %1 dxe d%n | Xe

and evaluating it at the equilibrium point. The behavior of the
system in the neighborhood of the equilibrium point is equivalent
to that of the linearized model.

To illustrate, consider the Lotka-Volterra model:

—%}g« = f; = (b-dP)H bd,cm > 0
P
-—%ut-—— == f2 = (rH-m)P
Equilibrium points Ei and Ez are at:
(b-dP)H=0
(tH-m)P=0
b
P= -
P [H=0 - d
1. on 2. m

The Jacobean matrix is:
b-dP -dH

J =
P tH-m

at Ex: ] =



The eigenvalues are:
(b4) (n2) =0
A2 — (b—m) Abm =0
Ay == b Ao == -mi
Thus, Axy =cie” + cze™

_mt

Axp = (e + cme

where the ¢, depend upon the initial values of Axi and Axe.
Since each function contains a term of the form ™, an exponential
that grows with time, the Ax: become greater as time increases,
and the system diverges from the equilibrium point. Thus, we are
concerned with an unstable equilibrium.

At the second equilibrium point, E:, the following result is
obtained:

-md
0 -
14
J poed
Kl
d °
The eigenvalues are:
a2 N!ng.,.. .._j.bm [
+ g =0
A2+ mb=0
:\1 puiund + vV -mE
X = — V-mb

This is a different case from any of the previous ones. Since
the quantity under the radical is negative, the eigenvalues are
complex conjugates and the solution is

Axy = Cq exp(\/r-n_i; it) + Cizexp(— Vmb it)
Axz = Carexp(Vmb it) 4+ Co exp(— Vmb it)

where i is the imaginary value V-T. By an equation of Euler,
complex conjugate exponentials can be reduced to the real func-
tions:
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Axy = ¢y sin VBm  t + ciecos VBm t
AXe == Cg1 Sin \/Em t + Ca2COS V bm t

These are oscillating functions and imply that the disturbance
neither grows nor decays, but that the system oscillates about the
equilibrium point. Thus, we have discovered that there is some
neighborhood in which this system demonstrates marginal stability.
In general, the non-linear system will be unstable if any of the
eigenvalues of the linearized system has a positive real part, stable
if all possess negative real parts, and marginally stable if any
(complex conjugate) roots are purely imaginary. The presence
of roots with positive real parts can be ascertained from applica-
tion of Routh-Horwitz criteria to the polynomial equation, elimi-
nating the need to solve the equation for the values of the roots.
This and other methods for examining system stability can be
found in Ogata (1967) and Bowers and Schultheiss (1958).

System Identification
by Perturbation

A particularly powerful method for discovering the form of
the system model has resulted from the development of linear
system theory. Basically, the time response of a linear system to a
diagnostic perturbation contains all the information necessary to
identify the system model. This is true only for linear systems.
However, for many purposes, such as prediction, or even regula-
tion, a linear model will yield sufficient accuracy, and the appro-
priate linear model (for some operating range) can be con-
structed in this way.

There are three diagnostic perturbations: the impulse, step,
and sine functions. The second is the most appropriate for bio-
logical population systems and consists of an abrupt change in.
the level of a system variable. The behavior of the system subse-
quent to this abrupt change is examined, and from the graphical
or numerical results the values of exponents and constants can
be calculated. These imply certain relationships among the basic
variables and define these relationships uniquely in a differential
equation model. An example of a step function in a predator-
prey system would consist of an abrupt addition of a given
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aumber of either organism. A negative step could also be em-
ployed, such as the removal of some of the predators in a plant-

herbivore-predator system.
There is a lacge number of other diagnostic methods for model

identification that derive from systems theory—many of which
have not yet been employed in biological investigation. A par-
ticulacly interesting introduction to the subject is contained in

Milsum (1966).

Conclusion

The intent of this paper has been to provide a brief introduc-
tion to constructing and solving dynamic population models. Some
examples have been presented to illustrate the basic approach. A
great deal has been left out. No mention has been made of
stochastic elements in such models, nor has anything been said
about the utilization of the models for pragmatic purposes. Em-
phasis has been placed on how the model reveals the structure of
the system, which will be the principal aim of many investigators.
Those of us who are interested in resource management and opti-
mization of yield, or the subsidiary problem of minimization of
damage, nced system models for this purpose. Given good popu-
lation system models, we can explore in a meaningful way modi-
hcation of the destructive effects of the pest, or devise an optimum
strategy to obtain yields in spite of its effects. This is another
topic, requiring for its solution models of a different organiza-
tional system, but which is no different in concept from the prob-
lems discussed above. The point that needs general recognition
from population dynamicists is that it is both necessary and
relatively easy to approach their systems from a dynamic point
of view.
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MODELING FOREST
INSECT POPULATIONS—
THE STOCHASTIC APPROACH

by R. C. CHAPMAN, Mathematical Statistician, Northeast-
ern Forest Experiment Station, Forest Service, U. S. Depart-
ment of Agriculture, Upper Darby, Pennsylvania.

O RDINARILY, phenomena such as growth of a population
or changes in the qualitative character of a population are
not open to immediate observation in all their details. Usually
we observe only a few external manifestations of the phenome-
non, t.e. the inputs and outputs of a black box.

