portant at this stage among sparse populations. The survival
rate of dense populations of the female pupae varied primarily
in response to ichneumonids and disease. Variation in the
survival rate of the instar I- III larvae was probably primarily
a function of variation in the dispersion rate of the newly
hatched larvae.

e An index of disease incidence among instar IV - VI larvae
was a curvilinear function of insect density, a linear function
of precipitation during June, a linear function of the percent
of swamp white oak in the overstory, and a function of an
interaction between density and precipitation. Several other
variables (the apparent survival rate of instar I-1II Rrvae;
the proportion of the female pupae killed by ichneumonids;
and the number of eggs deposited per adult female) were
curvilinear functions of insect density.

e A generation model was developed that describes density at
the beginning of a second generation as a function of the
environmental variables associated with the above mortality-
causing factors. This model was tested against an independent
body of data with some success.

This information, with. more compiete details and interpretive
discussion, has now been published?

A study was begun on sparse, stable gypsy moth populations
in 1965, and continued in 1966 and 1967. This work began on
the assumptions that: (1) variation in the rate of vertebrate
predation is m:inly determined by the location of the larvae
within the environment when the predators are foraging for food;
and (2) larval distribution in sparse populations is mainly de-
termined by the distribution and quality of resting places, which
the insect uses during daylight. Some of our combined 1965 and
1966 results are summarized in tables 5 and 6. These results
support the above assumptions.

An approximate mean value life table is shown for the 1965-66
data (table 7).

®Campbell, R. W. THE ANALYSIS OF NUMERICAL CHANGE IN GYPSY MOTH
POPULATIONS. Forest Sci, Monogr. 15, 33 pp. 1967.
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Tabfe 5 —Relationship between number of bark flaps per 0.01-acre

plot and number of adult gypsy moths produced

Number of bark Number of Total Adults
flaps per plot plots observed adults per plot
4] 280 6 02
1 77 4 05
2-3 70 6 09
4 and ovet 56 15 27

Table 6.—Relationship between pupal location, pupal sex, and
mortality rate; and between pupal sex and mortality rate from

vertebrate predation

Pupal - Mortality from
location Number found Mortality rate vertebrates
88 99 88 99 83 Q9
Back flaps 64 27 78 85 20 - 41

Other 71 83 .87 95 .56 86

Table 7.—life table typical of sparse gypsy moth populations
northeastern Connecticut

in

% Ix dxf dx 100qgx
Number Factor Number dxas
Age alive at resfpomiblc dying  percent
. interval beginning of x or dx during x  of Ix
Eggs ' 550 Parcasites 82.5 15
Other 82.5 15
# Total 165.0 30
Instars I-11I 385 Dispersion, etc. 142.5 37
Instars IV-VI 242.5 Deer mice 48.5 20
Parasites and Disease 12,1 5
Other 167.3 69
Total 227.9 94
Pre-pupae 14.6 Predators, etc. 2.9 20
Pupae 11.7 Vertebrate predators 9.8 84
Other 0.5 4
Total 10.3 88
Adults 1.4 Sex(8:R=30:70) 1.0 70
Adult ¢ @ 0.4 — — —
Generation N — 549.6 99.93
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METHODS OF DEVELOPING
LARGE-SCALE SYSTEMS MODELS

by K. E. F. WATT, Department of Zoology, University of

California, Davis, California.

HEN A MATHEMATICAL model for a complex process

is constructed, instead of merely selecting an empirical
formula useful for interpolation—as in regression analysis—we
try to write one or more differential, difference, or difference-
differential equations based on insight into the mechanics of the
process under study. Before discussing the methods for building
large models, the differences between these three kinds of equa-
tions will be explained.

Differential Equations

Differential equations arise whenever a rate of change of some
variable with respect to another can be expressed in terms of a
continuous set of variate values of one or more other variables.
Consider, for example, the simple attack equation (Watr 1959)
in which

Ni represents numbers attacked,

No represents numbers vulnerable to attack,

represents the numbers of attackers,
a, b and K are constants, and all numbers have been measured

1n the same untverse,

dNa

“dNo

This is a differential equation, because the variables P and Na
are assumed to be able to vary continuously. The notion of differ-
ential equations can in fact be generalized considerably to include
accelerations and higher-order derivatives, squares of derivatives

- = aP“” (PK‘NA)

or higher degrees than this, and partial differential equations, in
which there are several independent variables, as in
87, 87,
Tkt ey T
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However, the common element in all differential equations is
the notion that the variables can take any value on a continuous
scale, including non-integer values. A moment's reflection indi-
cates that such equations do not give an accurate picture in many
biological systems, unless we handle them in a special way.
Consider an animal laying eggs. It lays 8 eggs. 1 egg. 233
eggs, of 119,236 eggs, but never 6.237 eggs. Consider an area of
ground, divided up into squares 10 meters by 10 meters. If there
are 9 mice living in one such square, emigration from the square
will occur one mouse at a time, not 1.23 mice at a time. Many
biological processes have this character, in which variables can
take only discrete values. We conclude that difference equations
are often more appropriate than differential equations, or at least
differential equations must often be treated as difference equations.

