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Abstract: Cluster-plot designs, including the design used by the Forest Inventory and Analysis program of the 
USDA Forest Service (FIA), are attended by a complicated boundary slopover problem. Slopover occurs where 
inclusion zones of objects of interest cross the boundary of the area of interest. The dispersed nature of inclusion 
zones that arise from the use of cluster plots precludes the use of most of the slopover-correction methods that 
apply to solitary plots. One exception is the walkthrough method, which corrects for slopover bias in radially 
symmetric cluster-plot designs. In this article, we provide a modification of the walkthrough method, the 
"walkabout method," which is applicable to some asymmetric cluster-plot designs, such as the one used by FIA. 
We also present two general correction methods, the "vectorwalk method" and the "reflection method," both of 
which are applicable to cluster-plot designs with satellite subplots assanged in a regular or irregular pattern. The 
reflection method has two sets of protocols, one that applies to radially symmetric designs and to asymmetric 
designs with random orientation; the other set applies to asymmetric designs with fixed orientation. Both the 
vectorwalk and reflection methods incorporate the walkthrough method on a subplot-by-subplot basis. All four 
methods correct for slopover bias for straight or curved boundaries, and where work outside the tract is 
impossible. FOR. SCI. 52(1):55-66. 
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LUSTER-PLOT DESIGNS, which are widely used to 
estimate forest inventories, tend to complicate the 
problem known variously as slopover, boundary 

overlap, or edge effect. Slopover occurs where inclusion 
zones of objects of interest cross the boundary of the area of 
interest. Slopover can lead to bias in estimates unless cor- 
rective measures are taken. In this article we describe four 
methods that solve the slopover problem for cluster plots. 
The walkthrough method (Ducey et al. 2004) solves the 
problem for radially symmetric cluster-plot designs, and a 
new variant of the walkthrough method-the walkabout 
method-solves the problem for some asymmetric cluster- 
plot designs, including the design used by the USDA Forest 
Service in its nationwide Forest Inventory and Analysis 
(FIA) program. We also present two general methods, the 
vectorwalk and reflection methods, that solve the slopover 
problem for both symrnetsic and asymmetric cluster-plot 
designs, including the FIA design. Finally, we discuss and 
compare the practical implications of the four correction 
methods, and we discuss the choice of symmetric versus 
asymmetric designs. 

Sampling sans Slopover 

contiguous. The tract may be the sole focus of an inventory, 
or it may be a stratum within a stratified inventory. In either 
case, we desire estimates from the tract that reflect the 
contents of the tract; we do not wish to make inferences 
based on a chimeric mixture with the contents of adjoining 
areas. Let d identify the tract and let A be the horizontally 
projected land area of d. 

We use an approach based on Monte Carlo integration to 
motivate our solution to the slopover problem; a "Horvitz- 
Thompson approach" (Horvitz and Thompson 1952, et seq.) 
leads to the same conclusions by a more tortured path. From 
the Monte Carlo perspective, the population of interest 
comprises the infinitely many location points in A& (see, e.g., 
Valentine et al. 2001, Barabesi 2003). The target parameter 
is the total amount of some attribute, which is distributed 
discretely among N objects of interest in A&. N ordinarily is 
unknown. 

We assume that m location points with coordinates 
(xJ, zj), j = 1,2, . . . , nz, serve as sample points. Each sample 
point is selected at random with uniform probability density 
f(x,, z,) = IIA. We restrict our interest to cluster-plot designs 
that comprise a central subplot centered at a sample point 
and n - 1 nonoverlapping satellite subplots in a fixed 
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We may use "direction vectors" to define the center 
points of the satellite subplots relative to the sample point 
(see Figure la,b), in which case inverse vectors-the direc- 
tion vectors rotated 180"-define the center points of "sat- 
ellite subzones" of an object's inclusion zone relative to the 
center point of the object (see Figure lc,d). The object is 
centered in the "central subzone" of its inclusion zone. 
Thus, a 180" rotation of the cluster plot about the sample 
point provides the shape of the inclusion zone. A cluster plot 
includes an object of interest if the sample point falls 
anywhere in the object's inclusion zone (Figure le,f). 