When we view a complex phenomenon—complex in the sense
that we do not fully understand what is occurring—we attempt
to explain it by using mechanisms that, through experience or
imagination, appear simple or elementary. These simple mecha-
nisms we use to explain a phenomenon are sometimes, perhaps
often, only apparently simple.

This paper is not a review of probability theory nor an advoca-
tion for the general use of probability techniques by entomolo-
gists. Rather, it is an attempt to demonstrate the utility and the
power of probabilistic models. Probabilistic and deterministic
models will be contrasted to illustrate the fundamental differences
between the two types of mathematical models. The level and
tone of the presentation is a compromise between a desire for
some mathematical sophistication and a realization that such
sophistication would completely negate the utility of this paper
as an introduction for the non-mathematically inclined.

A model may be defined as a set of hypotheses representing a
class of phenomena as a particular combination of elementary
mechanisms. Thus, a model is a hypothetical structure composed
of elementary mechanisms joined by a set of hypothesized rela-
tionships.

The introduction of mathematics into the modeling process
represents a logical step in the evolution of a science. Mathemati-
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cal models have assumed some acceptance because: (1) the sym-
bols are easily manipulated; (2) definition is precise ie., lack of
ambiguity; and (3) subjective judgment is reduced in the evalua-
tion of the hypothesized relationship. In the remainder of the
paper, a model will always refer to a mathematical model.

The clementary mechanisms that we invoke in building the
structure of the model may be deterministic or probabilistic. A
model is deterministic 1f a particular mechanism implies that
every variable in the system is a function of the others.

For example, consider Thompson's (1922) model for a para-
site-host system. The fraction of the host population attacked by
the t* generation is

Rt
f = p

o AR=RY
P @R=—1)
where

f = fraction of host population attacked by the t™ generation.

p = number of parasites initially present t = 0.

h = number of hosts initially present t = 0.

t = generation.

R = ratio of reproductive power of parasite to host.

Knowing any four of the five parameters of the model we can
solve for the fifth. The model states that beginning with the
same number of hosts, h, parasite, p, and ratio of reproductive
power R at the t™ generation we will always have the same
fraction f of host population parasitized.

If at least one variable is a chance or random variable then the
model is probabilistic. For example, consider a stationary popu-
lation subject to chance immigration. The immigrants after arriv-
ing remain in the population. The number of individuals in the
population at time t is given by

Ne=N.+ L
where
N. = number of individuals in the population initially, t = 0.
I = number of individuals who have immigrated at or before
time t.
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Nt = number of individuals in the population at time t.

The number of individuals in the population at time t is a
random variable because the number of immigrants at or before
time t is subject to chance variation. The term random implies
that the process under consideration (immigration) is in some
sense probabilistic.

In the last 50 years deterministic models have been developed
for a wide variety of biological phenomena. The increasing de-
velopment of probabilistic models in the past twenty years is
due to the failure of deterministic models to provide a description
of all the phenomena one may wish to study. Deterministic
models fail to take into account the role of chance fluctuations
in the development of the process. For example, the competition
experiments of Park (1948) with flour beetles showed that under
a given set of initial conditions the same species did not always
survive,

The main appeal of deterministic models appears to lie in their
relative mathematical simplicity not in their philosophical founda-
tion. Any debate between the advocates of deterministic and
probabilistic models revolves around the economics of model
construction and analysis, not on the theoretical applicability of
the stochastic model. The advocates of deterministic models find
some support for their position in the fact that sometimes when
a population is large, a description of the deterministic type is
equal to the expected value of the probabilistic model.

Both deterministic and stochastic models must satisfy Neyman's
{(1960) criteria of “broad applicability” and “identifiability of
details”. Broad applicability refers to “"the possibility of deducing
from the model verifiable consequences relating to categories of
observation other than those for which the model was con-
structed.” Identifiability of details refers to identifying in the
empirical world elements that correspond to hypothetical entities
in the model.

The subsequent comparison of probabilistic and deterministic
models closely follows a discussion by Lucas (1964).

A probabilistic model is defined by the relation

PelY<y}=(4. X5 y)
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where

Y is arandom variable and
F is a probability distribution with arguments y and column
vector parameters ¢ and X
¥ is a vector that is invariant over a class k of situations
X is a vector that varies over the class k.
For example, consider the familiar normal linear regression
mode]

1

f ,a,ﬁvcz, e [ —— —a — B z 02]
(v x) — |ow (v x) /2

Pe [Y <y} :_[y £(y. « B, o* x)dy

where f(y, «, B, o, x) is the probability that the random variable
Y assumes a value y.

It will be assured that the probabilistic elements are written
in the form

Y = A(Ef, 5) 4+ &

The subscript tilde ~ denotes a column vector. Thus X is a
column vector [Xi, X=, . . . xa} having n elements.

The random variable X will be treated as an input or inde-

pendent variable and y will be considered as an output or de-
pendent variable.

Ay, X) = fy dy F(¢, X. y)

—~ o0
= E(y | ¢. X)
This is the expected value or mean of the random variable.
The probability distribution of ¢, the deviation from the
expected value, is given by
Pu(e<e) = F(v,X. e+ A(4. X))
where e =y — A (f })
The expected value of the deviation 15 zero,
E(ew. X) = E(r-3 (. X) 0. X)
=E(yy. X)-2 (4. X)
= 0
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The probabilistic model has deterministic aspects, the form of
the probability distribution and the values taken on by ¢ and X.
Consider a deterministic model, i.e. a model with no chance
mechanism, of the form
r=3*(¢*X)
where y corresponds to the expected value of the output variable y.