Difference Equations

Difference equations are used wherever the variables take only
discrete values. For example, the differential equation for ex-
ponential growth 1s

dy |
ke rY
In contradistinction, the difference equation for exponential
growth is
‘.’k-}—l"—‘{'k _ AY
b A T T

Equation (1) states that at any instant of time. the rate of
growth in Y will be proportional to the value of Y at that instant.
Equation (2) states that the difference in magaitude of Y from
time t« to time tey: will be r times the value of Y at t.. The es
sential difference is that Y and t are assumed to vary only by
discrete (i.e., steplike) values. A book by Goldberg (1958) 1s an

excellent introduction to this field for behavioral scientists,

Difference-Differential Equations

Suppose, now, that we wished our dependent variable to be a
derivative, as in differential calculus, but our independent varia-
bles are to be treated as discrete values at some prior point in
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time. Here the exponential growth equation would take the form
dY
dt

where 7 is the period of time lag.

= Y7 (3)

No matter what type of equation is most suitable for describing
a complex system, the problem faced in all cases is that of
determining the particular structure for the model which gives
the most realistic description of the system.

In the use of large complex problems with many interaction
terms, the most convenient way to approach model construction
is by trying to split the problem into bits, so we can deal with the
bits individually. For example, suppose we know that Y, the
volume of timber grown in a forest per unit time, is a function
of 15 other variables, so that we could write

Y = f(X1, Xz .................. Xl.’i). (4)
The first step is to determine how to split (4). Do we have

(X1, Xz, Xa)
— ‘“"““E"T(S{";T_“V‘" + f ( XS ............

or Y = {f(Xl, X:, X:;,)] [f(X4. Xs, Xn,)] [f(x-; ............ Xm)}.

How to combine such component terms, or sub-models, to make
a large model will often be apparent from the following two
probability theorems.

The addition theorem. —The probability that one out of m
events, any two of which are mutually exclusive, occurs is equal
to the sum of the probabilities of the occurrence of each event
separately.

The maltiplication theorem—The probability that two stochas-
tically independent events occur together is equal to the product
of the probabilities of the occurrence of each event separately.

Given that the researcher has determined how to split his
problem into pieces, how does he write equations for a sub-model ?
Suppose that the whole model is

Y = A B-C - D,and the sub-model we are concerned with is
A = £(Xs Xe, Xs). ()
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Table 1.—Resuit from sorting and tobulating dota to reveal form of
functional relationship

Number of cards
in sub-deck

Total

A

X
Mean Total

X, X

! 2 3
Mean Total Mean Total Mean

s !\Jl\.ll\.i\\li\l\vl\ﬂ

RR BN NN RN

- 40
— 80
— 120
— 40
80
— 120
— 40
— 80
— 120

i
W00 GO b o o B2 N B
i

and so on

To determine the particular form of (5), the analyst can sort the
data, using cards, to separate out the effects of X, Xo, Xa, by
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Figure 1.—Plot of row
meons from toble os in
Toble 1 to determine
form of functional rela-
tionship A = § [X;, X,
Xz}, In this figure, A is
plotted on the Y-oxis;
X, is plotted on the X-
axis; different values of
Xo are represented by
the different lines in each
panel, and different val-
ves of X, are represented
by the four different pan-
els {from WaH 1967}.



obtaining tabulations as in table 1. After making such a table,
he will plot families of graphs, as in figure 1. The order in which
he then develops sub-sub-models to express the effects of X;, Xo,
X3 on A will depend on the proportion of the variance in A
accounted for by each of the X's. One should begin by modelling
the effect of that independent variable for which the graph of
A on X has the steepest slope and least scatter.

The researcher will then make various assumptions about the
mode of operation of, say, Xs on A, on the basis of his under-
standing of the phenomenon, and check these by examining the
graphs. It is best to check assumptions systematically by asking
oneself a series of questions, the answers to which form a logical
branched tree. For example, using only a small list of questions,
we form a logical tree as in figure 2. The following list of ques-
tions used in figure 2 could be expanded to make a tree from
which all known equations could be derived.

1. Is dA/dXs proportional to X ?

2. Is dA/dXs proportional to A? (i.e. are we dealing with some

form of compound growth law?)

Is dA /dXs inversely proportional to X3?

4. Does dA/dXy approach zero as A approaches some upper
asymptote Amax?

5. Does dA/dXs approach infinity as X3 approaches some lower
limit X5 mun.?

Yad

Integral forms of some of the most commonly encountered
equations are given below.

A-—32 Y = a + bX

A28 Y=a+binX

A—24 InY = a +bX, ot Ys = Y™

A--16 Y =a-+ bX - cX?

A—20 Y = aX’

A—22 Y = Yoo the logisti
— T e e logistic

A-—30 Y = Yous (1 + ™)

Once an elementary equation has been chosen to describe the
cffect of X3 on A. this equation is integrated (using tables of
integrals, if nccessary), and transformed into a form suitable for
testing. Graphical testing of the validity of the equation is done
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Figure 2.——Llogical branching tree for obtaining appro-
priate differential equation to describe a set of data

{Watt, 1961).
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as follows. Suppose we decide that A — 30 describes the effect of
X2 on A, while X1 and Xz are held constant.
That is
dA :
d"}z:‘?: b (Amax - A),
and integrating,
— 10( A~ A) = bXs — 10 Anax
and since we wish first to see if b is indeed constant, this can be
rearranged to yield

Am;x
n [~

Plotting the transformed data on semi-logarithmic graph paper
will yield a straight line if (6) in fact describes the relation
between A and Xa, X: and Xz being held constant. If a straight
line is not obtained, some other elementary equation will be
needed in place of A — 30. If there is rectilinearity, we proceed to
the next step. This consists of plotting the data in terms of some
other independent variable, say X

We plot
Az
7z = m/Am, — [s against Xa
X
If plotting this transformation against X yields a straight line
parallel to the X» — axis, X2 has no significant effect on A.