Let a be the horizontal land area of each fixed-radius 
subplot within a cluster plot. The cluster plot diagrammed in 
Figure 1 has a central subplot and three satellite subplots, so 
the total horizontal land area of an inclusion zone is 4a. Let 
y be an attribute of an object of interest, e.g., the volume of 
a tree. Although y is an attribute of a discrete object, we can 
transform the attribute into a continuous attribute density (p) 
by dividing y by the horizontal land area of the object's 
inclusion zone; to wit, p = y/4a. If, for example, the object 
of interest is a tree and the attribute is volume, then the 
resultant attribute density is tree volume per unit land area. 

More generally, let the subscript k identify the kth of the 

Figure 1. (a) A cluster plot comprising a central subplot and satellite 
subplots is fixed about a sample point (0). (b) Direction vectors 
indicate distances and directions from the sample point to centers of 
the satellite subplots. (c) Inverse vectors-the direction vectors rotated 
180"-indicate the distances and directions from the center point (0) 
of an object to the center points of the satellite subzones of the object's 
inclusion zone (d). An object occupies a cluster plot if the sample point 
falls anywhere in the object's inclusion zone (e and fl. 

N objects in d, let Ik symbolize the kth object's inclusion 
zone, and let na, be the horizontal area of Ik. Naturally, if all 
clusters comprise 12 nonoverlapping, fixed-area subplots of 
equal size, then a, equals a constant n for all k. The attribute 
density-the amount of attribute per unit land area-is 
defined to be p, = ydiza, at every location point in 4. 

Inclusion zones of two or more objects may overlap a 
given location point, in which case the total attribute density 
at the location point equals the sum of the individual at- 
tribute densities. For example, if several inclusion zones 
overlap a sample point at (xJ, zJ), then the total attribute 
density at (x), zJ) is 

where (5, zj) E I, indicates that the summation is over all 
objects in d whose inclusion zones include the sample 
point. Such objects are identified by their presence within 
any of the subplots of the fixed-area cluster plot. 

If every inclusion zone of every object of interest is 
wholly contained within the boundary of 93., then the total 
amount of attribute T in 93. is 

T is unbiasedly estimated by 

Or, combining the results from m sample points, T is unbi- 
asedly estimated by 

The estimators, (1) and (21, are expected to underestimate 7 

if part of any inclusion zone slops over a boundary-unless 
corrective actions are taken. 

The Slopover Problem 
Slopover (or boundary overlap) occurs where the inclu- 

sion zone of any object of interest crosses a tract boundary 
(Figure 2). Slopover is a problem because we assume that 
the attributes of an object extend across the object's inclu- 
sion zone with uniform density. If some proportion of the 
area of the inclusion zone is outside the tract, then an equal 
proportion of the attribute is also outside the tract. Hence, if 
sample points are constrained to fall only within the tract, a 
portion of the attribute is ignored and our estimate of the 
total amount of attribute for the tract is expected to be 
biased downward. 

By contrast, that whole subplots or parts of subplots fall 
outside the tract is not a problem (Figure 2). Subplots 
merely serve to indicate which objects in dl have inclusion 
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Figure 2. Slopover (light gray) occurs where inclusion zones extend 
outside the boundary of the tract. 

zones that include the sample point. Subplots and parts of 
subplots that fall outside the tract may be ignored, since 
attributes of objects outside the tract are not of interest. 

Single-Plot Correction Methods 

Schreuder et al. (1993), Ducey et al. (20041, and Iles 
(2004) reviewed some existing slopover comection methods 
as they apply to conventional single-plot, rather than clus- 
ter-plot, inventories. These methods entail (I)  allowing 
sample points to fall outside the tract; (2) protocols for 
reflecting, rotating, or translating the slopover back into the 
tract; (3) using half-plots or quarter-plots near the boundary; 
or (4) measuring the horizontal area of the in-tract portion of 
the inclusion zone. 

The protocols of these methods are formulated to apply 
to the compact inclusion zones of independent solitary 
plots. Applying these protocols in a cluster-plot inventory, 
on a subplot-by-subplot basis, ordinarily will not correct for 
cluster-plot slop. However, as we shall see, independent 
subplot-by-subplot corrections can be part of a comprehen- 
sive solution, as provided by the vectorwalk and reflection 
methods, and by Mandallaz' s (1 99 1 ) method. 