Because real data never follow v exactly an additional term e*
is needed to account for the deviations from the model. The
model becomes

y=y+e*=a¥ (§*X) +e*
In order to make a probability statement about the deviation, it
is assumed that £* follows some cumulative density function
Pafe*<e*] = F*(,X.y)
where B is a column vector of parameters invariant over the class
of situations. The column vector of parameters B is used instead
of ¢ because often very simple assumptions are made about F*.
For convenience «* is often assumed to follow a normal distribu-
tion or some other well tabled distribution. The assumption that
E(e*BX) =0
is not always justified. For example, consider the use of the
deterministic model
}’3X1ﬁl+€*
when the “true” model is in fact
y=XiB1+XoB2te
The deviation * is obviously equal to x2 82 + € and its expected
value is
T(e*18,X,)= X
not zero unless B2 = 0.

Although A* and ¢* may have the same form as A and ¢
this is not always so. In the deterministic Lotka-Volterra equations
the derivatives of the first moments are functions of products of
means. In the stochastic analogy developed by Chiang (1954) the
derivatives of the first moments are functions of means of prod-
ucts.

The difference between the two types of models revolves
around the role of the probabilistic element in the model. In the
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stochastic model the probabilistic element is an inteém! part 6€
the model. In the deterministic model the probabilistic element is
added because of the nature of the real world. It is not manda-
tory to attach a probabilistic interpretation to the deviations.
There is nothing to prevent a researcher from using the sum of
squared deviations from the model or any other statistic to
classify a model as good, bad, or indifferent. Intuitively we are
inclined to say 2 model with a small sum of squared deviations
is better than a model with a larger sum of squared deviations.
But how much better> The probabilistic interpretation of the
deviations is an attempt to say how much better under the assump-
tions of F*, the cumulative density function assumed for e*,

For any given deterministic model it is generally possible to
construct a variety of stochastic analogs. For example, the de-
terministic logistic does not distinguish between the situation
where the intrinsic rate of increase represents purely reproductive
growth and the situation where the intrinsic rate of increase
represents a net balance between births and deaths.

If the intrinsic rate of increase represents a purely reproductive
growth, a modified pure birth process' may be used as a stochastic
analog of the deterministic model. When the intrinsic rate of
increase represents a net balance between births and deaths a
modified birth-death process® may be used as a stochastic analog.

In the preceding paragraph, two stochastic processes were
introduced. A stochastic process may be defined as a process that
may occur in the real world that has some probabilistic element
involved in its structure. The phrase conventionally refers not

YA pure birth process is a stochastic process in which it is assumed that each
individual in the population acts independently and is subject to a hirth rate A
It is assumed that there is no death, no migration. and the population and the
environment are homogeneous. In the pure birth process the number of births in
a population of size N(t) at time t is assumed to be N{t} A In the modified pure
birth process the number of births in the population at time t 18 AN(t) (K—N(1)),
where K is the carrying capacity of the environment,

As the population approaches the carrying capacity, the birnth rate declines.

? A simple birth-death process assumes that a population composed of homoge-
neous individuals acting independently is subject to a birth rate A and a death
rate A. The modified birth-death process assumes that the population fluctuates
between two limits Ny and No N, < Ni where N: corresponds to the saturation
level. As the population approaches N. the death rate increases and the birth rate
decreases. The reverse is true. as the population approaches Ni.
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only to the actual process but also to its mathematical representa-
tion. The simple birth process and the birth-death process are
examples of an important class of stochastic processes known as
Markov processes. A Markov process is a process with the prop-
erty that knowing the state of the system at time t, knowledge of
its past behavior does not alter the probability of any particular
future state.

Although many, if not most, biological processes are non-
Markovian the Markov assumption serves as a useful approxi-
mation in many instances. Markov-type assumptions are inherent
in the construction and analysis of many deterministic models,
such as

S=PiPsPs . . . P,
where

§ = generation survival

Pi = survival rate in the i" stage.

Curent analyses of models of this type treat survival in the i
stage as a function only of the number entering the stage and
mortality forces acting in this stage. This type of analysis ignores
the influence of past behavior or experience on sugrvival in the i*
stage.

The difference between probabilistic and deterministic models
sometimes becomes apparent when one considers the ultimate
extinction of the population. In the simple birth-death model
with birth rate A and the death rate u the probability of ultimate
extinction is

lim =
T— = Pu |X(t) =0]|Naw :,:eo] =1ifA<p
O0if x>
where

N (o) =the number of individuals in the population at time zero

X(t) = the number of individuals in the population at time t.
If birth rate is less than the death rate, extinction is expected.
It 1s surprising, however, that when the two vital rates are equal,
extinction is also certain® Although extinction is certain when

YA mathematical proof of this phonomenon may be obtained by considering the
gambler's ruin probiem. (Feller 1957)

79



the vital rates are equal, the expected ultimate population size is
N(0). This apparent anomaly occurs because although a few
populations will rise to very high values, most populations will
be extinguished at very low values so that a constant mean is
achieved. Bailey (1964) comments that this result indicates that
fallacy of attaching too much attention to stochastic mean values
even when they exactly equal the corresponding deterministic
quantities.