QOtherwise, we know that b is not a constant, but in fact is some
function of X.. If so, we decide for X the appropriate form of
the function, and test this guess by plotting the appropriate
transformation to see if we get a straight line. For example, if
we decide that

dZ Z
X = X.
then Z = gXs,

which we test by plotting Z against X on log-log graph paper.
If we get a straight line, we know that

{“ A TIRK Q —_I
| 10 \Awax = Ay

L X

in = In g + cInX:
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In this case, we can proceed to determine the effect of Xy on A.
We do this plotting

In A&EX hane A

XXz against X1
When this step is complete, we solve the resultant form for A.
The other sub-models are handled in the same way, and finally
the whole model is put together.

Now that the basic process of cyclical model building and
testing has been explained, there are a large number of questions
on detail that need to be considered.

First, where we have made the postulate that A is a function
of Xi, X: and X, how do we determine the order in which we
will test the significance of Xi, X: and Xs? In fact, we proceed
as in stepwise multiple regression, and examine the effects of the
independent variables starting with the most important and
proceeding to the least. The reason for proceeding in this sequence
has to do with the logic of statistical testing (by leaving the least
significant variables until last we have stronger error terms with
which to test the significance of the first variables removed, using
the variance-ratio, or F test).

Second, how do we decide the fundamental structure of the
whole system model into which we incorporate terms for sub-
models, into which we have in turn built sub-sub-models? One
way of splitting up a model for a system is to structure it in terms
of time. Consider, for example, an equation to account for the
change in numbers of an insect population from one generation
to another. First, we need to define a number of symbols.

Let N Represent the density of adult insects present
immediately prior to oviposition in year t.
Nees The density of adult insects present at the
corresponding time in year t + 1.
Tien N:i.1i/N., ie. the trend index of the popu-
lation from ttot + 1.
P. The proportion of Nt consisting of females
that oviposit at t.
F. The mean fecundity of the N.P: females.
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Se The proportion of the eggs surviving to

eclosion.

S, Sn.....8w The proportion surviving of first instar lar-
vae, second instar larvae . . . sixth instar
larvae.

S, Sa The proportion surviving of pupae and

adults, respectively. Adult populations are
measured just before oviposition in year

t 4+ 1.
We have, then, the model
Nt +

T = N':"”“ = PyFi8eSs......8v1C;Sa.

This equation structures our system in a common-sense sequence,
and is called 2 model. It is built up out of terms such as

Se = (X4, Xz, X5, Xs..... Xs)
which are called sub-models, and these in turn may be built up
out of sub-sub-models, which for example relate the variate value
of X4 to factors which govern Xi.

Another matter needing consideration is the list of five ques-
tions which produced the 32 (2°) equations in figure 2. The list
is, in fact, by no means complete, but was merely presented to
show that most of the simple, commonly encountered differential
equations can be derived from a sunple logical branching tree.
Biologists will be able to think of a variety of other questions
which might be asked to expand the logical tree enormously.
However, it is much easier to think of a differential equation
than to solve it, and the biologist will need a powerful aid if he
does much of this type of model-building. Apart from the usual
handbooks, the most useful such aid is the compendium of
methods of solution by Murphy (1960).

A logical branching tree is not the only way to arrive at the
equation which best describes a particular process (Turner. Mon-
roc and Lacas 1961 Turner, Monroe and Homer 1963 ). Another
approach is to make use of general underlying equations from
which a great variety of commonly-used models may be derived
as special cases. Using such formulas, we can employ curve-fitting
techniques to determine the values of various parameters that
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give best fit of the general equation to a particular body of data.
The particular values the parameters take indicate which of the
special cases we are dealing with. To illustrate, consider the
differential equation used by Turner and his associates, in which
n and ¢ are variables, &, a, and v are parameters.

dn o $(na)
de e—vyd
This equation integrates to produce
n=a+8 (e~y8) 3 (M

The constant « determines which special case we have represented
in our data. If B is a positive integer, we have a polynomial
process, which is non-linear if 8 exceeds one. As & approaches
either positive or negative infinity, (7) approaches the exponen-
tial model

n=a-+Be—¢/7
The following values of 2/8 produce the given simple models

2/8 model
—4 inverse square root law
—3 inverse two-thirds law
—2 rectangular hyperbole
—1 inverse square law

0 exponential

! parabola
2 straight line
When 2/8 is negative, the curves have two asymptotes, when 2/3
is zero they have one, and when 2/8 is positive they have no
asymptotes.
Another such basic equation has been proposed by Grosenbaugh
(1965).

T g N ] NM+1
Consider Y =H + A}_e(N 1)U -~NUJ (8)
where U represents a 1- or 2-parameter function such as
—B(X—G)

Equatiori (8) with variant (9) inserted takes the form of
almost all well-known mathematical functions for two variables,
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depending on the values assigned to N and M. The idea behind
Grosenbaugh's research. is to facilitate the computations for
iterative regression by developing tables of the partial derivatives
used for each of the elementary functions corresponding to a
particular N and M pair of values. This suggests a large-scale
computer routine for doing iterative regression, in which the
computer starts with only the raw data. In the first part of the
program, the computer determines the values of N and M and
the form of U. Then, using these three pieces of information, it
selects from memory the appropriate derivatives for calculating
the values in the set of equations. The second part of the program
is the iterative regression routine.