Several single-plot methods require work outside the 
boundary, which precludes general applicability. Tract 
boundaries may include natural features such as edges of 
lakes, rivers, and cliffs, which make sampling or working 
outside the tract infeasible. Natural features and roads may 
also preclude location points within a tract from serving as 
sample points. 

Subplot-by-Subplot Failures 
It is easy to show by example that protocols of single- 

plot methods can completely fail to correct for boundary 
slopover bias that results from the use of cluster plots. Here 
we show the shortcomings of three different methods: the 
buffering method of Masuyama 119541, the mirage method 
(Schmid-Haas 1969), and the walkthrough method (Ducey 
et al. 2004). We do not delve into the details of each 
method: interested readers may wish to consult the reviews 
in Schreuder et al. (1993), Ducey et al. (2004), or Iles 
(2004). 

In the buffering method (Masuyarna 19541, or the related 
toss-back method (Iles, 2004, Flewelling and Iles 2004). 
sample points are allowed to fall outside the tract, but only 

those objects within the tract are tallied. To constrain the 
scope of sampling, points often are allowed only within a 
buffer, defined by the maximum distance between a sample 
point and an included object. Where independent fixed-ra- 
dius plots are used, that distance is the plot radius. Now, 
consider a cluster-plot design. where objects of interest have 
inclusion zones as depicted in Figure 3. If the buffer width 
is set as the subplot radius, it is clear that sample points still 
cannot fa11 in the slopover of the inclusion zone (the sub- 
zone labeled d). Rather, the buffer must be much larger, 
equal in width to the distance from the true plot center to the 
center of a satellite subplot, plus the plot radius. Large 
buffers can add substantially to both the sampled area and 
the operational burden of sampling, but large buffers are 
required for slopover correction when cluster plots are used. 

Next, suppose that the mirage method, as proposed by 
Schmid-Haas (1969) and further developed by Gregoire 
(1982), is used on a subplot-by-subplot basis. In the mirage 
method, the plot center is reflected through the boundary, 
and objects within the tract are tallied if they occur in the 
plot centered at the mirage point. When inclusion zones are 
circular, only those objects tallied from the original point 
are eligible for re-tally (Gregoire 1982, Ducey et al. 2001). 
Again, consider Figure 3. If a sample point falls in the 
central subzone of the inclusion zone (the subzone labeled 
a), the true cluster-plot center will be reflected through the 
boundary, but the object would not be re-tallied from any 
mirage point in the reflection of a, because the object is 
inside the boundary by a distance greater than the subplot 
radius. If the sample point were to fall in the satellite 
subzone labeled b, then the object would be tallied in a 
satellite subplot. However, the object, which occurs in a, 
would not be tallied from any mirage point of any sample 
point that occurs in b. The same observation holds if the 
sample point falls in c. So, if the sample point were to fall 
in a, b, or c, y, would receive its usual weight. However, the 
sample point cannot fall in d. because d is outside the tract. 
The boundary slopover bias remains wholly uncorrected. 

Finally, consider the walkthrough method of Ducey et al. 
(20041, which is described in detail in the next section. Like 
the mirage method, the walkthrough method relies on re- 
flecting the slopover back into the tract, and giving extra 

Figure 3. Inclusion zone for an object in a cluster-plot design with a 
center subplot and three satellite subplots. The central subzone of the 
inclusion zone (a) and two satellite subzones (b and c) fall completely 
within the tract. One satellite subzone (d) falls completely outside the 
tract. If either the mirage method or conventional walkthrough are 
applied, treating subplot centers as sample points, slopover bias will 
remain completely uncorrected in this case. If sampling is conducted in 
a buffer around the tract, but the buffer width is set by the size of a 
subplot, the bias will also remain completely uncorrected. 
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weight to y, if the sarnple point falls in the reflection. With 
circular inclusion zones, the object must fall closer to the 
boundary than to the sample point to be double-tallied. 
However, in Figure 3. the distance from the object to the 
boundary is greater than the length of the subplot radius. 
Therefore. if the center of a subplot is treated as the plot 
center for walkthrough purposes, the object can never be 
double-tallied, and once again the slopover bias arising from 
d remains wholly uncorrected. 