A population in which the intrinsic rate of increase represents
a net balance of births and deaths may approach the saturation
level K, by (1) increasing the mortality and preserving a constant
mortality, or (2) decreasing fertility and maintaining a constant
mortality, or (3) by some combination of (1) and (2). There-
fore, the approach toward the saturation level may be represented
by a variety of models.

Leslie (1958) investigated the two extreme situations for
populations with stable age structures. He concluded that the
imposition of a force of mortality independent of the age distri-
bution, when fertility remains constant and mortality is a linear
function of the number present at time t, will result in sigmoid
population growth. If the initial population is not szable there
may be considerable departures from the logistic, although popu-
lation growth will still follow a sigmoid form. The age structure
models Leslie studied show dampened oscillations. Bartlett (1957)
pointed out that under certain conditions the modified stochastic
birth-death process continued to show undampened fluctuations
with an amplitude depending on the population size. Feller
(1939) showed that in the stochastic version of the logistic, fluc-
tuations have in the main the effect of diminishing the rate of
population growth.

The subsequent paragraphs are devoted to the development of
stochastic models for populations subject only to the risk of death.
The first model illustrates the theoretical assumptions and the
methodology of model construction. An example of the applica-
bility of the stochastic model to a particular entomological
phenomenon is shown. The problem of competing risks is briefly
considered.
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Assume that a2 homogeneous isolated population is subject only
to the risk of death. At time t = 0 the population is composed of
N(0) individuals. Each individual acts independently and is
subject to the same risk of death. the probability of death of an
individual in the interval (t. t + 3 t) is
Pe (death in the interval (t. c+ 3 t) aliveat t) = y 30 + 0(t)
where vt is the force of mortality, 1.e. instantaneous death rate.

The probability of being alive at time t + A t is given by

Pa(t + 2 t) = Pa(t) * (1 — 7d: + 0())
where
Pz (t) = the probability of being alive at time t
1—ydi+ 0(A:) = the probability of surviving the interval
(t.t 4 A)

After some mathematical manipulations, which may be found
in any elementary text on stochastic processes (for example
Parzon 1962), we obtain

t

Pn(t) = exp(— f y:dt)
(]

as the probability of survival to time t.
The average or expected number of individuals alive at time
t is
E(N(t)) = N(0) * Pr(t)

t
= N(0) * exp(— [ rd)

If the force of mortality is constant the expected number of
individuals alive at time t is N(0) = exp(—rt).

Utilizing the assumptions that each member of the population
acts independently and is subject to the same force of mortality
v« we obtain

N(o) —k [N(o) alive]
individuals|at time |

Malive at t — 0
itime t

(N(o)}K) K

N(o)
Pe(t) = (1-Px(t))

N(o) K

as the probability at time t exactly (N(0) — K) individuals
will be alive. The form of this equation is recognizable as the
binominal probability law.
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Let us now consider the hunger component of the predation
model of Holling (1966) as a rea! life phenomenon.

H =HK(l-exp(— AD * TF))
where

H =hunger level in grams of food to satiate an insect at any

given time.

HK=maximum capacity of the gut.

AD=rate of digestion.

TF =time without food from complete satiation.

This model can be used to show the applicability of the proba-
bilistic approach. For simplicity I have reformulated the model
in terms of food remaining in the gut,
R=HK — H

= HK * exp[—(AD*TF)}
The revised model can be recognized as the expected number of
units remaining in a population subject to a constant rate of
decrease, AD. The probabilistic formulation of Holling's model
not only provides the probabilities of occurence but also indicates
the assumptions that are implicit in the model.

Let us now assumne that an isolated homogeneous population
is subject to risk of death by three mortality factors Ry, Rz and Rs®
The factors are assumed to be acting contemporaneously on the
entire population, Associated with each factor R: is a force of
mortality v-.. The sum of the individual forces of mortality ys
is p7, the total force of mortality.

In the interval (t, t -+ r) the ratio

Yri

-
is independent of time = but is a function of the interval and the
mortality factor Ri. Therefore, the absolute magnitude of cause-
specific mortality may vary at any instant subject only to the
restriction that it remain a constant proportion of the total force
of mortality . throughout the interval (t, t + r}.

= It

*The wodel for competing risk was developed by C, L. Chiang (1960): Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Vol 4. .13 pp.
Univ. of California Press. 1961,
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Occasionally, we may be interested in the influence of a single
mortality factor upon a population in the absence of competing
risks—for example, how many individuals would be killed if a
predator were the only mortality factor operating. Except under
very special circumstances, this information is not available from
field records. Commonly we observe mortality in populations
subject to a multitude of mortality factors. If we wish to de-
termine the mortality associated with a specific factor operating
in the absence of other causes of mortality, we must build some
theoretical relationship between the crude probability of death
from factor i operating in the presence of other factors and the
net probability of death from factor i operating in the absence of
other mortality factors.