It should be noted that both the logical branching tree method
and the general equation method suggest means of programming
a computer so that it decides which model best describes a given
body of data.

Model-building techniques of the type we have described can
obviously lead to extremely complicated models. The question
naturally arises as to how one can perform logically valid statis-
tical or other tests on the model, to determine how accurately it
describes reality. One approach is to test the whole model
statistically piece by picce (sub-model or sub-sub-models separate-
Iy), using iterative regression where necessary because parameters
enter the sub-models nonlinearly. However, this approach has a
logical weakness, in that we lose a degree of freedom every time
a new parameter enters an equation, and our error terms in
statistical tests lose strength. This means, that as our models
become more and more complex, it becomes progressively more
difficult to demonstrate statistically that they do not in fact
describe the data. In other words, ANY sufficiently complicated
model is a highly flexible interpolatory formula, even though its
structure bears no relationship to the structure of the process we
are trying to describe.

The reader can satisfy himself on this point by noting in tables
of F-values, that the smaller the number of numerator degrees
of freedom, the higher the F-value must be to produce signihicance
at a given probability level. To circumvent this degrees-of-freedom
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impasse, the following procedure is suggested. Obtain data from
one set of surveys, or experiments on components of whole
systems, then build a systems model. The model is then tested
by seeing how it can predict the outcome from another set of
surveys or expetiments on whole systems, or of a different type.
No degrees of freedom are lost in such a test. For example, we
might build a systems model describing a historical process, using
data from experiments on particular components of the whole
process. Then having used these sub-models to build the whole
model, the model is tested against data on the history of the
whole system. Such an approach has been used by Holling (1966)
and Watt (1955).

This concludes a general discussion on methods of developing
models. A typical situation that arises subsequent to following
the steps outlined is for the researchers to find that their systems
model only accounts for 40 per cent of the variance in the system
under study. It often develops that a major proportion of the
entire model-building effort is expended on efforts to refine the
initial systems model. A number of procedures are available to
help with this step.

1. Using the model, obtain values of 'Y calculated” for each
case on which data were obtained. Then make a large graph in
which Y calculated” values are plotted against Y observed.”
Every point on the graph should be labeled as to the character-
istics of the sample that produced the datum. When all points
are plotted, we study the graph to observe if particular sets of
sample values deviate consistently above or below the 45° line
on which all points would lie in an error-free situation, and where
we have an accurate model. Such sets of values may provide clues
about factors omitted from the analysis which should have been
measured.

2. Another method for discovering structural weakness in the
model is to plot "Y observed -Y calculated” against each of the
independent variables in turn. Systematic departures from a
straight line parallel to the X- axis indicate that a term in the
model does not mimic nature accurately.

3. A third source of difficulty in a systems model occurs if one
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or more variables have been incorrectly measured, defined, or
coded. Suppose we know from field experience that torrential
downpours or high-velocity wind gusts can drive delicate insects
off their food plants onto the ground where they may starve or
be drowned. It.is not adequate to express the force of such factors
in standard meteorological units, such as inches of rain collected
in a rain gauge or miles of wind per hour moving past a stationary
point. Rather, we should record and enter into our equations the
biologically relevant variables: maximum drop velocity within a
24-hour period or maximum gust velocity.

4. If some of the independent variables that entered into
multiple regression analyses were of the form XiX», then com-
puter output may reveal that the cross-product or other interaction
terms are needed in the systems model.

The Experimental Components Approach

The preceding discussion outlined mathematical techniques by
which one could develop a model for a system on which a large
body of data had already been collected. However, such a pro-
cedure is only useful as a “macro” approach. In order to obtain
the kind of insight into the mechanics of a system that will allow
us to manipulate it profitably, in many cases more detailed
information about the quantitative nature of processes will be
required than those available from field studies. Further, the
“macro” approach, typical of field studies, limits us to the ranges
of variate-values provided by nature. Hence, in many cases a
“micro” approach is called for in addition to the “macro” ap-
proach. Holling (1961, 1965) has presented an elaborate exposi-
tion of the logic and methodology of the “micro” approach,
which he calls experimental components analysis. The following
discussion is based in part on his publications.

The essence of the experimental components approach is that
the processes of experimentation and mathematical model con-
struction are conducted as two interlocking parts of an integrated
program. A systems model grows out of a sequence of steps which
proceed as follows.

The process which we wish to study (e.g. predation, parasitism,
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dispersal, reproduction) is conceived of as comprising a set of
component processes, or constituent fragments. We determine by
experiment and observation what these fragments are for the
process in question, then through « prior/ considerations sort
them into two groups, basic and subsidiary. A basic component
of a process is a constituent factor that invariably operates where
that process occurs. For example, prey density and predator
density must always operate where predation occurs. On the
other hand, predator speed is a subsidiary component, because it
is not relevant in the case of an ambush predator, or a filter-
feeder, or a Portuguese man of war. In short, we assume that
for any process, such as predation, there is a basic model that
explains the underlying processes common to all species pairs of
predators and prey. We further assume that the great diversity
of different predator-prey processes is caused by the additions
to this basic model that occur in various situations as subsidiary
components. Hence, a sequence of experiments is conducted,
beginning with experiments on a small group of basic components
of a process. The experiments are designed to analyze the opera-
tion of these components in sufficient depth that a mathematical
model can be built to describe the operation of the components.
The model is so chosen as to meet two desiderates: it must give
a statistically satisfactory fit to the data and it must incorporate
real insight into the phenomenon.