Corrections for Cluster-Plot Slop 
The new correction methods described in the following 

sections alter the way the attribute density maps across the 
area of the inclusion zone, I,, when the kth object is near a 
boundary. A walkthrough correction for slopover reduces 
the attribute density to zero in a section of I, that falls 
outside the tract and doubles the density in another section 
of equal area within the tract. With an FIA cluster-plot 
design, a walkabout correction either (1 ) reduces the density 
of a section of I, to zero and doubles the density in another, 
or (2) reduces the attribute density to zero in two sections of 
I, and triples the density in a third section, all three sections 
having the same area. If the cluster plot contains a central 
subplot and n - I satellite subplots, the walkabout method 
may lead to a density multiplier of up to n - I. Hence, let 
t,(x, z) indicate the factor (0, 1, 2, . . . , n - I )  by which the 
attribute density of the kth object is multiplied to effect a 
walkthrough or walkabout correction at any point (x, z) E 
1,- 

The vectorwalk method translates the portions of at- 
tribute in I, that fall outside the tract into the central subzone 
of 1',. These translated portions of attribute are heaped one 
on another in the central subzone and it turns out that t-,(x, z )  
may take values 0, li, or 2i, where i = 1, 2, . . . , n. The 
reflection method folds out-of-tract portions of attribute 
about the boundary into the tract, effectively redefining the 
shape of the inclusion zone, Ik. Because reflected sections 
may overlap other parts of I,, t,(x, z) may take values 0, 1 ,  
2, . . . , up to a maximum that depends on the configuration 
of the cluster plot and the boundary in the neighborhood of 
the object. Like the walkthrough and walkabout methods, 
the vectorwalk and reflection methods conserve area and 
attribute. Thus, after correction for slopover by any of the 
methods, the total attribute density at the jth sample point is 

rectly. and it forms the basis for the walkabout solution, so 
we review it here. 

The walkthrough method for cluster plots may be applied 
to solve the slopover problem if inclusion zones are radially 
symmetric about the center points of the objects of interest 
(Figure 4). By "radially symmetric" we mean that each 
satellite subplot is matched with another satellite subplot 
that is equidistant from the sample point in the opposite 
direction. This does not mean that all the subplots must be 
the same distance from the sarnple point (see Figure 4c). 

The method effectively deals with both defined and 
natural boundaries. Moreover, the boundaries may be 
straight or curved, though some small amount of bias may 
accrue with tightly curved boundaries that wrap around 
objects in the tract. The operation of the walkthrough 
method is illustrated in Figure 5.  

When the inclusion zone is symmetric about the center 
point, any location point may be reflected to another loca- 
tion point in the inclusion zone. For example, if we start at 
any location point in an inclusion zone and walk, say, 4 m 
to the center point of the object, and then continue on this 
line "through the object" another 4 m, we will end at a 
location point in the inclusion zone that is 4 m from the 
starting point and 4 m from the center point. The starting 
point is a reflection point of the ending point, and vice 
versa. 

For most boundary configurations, each of the infinitely 
many location points in any slopover section of an inclusion 
zone will have a refection point in the "in-tract" portion of 
the inclusion zone (Figure 5) .  Thus, we can imagine reflect- 
ing the entire portion of attribute in a slopover section of the 
inclusion zone into an in-tract section of the inclusion zone, 
doubling the attribute density at each point in the in-tract 
section. 

Operationally, we need only concern ourselves with just 
one reflection point in each inclusion zone, i.e., the reflec- 
tion point of the sarnple point. Suppose that a sample point 
falls within the inclusion zone of the kth object, which is 
near a boundary. If the reflection point falls in slopover, 
then the sample point falls within the reflection of the 
slopover, in which case the attribute density attributable to 
the kth object is doubled at the sample point, i.e., t, = 2. 