The simple death process discussed in the previous paragraphs
is used to develop a theoretical relationship utilizing the assump-
tions that forces of mortality are additive and that within the

interval (t, t + ) the ratio }-;;2- is constant.
The crude probability of death from factor i in the interval
(L t+1)is
t+1 T
Qu = f[exp -—(fmdt)] yridr
t t

where exp(w f Md,)is the probability of survival from t to 7,

t
and vy« dr is the instantaneous probability of death from factor i

at time .
The net probability of death from factor i in the interval
(t, t + 1) when it is the only factor operating is
t+-1
qu =1 — exp [——f yridr}
t

If the assumption of a constant relative risk is introduced we

obtain t41 P
st = :;“'A.:z" f {exp - f M dt} stedr
tr t t
Y
=

r
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as the relationship between the crude probability of death from
factor i in the interval (t, t — 1), the forces of mortality yu and
# and the probability of death in the interval q.. The probability
of death in the interval is of course equal to the sum of the crude
probabilities of death.

The relationship between the net and crude probability of
death from factor i under the assamptions of the model can now
be obtained:

t+1
Y7
qz(:l~exp[~w f M:dz]
nr
@

Although the assumptions of the model for competing risks
may be unrealistic for many populations, the model shows what
assumptions are made and how they are used to build the desired
relationship. The next step in the model building process is testing
the adequacy of the model.

This particular mode]l was selected for review because it has
some relevance to life table construction and mortality models
currently employed in entomology.

Population dynamics, models, and systems analysis are the
magic words of quantitative forest entomology today. The suc-
cess of model building and system analysis depends on the extent
and organization of entomological kowledge. Elaborate mystical
arrays of symbols are no substitute for carefully planned field and
laboratory studies. Modeling should not only indicate possible
mechanisms but also should indicate where additional biological
knowledge is needed.

In this paper I have ignored the empirical models developed
by massive data screening programs because although they may
lead to good predictions, they are often difficult or dangerous to
interpret in terms of underlying biological mechanisms. Screening
and correlation programs are useful as fishing trips to locate
interesting areas for further study. All too often such programs
force the researcher to perform mental contortions to explain his
observed relations in terms of a biological phenomenon. Philo-

y ¢
(Qu/q,)
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sophically such an approach to model building is repugnant be-
cause it tends to nourish the belief that given sufficient data in
large enough quantities a2 computer can and will find the correct
relationship. Access to an electronic computer 1s not a substitute
for careful analytical thinking by the entomologist and statistician.

Simple models like the logistic have been very useful in biology
because the parameters are often rather insensitive to small
changes. The parameters represent a kind of average value or
balance. The parameters are a function of the intrinsic and
extrinsic factors associated with the population. Although simple
models are intuitively appealing, the interpretation of their pa-
rameters must be done with care.

BIOLOGICAL KNOWLEDGE

QUANTITATIVE ANALOGS OF
BIOLOGICAL COMPONENTS

e EXPERIMENTAL STUDIES

1
o — - QUANTITATIVE SURROGATE

— - —— & MODEL DEVELOPMENT

|
I
|
|
|
| DETERMINISTIC
|

PROCEED TO
' oS
MODIFICATION STOCHASTIC OF CO Xl
EVALUATION
MODEL INADEQUATE MODEL ADEQUATE

|

INFERENCES AND
APPLICATIONS

]
FINAL ¢
OUTPUT ¢

Figure 1.——Schematic dicgram of model-building
strategy.
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Stochastic and deterministic models were compared to show the
difference in their philosophical approach to modeling. The dis-
tinction between stochastic and deterministic models has been
somewhat blurred because sometimes the expected value of the
stochastic model is equal to the value of the deterministic model.
But this is not always true. Is the entomologist interested in
average behavior? Population explosions and extinction may be
of greater interest than average behavior. Stochastic models with
their embedded chance mechanisms appear to be more adequately
suited to the study of such biological phenomena than the more
classical deterministic models.

Because stochastic models often involve a more complex mathe-
matical formulation, the economics of model construction and
analysis must be evaluated in terms of future benefits. After it
has been decided that the population dynamics of an insect are
to be studied, the researcher must develop a strategy for model
construction and analysis. Figure 1 illustrates a stepwise strategy
that might be used for model development in forest insect popu-
lation dynamics.

The relative mathematical simplicity of deterministic models
is used to obtain an idea of the form of the interrelations of the
variables. In the strategy diagrammed in figure 1, deterministic
and stochastic models for restricted situations are initially de-
veloped for restricted situations. The restrictions are gradually
relaxed to obtain models for more general situations. For ex-
ample, initial lack of knowledge of the mode of action of preda-
tors and parasites will necessitate the use of crude submodels
until sufficient information is available to build more realistic
models.

Successful model building demands complete cooperation of
entomologist and statistician. The entomologist supplies the bio-
logical knowledge about modes of action and interrelationships.
The statistician uses the biological information to form a mathe-
matical structure.

Empirical (predictive) models and rational (mechanistic)
models, both deterministic and stochastic, are essential to the
development of good population models. The complex interre-
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lationships that we wish to understand require not only the
mathernatical and statistical ability of the statistician but also the
genius of the biologist to design the studies needed to gain deeper

msights into biological phenomena.
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SOME PRACTICAL FIELD
PROBLEMS ASSOCIATED WITH
SAMPLING OF SCARCE INSECTS

by F. B. KNIGHT, Professor of Forestry and Chairman.
Department of Forestry, The University of Michigan, Ann
Arbor, Michigan.