Additional experiments are conducted until all the basic com-
ponents of the process have been analyzed, modelled, and in-
corporated into a systems model. Then the whole process is
repeated for the various subsidiary components that can be found
in the various situations where the type of process under study
occurs. Finally, a systems model is constructed which can be used
to simulate the process on a computer. Any particular instance of
the process (representing a particular variant of the model) can
be simulated, merely by informing the computer, by means of
control and parameter cards, which terms are to be added to the
basic model, and what values the relevant parameters arc to take.

The preceding is a very general description of what is in
practice 2 highly complex experimental and mathematical pro-
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cedure. In order to give any real insight into the kind of reasoning
used in the experimental components approach, it is necessary
to describe a particular application. Hollings program on preda-
tion will be explained so as to bring out the sequence of steps in
his reasoning.

Holling first decided, on the basis of his own observations,
experiments on many predator-prey systems, and study of the
literature that five groups of variables affect predation:

density of the prey species

density of the predator species
characteristics of the prey species
characteristics of the predator species
characteristics of the environment.

The first two variables must operate in every predator-prey situa-
tion, and hence are basic variables. There are situations in which
the last three groups of variables do not affect predation; therefore
they are subsidiary. The two basic factors can each have their
effect through numerous causal pathways. Thus, there are four
components of the response to prey density by predators, each of
which can be subdivided as follows:
(1) Searching rate —predator speed relative to prey speed
——the maximum distance from a predator at which it
notices and attacks a prey, and the effect of hunger on
this distance.
—the proportion of attacks that result in successful capture.
(2) The time predators are exposed to prey
~time predators spend in non-feeding activities.
—time predators spend in feeding activities.
(3) Time spent handling each prey
—time spent in pursuit for prey
—time spent eating
—digestive pause, while predator is not hungry enough to
attack
(4) Hunger
—rate of digestion and assimilation
—maximuin food capacity of the gut
Experiments are designed to obtain the form of. and parameter
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values in mathematical equations for each of these components
and sub—components. As such equations are developed, they are
incorporated into a systems model which is carefully checked
against experimental data on the whole system. Finally, the sys-
tems model, when complete, serves as the basis for computer
simulation and optimization studies. These give rise to new
insight about the most important criteria for evaluating biological
control agents, and the most effective parameter values for these
criteria,

A similar components analysis can be conducted for any type of
complex process in the ecology-behavior domain. It should be
emphasized that the key concept in this whole approach is the
intimate reciprocal feedback between the experimental program
and computer analysis and simulation, with the model arising
from one type of data and being subjected to test against other
data at each stage in its development. Whenever the simulation
studies predict a result not corroborated by experiment, the model
clearly needs re-examination.
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DYNAMIC MODELS
FOR POPULATION SYSTEMS

by D. GORDON MOTT, Principal Ecologist, Forest Insect
and Disease Laboratory, Northeastern Forest Experiment
Station, Forest Service, U. 8. Department of Agricalture,
Hamden, Connecticut.

TUDENTS of forest insect population dynamics have been
S remarkably slow in adopting those mathematical methods
that have been widely developed in the study of other dynamic
systems. I think that most of us have been seduced by statistical
methods and, as a result, have been intensively engaged in making
careful measurements and analyses without having given any
rigorous thought to the logical structure of the system we are
concerned with. We have been guided by our intuition in choosing
system parameters for study.

In this paper I will discuss the mathematical structure of some
forms of dynamic system models. There are two objectives to
the discussion. First. I hope to show that the construction of 2
mathematical system model will provide all the relevant informa-
tion about the system—whether our interests are in understand-
ing the biological structure, in applying regulation, or in predict-
ing system behavior. Second, T hope to make clear that the
construction of a system model will give the best possible guide
to system dynamics research by focusing effort on the measure-
ment of important system parameters rather than relying upon
intuition to serve as is generally the case at present.

System Models

It is convenient to use as a point of departure, the population
change model:

h
N+t :Tr S-P-F N
=1 (1)
where N. is number at time t, 8; is survival during age interval
i, P is proportion of adults that are female, and F is fecundity.
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It is interesting that this equation represents the most advanced
form of our thinking about population system dynamics today.
The interest arises because it is so patently incomplete, as will be
seen shortly.

Equation (1) is a difference equation model for a population
system. In simplest form, where each member of a population
produces in a unit of time k individuals, and a proportion m of
the individuals present at time t dies in a unit of time, we find

Nf+1 == ch — mN. (2)
If we knew the values of k and m and the initial value of N,
we would be able to calculate the number at any time thereafter.
That is, from (2) it would be possible to obtain a numerical
solution for N as a function of time. In fact, this is our objective
in constructing a system model: we want to know how the system
will behave over time so that we can regulate it, harvest from it,
and so forth. Now, a numerical solution might be perfectly
acceptable, but in this case it is possible also to obtain an analytic
solution:
N = f(t)
where f(t) is a function of time defined on integral values of t.
To find f in this case, we proceed:
Given (2) ‘N, +1 5= th — mNt N Ntno = N,
Then: Ny = (k»m) N (Za)
or: Neyt — (kkm) Ne=0

Assume that N = Cx', such that if C and x were known, a
solution could be found. To find C and x, assume this solution
and substitute in (2a):

Cxtrt— (km) Cx* =0
Cs' {x—(km)}=0

Since: Cx'#0
Then: x — {(km) = 0andx=km
To find C:
Since: Nixe == Nu
Then in: N = Cx'
No = Cx°
or C=N.