To ascertain whether the reflection point is outside the 
tract, we apply the walkthrough method, i.e., we "walk" 
from the sarnple point to the object of interest, recording the 

For convenience, we define t, -- t,(xj, z,). Hence, t, corre- 
sponds to the number of times the kth object is tallied at the 
sample point. 

The Walkthrough Method 

As was noted, the walkthrough method (Ducey et al. 
2004) does not solve the boundary slopover problem if it is 
applied naively and incorrectly. However, it does solve the 
problem for certain cluster configurations if performed cor- 

Figure 4. Radially symmetric cluster plots centered at a sample point 
(0) define inclusion zones that are radially symmetric about the center 
point (0) of an object of interest. 
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Figure 5. The walkthrough method: slopover (light gray) is reflected 
back into the tract, doubling the attribute density where the reflection 
occurs (dark gray). Operationally, the sampler walks from the sample 
point (0) to the center point (e) of an object and through the object an 
equal distance to the reflection point, 0. If the reflection point is 
outside the tract (a, b), the object's attribute density at the sample 
point is doubled, i.e., t, = 2. Usually this can he determined if the 
boundary is reached before the reflection point is reached; thus, little 
or no travel outside the boundary is required. 

distance, and then "through" and beyond the object an equal 
distance to the reflection point. If we encounter the bound- 
ary before we reach the reflection point, we double the 
object's contribution to the attribute density at the sample 
point. 

The method is unbiased if every location point in the 
slopover has a reflection point inside the tract. This con- 
straint is not met if more than half of the area of an inclusion 
zone is outside the tract and it may not be met if the 
boundary configuration is unusually convoluted (Ducey et 
al. 2004). Even when these conditions are not met, the 
walkthrough method reduces the bias due to boundary 
slopover. 

The Walkabout Method 

The original walkthrough method imposes a strict re- 
quirement that inclusion zones be radially symmetric about 
each object. This requirement is not met for many cluster- 
plot designs. We have formulated a "walkabout method" to 
deal with the slopover problem that results when the clus- 
ter-plot design takes the radially asymmetric form used by 
FIA (Figure 2), where satellite subplots are equidistant from 
the sample point and the angles formed by the direction 
vectors are also equal. The method is best described with the 
aid of diagrams (Figure 6). Although we present the method 
with angles specific to the situation shown in Figure 2, it 
generalizes readily to other radial cluster designs. 

How one proceeds depends on whether the object of 
interest falls within the central subplot (Figure 6a) or a 
satellite subplot (Figure 6c). If the object falls within the 
central subplot, then the standard walkthrough method is 
applied to determine whether the reflection point of the 
sample point is inside or outside the tract (Figure 6b). 

Walkabout is used when the object of interest falls within 
a satellite subplot. We distinguish two walkabout directions: 
"right-hand walkabout" and "left-hand walkabout." To ap- 
ply right-hand walkabout, we walk from the sample point to 
the object of interest, recording the distance. On reaching 
the object, we turn two-thirds right-i.e., clockwise 
60"-and continue an equal distance to a "sight-hand re- 
flection point." If the reflection point is reached without first 

Figure 6. The walkabout method: If an object of interest occurs in the 
central subplot of the cluster (a), then conventional walkthrough is 
conducted (b). In h, the reflection point is inside the tract, so the value 
of the object's attribute density at the sample point is not adjusted (t, 
= 1). If the object of interest falls on a satellite subplot (c), then 
right-hand walkabout is conducted (d). In d, the right-hand reflection 
point is inside the tract, so the object's attribute density at  the sample 
point is not adjusted (t, = 1). In e, however, the sample point is 
positioned in the inclusion zone where the right-hand reflection point 
is outside the tract, so the object's attribute density at the sample point 
is doubled (t, = 2). Because this reflection point can never be a sample 
point, left-hand walkabout is also conducted (0. The left-hand reflec- 
tion point is outside the tract, so the value of the object's attribute 
density at the sample point is tripled (t, = 3). 

encountering the boundary, then the right-hand reflection 
point is in the tract (Figure 6d). The object's attribute 
density at the sample point needs no correction, i.e., t, = 1. 