T IS WELL for us now to review some sampling problems

that we must face in gathering adequate field data for quanti-
tative analysis. I've never seen a plan of research that wasn't
changed to some extent once the field work commenced. Many
plans are changed drastically because the conditions in the field
just do not always provide the expected. This is why we enjoy
working with field biology problems, perhaps. I shall not attempt
to discuss all of the many practical field problems that we face.
If insect population models are to be realistic, however, the prob-
lems of sampling the natural populations must be resolved to
some extent. The sampling of scarce populations is particularly
vexing. We are often faced with budget and manpower limita-
tions, and we have difficulty in obtaining the statistical precision
we desire,

We should make a real distinction between sampling for
population dynamics research purposes and sampling for trend
prediction in surveys. The requirements for the two are completely
different. In the first we are attempting to define the real causes
of population fluctuations. This perhaps will lead to more effec-
tive control procedures either by direct or indirect means. When
sampling for trend prediction, we are involved more directly in
applied forestry. Here we want to answer the related questions—
is this population going to increase or decrease and will significant
damage occur? | believe that often there is a tendency to mix the
two approaches. Methods of trend prediction are generally de-
b‘feioped from population research data, but in application these
methods will differ somewhat from those carried out in popula-
tion research. Survey evaluation procedures must be relatively
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simple, inexpensive to apply, and fast. It is obvious that they must
also give reliable answers.

Before cdnside:ing some specific examples pertaining to survey
evaluations and sampling of scarce insects, it might be well to
comment briefly on what [ like to call “nonsense” statistics. Some
research workers become so wrapped up with the idea that every-
thing must be expressed in statistical terms that they fail to use
common sense. One good example, and a simple one, is con-
cerned with the analysis of variance. How often have you seen a
complete analysis made for a comparison of two obviously differ-
ent things? One should not waste his time making an analysis if
the differences are so striking that he knows the results before he
even starts the computations. A second type of “nonsense” sta-
tistic is as commonly seen and is much more serious. I'm afraid
the computer has added to this problem; some biologists act as
though they do not need to think if a computer is used to analyze
their data. I refer here to the computation of correlations. Lots
of things correlate. For example, in our climate the number of
letters in the spelling of the months would correlate with mean
monthly temperature. Most of the colder months have long speil-
ings, the warmer months short spellings. We can compute such a
correlation but all we end up with is nonsense. Why compute a
correlation or talk about it if it has no relevance or usefulness?
All too often the computer hands us correlations which are
mathematically correct but are biologically meaningless. If a cor-
relation cannot be defended on the basis of logic and biological
common-sense then it probably is nonsense. When correlations
are published they should be defended by sound biological reason-
ing. The computer only answers “yes” or "no” to a question. It
is up to us to do the creative part of the research; we must answer
the question “why?”

I am going back a few years in my own research to briefly
comment on population research in contrast to research on evalua-
tion methods. 1 know that all of you are familiar with sequential
sampling, and most of you are aware that sequential sampling
procedures were developed nearly 10 years ago for the Black Hills{
beetle, Dendroctonus ponderosae. You may not be aware of the
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objectives of the research that preceded the development of the
method for this insect. The major objective of the research at
that time was to develop an evaluation system for Black Hills
beetle infestations. We were interested primarily in obtaining a
practical method for measuring trends. Secondarily, we hoped to
obtain a considerable amount of information on the population
dynamics of the Black Hills beetle. We did not pin down the
major causes of population fluctuations; we did not even identify
many of them. We did develop a workable sequential sampling
method for evaluating trends. I had hoped the work would con-
tinue on the evaluation method because it does need refinement.
However, more of the work since that time has been on popula-
tion dynamics rather than evaluation procedures,

Sequential sampling is one of the better procedures to use in
predicting trends in populations. However, it is not a part of
population dynamics research. It may be a product of such
research but has very little usefulness in the research itself.

Now, to the main point, there are many problems associated
with sampling of scarce insects.

Measurement of population numbers —Often we hear com-
ments on this problem, such as, “I sampled all plots in the usual
fashion and counted no budworms, but I saw an occasional one
on other branches” or “'Between the two outbreaks of the southern
pine beetle I never saw a beetle in the entire region.”” The prob-
lem is simply presented. How can we give statistics on populations
without numbers? Granted, a greater amount of sampling would
eventually give us quantitative data, but usually we are limited
by the time and manpower available.

Identification of mortality factors—When we do have a popu-
lation that is measurable, we often try to evaluate the effects of
mortality factors. By a great effort. perhaps, we collect 30 larvae
and we find that 12 or 40 percent of them are parasitized. Statisti-
cally it is correct, and it fills in a slot in the life table. However,
any biologist who considered that value for parasitism a valid one
would be dreaming. A second collection of 20 larvae might be 90
percent parasitized. Which is correct for the population? The
answer is neither one; we just cannot get precise measurements of
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population reductions with such meager samples. Then, if we add
to this the need for separation of mortality factors, perhaps eight
or ten parasite species, we are indeed on shaky ground.

Destruction of population by sampling.—When populations
become scarce they are not spatially distributed in the same fash-
ion for all species. This is not a very profound statement because
the same is true for outbreak populations. However, the differ-
ences may be much more striking among scarce insects. Some of
them, such as bark beetles, are fantastically clumped. One Black
Hills beetle infested tree in two sections of land is not uncommon.
The individual infested tree often contains as many beetles as the
average tree in an outbreak situation. Thus, the insects present
are confined to micro-portions of their total hahitat. These favor-
able locations may not be unique; there may be many other
favorable niches not occupied in the surrounding forests.