Therefore: N = N, (k-m)* is the desired solution (figure 1).
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200

Figure 1.—Solution of
the difference equation
NQ.,'.I e (k-m}Nt == 0,
for given values of {k-
m}.

It would be unusual to encounter such a simple system. Mor-
tality usually depends upon other system elements such as preda-
tors, parasites, and disease organisms. Thus, if P represents, say,
predator abundance, and in a unit of time each predator kills h
of organism N, we would obtain:

Nt+1 = kN —hP. (3)

However, in order to obtain a numerical solution in this case,
we must know the value of P at each time t, P.. Clearly, the
system model is incomplete unless we know how P changes over
time. This is exactly why the model in (1) is so deficient: it says
nothing whatever about the many elements other than N present
in the systern. Thus, the substantial effort currently devoted to
field studies with the objective of measuring the components of
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(1), which ignore in large part the other system components, will
produce seriously incomplete knowledge about the system.

A complete system mode! in the present case would consist of
equation (3) and an equation for P. Suppose that during a unit
of time a proportion r of P dies, and that each N permitted s
progeny of P to be produced (s would be a complex parameter
that included the probability of encounter between N and P and
the reproductive rate of P). The following set of equations
would then describe the system:

Ni+: = kNv — hP. Nieo = No
= (%)
Piys = sN¢ — P Pieo = P

Here, too, it is possible to obtain a numerical and an analytic
solution for N and P over time.

We have now progressed to the point where the structure of a
dynamic system model can be appreciated. It consists of these
fundamental elements:

a. equations that state how each variable in the system changes
orer time-— dynamic equations that incorporate:

b. the interrelationships among system elements described by
static equations.

This deserves some amplification. A great deal of biological
research has been devoted to obtaining the material in (b) above.
The relationships between the number of attacked hosts and host
density, parasite/predator density, spatial distribution of each
organism, and so forth are fairly well known in some circum-
stances. Relationships between reproductive capacity and food
quality and quantity, temperature (or “heat units”), and so
forth are similarly known. In fact, the description of such rela-
tionships seems to be the main objective of many population
studies, and both field studies and behavioral, genetic, and
physiological studies in the laboratory have produced a large
catalog of relationships of this kind. However, it is important
to realize that the study of system dynamics depends critically
upon such relationships being incorporated into mathematical
descriptions of the way in which systems change orer time. Thus,
static relationships must be of suitable form to be incorporated
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into dynamic equations and, in order for the dynamic model to
be constructed for any system, all such relevant relationships
must be known. It follows that early in the establishment of
system studies thought must be devoted to the form of the system
model.

The difference equation models discussed above are particularly
simple; they are linear models. In general, system models will
be non-linear. The distinction lies in the form of the equations.
For any model in which variables occur only to the first power,
no products of variables occur, and variables do not appear as
exponents, the model is said to be linear. Analytic solutions to
linear models can be found. In general, this is not possible for
non-linear models. However, numerical or graphical solutions can
always be obtained.

As an example of a non-linear difference equation model, con-
sider the following much simplified case. Suppose we are dealing
with an insect like the white pine weevil (W) which attacks
white pine leaders (P). Suppose that the number of leaders that
will be attacked in any season depends upon the number of
weevils present. That is, as the weevil population increases,
intraspecific competition intensifies for attack sites and the in-
crease in the number of attacks per weevil declines. A simple
function to describe (approximately) this sort of curve would be:

Ax:W¢{1~exp(—~b§§%)} (4)

where A is the number of leaders attacked in a given year and b
is a constant. Suppose, furthermore, that 2 years are necessary
before an attacked leader again enters the leader population.
Then, the following difference equation could be constructed for
leader population dynamics:

Pz+1 - P\: - At + At-—x

[ P D
:pzw\vtii —ep (= b )J‘r + wm{1 —exp (— b D2ty Lis)

i P
t ~\v‘x/x-—-l

In order to construct an equation for weevil population
dynamics, let us suppose that each attack in a season produces
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a constant number, k, weevils in the next season. Thus:

, P
Wit = kKW, (1-6“ &i: ) (53)
Thus, (5) and (5a) together with initial values constitute a
complete system model. It is non-linear since the variable W
appears in the exponent of both functions. Some solutions for
this model are shown in figure 2.