Knowing our populations, we are somctimes able to locate
clumps of plentiful insects; but if we concentrate our sampling
on these clumps, we cause a real change in that population. Our
destructive sampling procedures may be the major mortality
factor affecting that population! When populations are large we
can assume that our sampling has no affect on the population but
this is not so with scarce populations.

The foregoing are three of the real problems we face when
attempting to sample scarce insects. What can we do? One fact
is apparent, we just will not produce the comparative quantitative
data that our analyses ask for. We are usually day-dreaming if
we think we can. Yet we are working on a key part of the popu-
lation dynamics problem and we need reliable information.

I believe the answer to the problem is to take a completely
different approach. This approach is not entirely satisfactory to
those who insist upon exact data that can be subjected to mathe-
matical analysis. The approach also requires a patient and very
talented research man. I am referring to direct careful observa-
tions followed by thorough subjective analyses based on a limited
amount of actual data.

In some ways we have gone toc far in our enthusiasm for
exact quantitative data to support all statements. Some feld
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research workers do not know how to make observations, they
just never have done this kind of work. Many even feel guilty if
they sit in one spot and record nothing for fifteen minutes. The
researcher must spend hours observing and recording what he
sees, especially when studying scarce insects, When he has com-
pleted his work and reports his results those results must be
accepted as reliable. He should not be given the thumbs down
comment, “Where are your data to prove it.” That question is
often the greatest deterrent to creative work that can be expressed.
I don't advocate complete acceptance of every unsupported belief
of the researcher by any means, but conclusions based on long
hours of close observation are not just unsupported statements. In
most cases quantitative data will be recorded but often not enough
for the statistical precision desired. It is the responsibility of the
research worker to point out clearly that he is working with sparse
populations and must rely on subjectiva analyses. Then the re-
viewer should respect the judgment of the researcher (provided
the work has been truly thorough).

Jack pine budworm research—To illustrate the preceding com-
ments on the uscfulness of observations, we will briefly consider
two projects. The first concerns studies on the jack pine budworm,
Choristoneura pinus. In this project there were ample budworms
for population measurement, but problems developed when we
attempted to analyze predation by birds. In particular, we found
it possible to get quantitative information on the resident birds.
but impossible to assess the effect of non-resident individuals. We
found by observation and some measurements that non-resident
birds were consuming large quantities of budworms. These birds
were mainly blackbirds, including the red-winged blackbirds,
Brewer's blackbird and the cowbird. In one area a flock of 700
to 1,000 of these birds was feeding on budworms during the late
larval and pupal stages. If normal sampling with minimal time
for observation had been maintained, we possibly would not have
noticed their activity. These birds were the major factor con-
trolling populations of the budworm in the one area. This area
was a special one in that the jack pine site was only about 600
acres in extent and was surrounded by lowlying areas where many
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blackbirds were nesting. Nevertheless, the findings illustrate the
point that observational data are vital to research.

Saperda inornata and Oberea schaumii—The second project
concerns two insects which are apparently scarce at all times. They
also occupy the same ecological niche but exist at such low levels
in nature that they never seem to compete. Both are regulated
at low levels by factors other than food availability. These insects
infest aspen twigs or suckers in diameters ranging from 1/ to 34
inch. Larvae of both insects bore in the twigs. Adults can be
found from June until August, although the emergence period
of both is completed in June. Their life cycles in the twigs differ.
Saperda inornata develops in 1 or 2 years while Oberea schaumii
requires 3 years from egg laying to adult emergence.

Our data on suckers infested illustrate the scarcity of the
insects. These data on six areas involve careful inspection of
13,500 suckers each year; 2,250 in each area each year. Egg niche
construction data are presented in table 1. The data for Saperda
inornata are in terms of galls because this insect may lay more
than one egg at a location. Biologically a gall in Saperda is
equivalent to an egg niche in Oberea because it is rare for more
than one adult to emerge from a single gall.

These data when carefully analyzed illustrate our need for

Toble 1.—Number of egg niches or galls constructed by Oberea
schaumii and Saperda inornats on aspen suckers, 1964 to 1966

Egg Niches of Oberea Galls of Saperda

Area 19641 1965 1966 1964 1965 1966
1 34 12 158 2 24 63
2 308 159 390 22 73 73
3 163 146 212 38 50 122
4 92 S0 230 37 24 100
> —_ 33 148 —— i8 162
6

- 55 262 — 12 21

'In 1964 onlv 4 areas with 1,500 <uckers in each were surveyed. The number was
increased to G in 1965 and the sample was increased to 2,250 suckers in each area.
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observation. In 1964 the amount of egg production was very low
among the Saperda adults. The reason might have been apparent
two years prior. We found it extremely difficult to find emerging
Saperda adults in the spring of 1964. Oberea adults on the other
hand were as common as in 1965 and 1966.

In 1965 we increased the sample size (1,500 to 2,250 suckers)
and added two areas (5 and 6). Our counts dropped in the Obereu
record but increased significantly in the Saperda tecord. Why?
The emergence of adults of Oberea was as large as in 1964 and
Saperda adults were much more common. They seemed as com-
mon as for both species in 1966. The answer to the question was
revealed in our rearing studies in the field. The weather in 1965
was adverse. On two June dates in 1965 temperatures overnight
reached lows below 25°F. About half of the adults died in our
cages. Daytime temperatures through much of June and July
were below normal.