Besides the non-linearity, an additional elemeant characteristic
of biclogical systems has been introduced—a time-lag in the
form of an effect in the present season of events that took place
in a previous season. That is, leader numbers have changed partly
because of attacks in the present year and partly because of the
intensity of attack in previous years. Time lags introduce a
particularly interesting feature to such systems; they can account
by themselves for oscillation in an otherwise non-oscillatory sys-
tem. In effect, the time lag changes the "order” of the equation

O 4

3

&

8

PERCENTAGE OF %, ATTACKED

8

Figure 2.~—Solutions of equations 5 and Sa showing
behavior of the system over time.
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from first to second. As a simple example of this phenomenon,
consider the following general single variable system model:
Yo +aYe + bYer =0
Assume, as in equation 2a, that: Y = Cx'
CXH 4+ alx' + bCx™' =0
Cx™ (x* +ax + b) =0

2t

¥*+ax+b=0
a Va® — 4b

and x = — . o e
2

Since there are two possible values for x, assume that the
solution is a linear combination of the two, that is:

a + Va® — 4b a — Va* — 4b ¢
Y = Cx{ e J\ + Ce { e }
2 2 2 2

Since Y(0) = Yo and Y (—1) = Y., the initial conditions,
we can obtain solutions for Ci and C: by solving the two simul-
taneous linear equations obtained from substituting t = o and
t= — 1.

There are several possible results depending upon the values
of the coefficients a and b. If, for example, the two values of x
are complex conjugates, the solution will oscillate.

Now, let us consider a second mathematical form for con-
structing system models—the differential equation. This is the
most widely utilized mathematical form in the sciences. Using
equation (2), Nes+1 = kNt — mNy, we can consider the rate at
which N changes per unit time. By definition, the average rate of
change consists of the difference between final and initial values
of N, divided by the time period over which the change took
place. That is,

AN N _ N

=
where AN is the increment in N and At the increment in t.
Suppose we desired a representation for change in N that yielded
intermediate values between integer values of t, either because
we knew the system behaved in a continuous fashion (or nearly
so, as in a bacterial population in a flask) or because there was
some advantage in having such a continuous function (some of
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the advantages will be apparent below). Since our objective is to
obtain a continuous function, we assume that the changes in N
are taking place continuously—-that is, for any At, no matter
how small, there will be some change in N. Formally, we are "
searching for the derivative of N—the "instantancous rate of
change” defined as
Limit Nigse — N dN
sg—o | ar {0 a
In the case of equation (2), we have shown the solution
N = No(k-m)*
or,ifk —m=1 N =N
Let us now calculate the instantaneous rate of change in N:
dN Limit %Naf vhat Na‘%

dt at=o At

At =+ 0 A

::{Limit (Ngr‘)} {Limit Q‘_ﬂ:}}

At =+ 0 At =+ 0 At

= Limit { (Not)  (r™ — 1)}

The value of the first factor is obviously Nor®, which in fact is N.
In order to calculate the second limit, we resort to L'Hospital’s
rule and obtain:
Limit (r* —1{ = Limit Jr*lnr
At = 0 3W St g At = 0 z"““l“w-'zx Inr
Thus, we discover that
dN
P Niaor (7)
This is a differential equation in N. A solution to this equation
would be obtained by integration and would yield

N = N, exp(ln rt) (7a)

This function represents a smooth curve that passes through all
the points generated by the difference equation (2).
Thus, differential equations can be viewed as approximations
for difference equations, and in fact the converse also applies.
As demonstrated, the construction procedure for differential
equation models for population systems is similar to that for
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difference equations. A rate equation is constructed for each
vatiable in the system. In general, these will be non-linear and
involve such things as time lags and variable coefhcients. One of
the simplest and earliest such models is that of Lotka-Volterra.
Where H and P are a host and parasite population, this model
states that

él—{ = (b— dP)YH

dt

Jap (8)
dt_ = (tH — m)P

This is a simple non-linear model, for which a good approxi-
mate solution exists, yielding an oscillation in time of P and H
(figure 3). ,

This and associated models have received a great deal of atten
tion—far more than they warrant, perhaps. Even casual specula-
tion about the model for a predator-prey system quickly leads to
a much more complex set of functions. For example, both to
illustrate this point and to illuminate further the construction of
a dynamic system model in differential equation form, let us
construct a hypothetical model.

To begin, consider that we are dealing with a closed system in
which we have neither immigration nor emigration, so that all
changes must occur through births and deaths. Next, in regard

" HOST PARASITE
3

z

S

3

3

N\

T™E

Figure 3.—Behavior of the lotko-Volterra predotor-
prey model.
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to host reproduction, it would be most unusual to discover that
reproductive rates were constant. A more reasonable speculation
would be that reproduction behaved as in the logistic equation:

B = Birth Rate — bH(K-H)
Tk ©)

where H is population number, b the maximum reproductive
rate, and K somne constant representing the “carrying capacity”
of the environment. Or, we might invoke a more complex model
like that proposed by Watt (1960) as a general fecundity model.
In any event, we would probably speculate that reproduction
depended in some way upon density. Furthermore, it might be
reasonable that it depended also upon temperature. In an en-
vironment in which temperature varied, temperature in turn
could be considered a function of time, so that we might write
B = f(t) (K-H)
K
f(t) H?
= f(t)H - g (10)
Here, we have a non-linear differential equation with variable
coefhicients. Furthermore, it might be reasonable to suppose that
reproductive rates now depend upon the density of the host, H,
some time ago (t — ) since it takes time (+ units) for animals
to mature. Thus, we might write:
B = {(t) Ht~73§£t"$
K (11)
It would also be reasonable to speculate that K depended upon
the food supply so that K = g(F), and we would have to enter a
third rate equation for F. Let us avoid this complication now.
Now, consider the death rate of the host. In the Lotka-Volterra
model it is assumed to be a linear function of P. However, again
because of the large amount of data available on the relationships
between predators and prey, we know that this is almost certainly
not the case. Rather, very likely as predator population increases
relative to that of the host, predator eflciency decreases. We
might utilize a function such as:

D = Death Rate = H(1 — exp(—cP)) (12)
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or any other suitable function, such as from Holling (1966) or
Watt (1959). Then, we could write:

dH K-H.