In 1966, egg production of both species was high. Again weather
was responsible. We had warm temperatures and very little rain
throughout the egg laying period.

Only one life table has been completed for the tagged niches.
The Saperda galls tagged in 1964 were removed after emergence
was complete in June 1966. One Saperda adult emerged. This was
certainly a small number on which to base many conclusions. Qur
data for the remainder of the study involves larger numbers but
we know that emergence numbers will not be large. Therefore,
we must rely on much observational information, with some
quantitative data to support our conclusions.

I have not attempted here to describe procedures for studying
populations of scarce insects. You are all well aware that different
techniques are required in handling each problem encountered.
We must study such insects and should not give up when the
problems seem insurmountable.

We must keep our perspective in population dynamics rescarch.
We may enjoy studying insects but just the study of insects is not
enough because our primary aim must be to produce healthy
{orests with a minimum of damage by insects. Population dy-
namics models must take in account the condition of the host tree
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which is often the most important factor involved. I am very
suspicious of models which revolve around the insect, its para-
sites and predators, and climatic factors associated with changes
in numbers. The two most important variables are the insect and
the host. We must thoroughly understand the ecology of both if
we are to solve the complex population problems ahead of us.

Finally, let’s be critical of our own work but at the same time
be willing and eager to accept new ideas and approaches suggested
by others. Above all, we must take a few minutes each day to sit
on that stump and observe what is happening.
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QUALITY CONTROL
IN ENTOMOLOGICAL SAMPLING

{ Abstract)

by C. J. DeMARS, JR., Entomologist, Pacific Southwest
Forest and Range Experiment Station, Forest Service, U. S.
Department of Agriculture, Berkeley, California.

HE USEFULNESS of any sampling program depends upon

(1) a clear idea of the question to be answered, (2) a con-
sideration of the various elements which enter into effective sam-
pling, and (3) a means of analyzing the data when collected.

The necessity of phrasing the right question seems so elemen-
tary when you see it written out, but it is the heart of the matter
of getting started. The kind of question asked is the difference
between the EXPERIMENTAL approach and the ANALYTI-
CAL approach. Unfortunately, we are often embarked on an
analytical mission equipped with only experimental tools.

The point of all population sampling, brood mortality measure-
ment, population trend estimation, etc., should be to reach a de-
cision about some hypothesis, or at least to frame one. We sample
because we want to answer some question. The sessions which
preceded this one presented many questions. When these are
asked about field situations, they are answered by making sample
estimates of some population parameter. Therefore, sampling is
an important tool to be used in field work. Again, the point of
sampling though, must be to answer our entomological or ecologi-
cal question, not just to collect data.

The final analysis of these data, once obtained, is a huge prob-
lem area. It lends itself to treatment at a number of levels -— graph
plotting, “"t" tests, analysis of variance. regression analysis, and
other even more sophisticated techniques. These topics I will leave
to those more competent than 1 am in statistics.

It is a consideration of the various elements which enter into
effective sampling to which I will address myself — the accuracy,
precision, efficiency, biological relevance, and ecological integrity
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of the system. I will first define and discuss what is meant by each
of these, and then I will try to illustrate how these problems can
be approached with examples from research.

The Problem

At the onset I would like to emphasize that the development
of an effective sampling system lies in striking a balance between
these various elements. There is often no perfect solution; I would
venture to say that there is never a perfect solution. The key is
balance.

Taking these elements from the top we have:

(2) Accuracy—Human in nature, measured by correlation be-
tween different workers or different methods of estimating the
same characteristics. Error here results from fatigue, careless-
ness, poor instruction, confusion about borderline case deci-
sions, etc.

(b) Precision—Statistical in nature, measured by sampling error,
used in determining the sample size required to estimate 2
mean to a certain degree of confidence.

(¢} Efficiency—FEconomic in nature, involves matching resources
to statistical needs for optimal effort.

(d) Biological relevance—Biological in nature. Does the sample
unit selected and its attribute—the thing counted, measured,
identified, pickled, or what have you—have relevance to the
question asked ? Are you measuring the right thing? And, if so,
is its character influenced by the size or shape of the sample
unit chosen?

(e) Ecological integrity—FEcological and statistical in nature.
Does the definition of the sampling universe coincide (overlap,
if you will) with the ecological “universe”? Are you looking at
all of the relevant parts of the system you are examining?

The Approach (with reference to real sampling problems).

(a) Accuracy.—Dissection vs. radiograph analysis. Comparison
of observers. Tramning *
(b) Precision.—Analysis of variance of brood density measure-
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ments over the sampling universe **

(¢) Efficiency—What size sample unit 7**

(d) Biological relerance—The effect of plot size on the variance:
mean relationship. SAMSIM-~a computer sampling simulator.

(e) Ecological integrity—A critique of single parameter meas-
urement.

* The material discussed is published in Canadian Entomologist 95 (10}
1112-1116.

*# The material discussed iy published in chapters 5. 7, and 10 of "Development
of techniques to investigate the dvnamics of western pine beetle populations with
preliminary observations na the cause of popalation fuctuations {Dendructonss
brevicomis LeConte: Celeoptera: Scolvtidae).” Hilgardia {in press). R. W, Stark
and D. L. Dahlsten, ed.
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