- = f(yH ’g K % H. ;1 exp( cP)} (13)
Consider now predator dynamics. Let us assume that predator

reproduction again behaved like the logistic except that in this

case K dcpended upon H and that K = h(H). Furthermore, we

might presume that all predators of a certain age. a, died. We

would then write:

dpP bP.*
— = bPy — e —

dt h(Ht)
Equations (13) and (14) make up a model for this rather
simple system. It is obvious that the nature of biological material
takes us very rapidly into rather complex models. We have
neglected many kinds of phenomena that might be considered.
For example, variation in the constants would result from evolu-
tion in the system; it is known that reproductive and mortality
constants depend upon oscillatory genetic changes that result
from differential mortality over time. Also, probably few systems
are really closed, and almost any system can be enlarged as
variables are added to include the whole world. However, ulti-
mately, the addition of more variables will have little effect on
the system, and its dynamics will depend upon the effects of a
few most important variables. The problem of discerning relative
importance of variables obviously depends upon obtaining a
knowledge of the system—and thus upon constructing its model.

P._. (14)

Obtaining A Solution
for the Model

Let us now turn to the matter of studying system behavior,
given that its model is available. The easiest way to accomplish
this is to obtain an analytic solution and study its form. In several
cases considered above this has been done, and in any lincar
case an analytic solution can be found. Since in many real systems
it is possible to find a linear model that is a good approximation
to the real non-linear case over some operating range, it is worth
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acquiring the rather elementary mathematics to obtain such
solutions. Furthermore, since most population system models
will be of first-order (in contrast to some physiological models
in which the application of mechanical principles yield higher
order equations) the very limited mathematics can be stated in
a few paragraphs.

Given a linear system:

dx: _

“oeTZ A X1t & Xz + ...+ dte X
dt

dxe , .

e TT gy Xy b A2e Xz b L L d2n Xa
dt

an

“d = dng Xt ”‘!‘” dnz X2 + e + dnu Xn
t

With given initial conditions x:(0), the system model can be
written in matrix form as:
; dx 4
f B,
o dt

| [ an ase . .. am\ Xy
4

dxa

421 dsx . . . dza Xz
i
-

dt
dxe | |
/ \anl anz . . . &on } Xn/
dt |
The solution to the set of equations consists of a set of
functions:
X = Cooexp(dat) + Cooexp(et) + .o+ Gaoexp(dat)  (15)
where theCi; depend upon initial conditions, and the A are the
cigenvalues of the a;, matrix (providing the eigenvalues are
distinct: otherwise the result is only slightly more complicated.)
The eigenvalues of the matrix are obtained by solving the
polynomial equation that results from taking the determinant of
the a,, matrix minus A times the identity matrix and setting it
equal to zero. To illustrate:

64



dxi fln :3% /m Xx(O)EXm
dt ( 3

X2/ x;-(o) = X20

Ay —A a2
= 0
a2y asa—A

(au e K) (a:: — /\) - day 212 = 0
or A* — (311 + a::) A A (au aze — Am 312) =0 (16)

This is a quadratic equation in X of the form:

A4 bAdc=0
that has roots:

1\1:

A T e e e s

Systems of larger size pose no particular difficulty. In order to
interpret the results, it is necessary to be able to change complex
roots to trigonometric form (which implies some oscillation in
the solution), but in general the solutions are straightforward.
Depending upon the form of the non-linearity in the model, some
analytic procedures will yield solutions in the form of series.
There are also graphical (isocline) methods, but they are limited
to second order systems.

However, one does not really have to know any mathematics in
order to solve any of these models; solutions can be obtained on
either an analog or digital computer. Thus, where the biologist
15 years ago had to turn to a trained mathematician (if he
could find one, if he could communicate with him, and if he
could understand the answers given), today, simply by learning
to program a computer, a task of about the same complexity as
learning first year high-school algebra, he can perform more
complete analyses of most mathematical problems.
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Consider, for example, the matter of programming for an
analog computer. This device can add, multiply, and integrate
with respect to time, and perform the inverse operations. Given
a model such as that of Lotka-Volterra, ‘one simply supplies to
the integrators (a particular component on the machine) the
values of the derivatives (in the form of electrical signals, the
voltage of which is proportional to the variable) and obtains
the values of the variables. Since the values of the derivatives
consist of combinations of the variables, the input signals are
obtained from the output. Figure 4 shows a circuit for solving
this model. Since the electronic analog computer is a continuous
device, it solves differential equations directly.

It is difhcult to simulate time lags on the analog computer,
and it also is difficult to develop some of the more complex
static functions. The digital computer can easily be programmed
to provide these elements, and it is also possible to integrate
numerically to any desired degree of accuracy. A number of
numerical integration methods have been developed—Euler,
Runge-Kutta, and Adams methods, to name a few—and they are
easily programmed if they are not readily available as subroutines.
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Figure 4.—Analog com-

HP puter circuit for solving
the Lotka-Yolterra equa-
HxP tions.
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