By contrast, if the boundary is encountered before the 
right-hand reflection point, then the reflection point is out- 
side the tract and the object's attribute density at the sample 
point is doubled, i.e., t, = 2 (Figure 6e). In addition, 
left-hand walkabout is also conducted because ( I )  the right- 
hand reflection point, being outside the tract, could never be 
a sample point where right-hand walkabout is conducted. 
and (2) the right-hand reflection point of the sample point's 
right-hand reflection point is also the sample point's left- 
hand reflection point. Hence, left-hand walkabout ensures 
that any additional slopover section of the inclusion zone is 
accounted for. Starting from the sample point, left-hand 
walkabout is the same as right-hand walkabout, except that 
we turn two-thirds left, counter-clockwise 60°, on reaching 
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the object of interest (Figure 6f). If the left-hand reflection 
point is outside the tract, then the measured value of the 
object's attribute density at the sample point is tripled, i.e., 
t, = 3. We emphasize that left-hand walkabout is conducted 
only if the sample point's right-hand reflection point is 
outside the tract. 

There are obvious shortcuts to the method. If it were 
possible to work outside the tract, we could conduct right- 
hand walkabout from the out-of-tract, right-hand reflection 
point instead of returning to the sample point to conduct 
left-hand walkabout. Or, we could just return to the object to 
take up left-hand walkabout from there. Indeed, right-hand 
walkabout from the out-of-tract, right-hand reflection point 
effectively does just that. Of course, the 60" turns in walk- 
about are specific for the arrangement of the subplots in 
Figure 6. Different cluster-plot configurations would re- 
quire different angles. 

Walkabout could be performed in the office with a good 
map detailing the positions of the objects of interest in the 
different subplots and the positions of the plot centers 
relative to points on the boundary line. The USDA Forest 
Service, for example, maps the locations of trees in their 
FIA cluster plots. With the coordinates of a sufficient num- 
ber of boundary points to spline a boundary line, walkabout 
could be conducted graphically or mathematically. Obvi- 
ously, walkthrough also could be conducted in this way. 

Fundamentally, both the walkthrough and walkabout 
methods may be considered rotation methods. The walk- 
through method rotates the attribute density at an out-of- 
tract reflection point 180" about the center point of the 
object of interest. This rotation, of course, moves the at- 
tribute density at the reflection point to the sample point, 
doubling the attribute density of the object at the sample 
point. In expectation, any location point in the tract can be 
a sample point with equal probability density. Hence, in 
expectation, the walkthrough method rotates the attribute 
density at every out-of-tract reflection point of every pos- 
sible sample point into the tract (Figure 7a). Some small 
amount of bias may result from the fact that some out-of- 
tract location points in some inclusion zones may not have 
in-tract reflection points. 

In the case with three satellite subplots, the right-hand 
walkabout method rotates the attribute densities at out-of- 
tract reflection points clockwise 120" into the tract. Left- 
hand walkabout rotates counter-clockwise (Figure 7b). 
Unlike the walkthrough method, unbiasedness may be 
maintained with the walkabout method if more than half the 
inclusion zone is outside the tract. This is because the 
attribute in half of the central subzone and two-thirds of the 
satellite subzones may be rotated into the tract. 

The Vectorwalk Method 
The vectorwalk correction method is more generally 

applicable than either the walkthrough or walkabout 
method. It may be applied as an alternative to either the 
walkthrough or walkabout method and it also rnay be ap- 
plied where cluster plots have irregular shapes, i.e., where 

Figure 7. In expectation, the walkthrough method (a) and walkabout 
method (b) rotate portions of attribute in slopover (light gray) into the 
tract. These maps pertain to the examples in Figures 5 and 6, respec- 
tively. Each circled number is the value of t,  when the sample point 
fails into a particular section of the inclusion zone. 

neither the walkthrough nor walkabout method is 
applicable. 

Although the vectorwalk method has wider applicability 
than the walkthrough or walkabout method, it nevertheless 
incorporates the walkthrough method on a subplot-by-sub- 
plot basis. Figure 8a depicts a cluster plot, its direction 
vectors, and the inclusion zone of an object that occurs in 
the central subplot. In expectation, walkthrough effectively 
re-maps the attribute density in the central subzone of the 
inclusion zone, rotating the attribute in any slopover section 
back into the tract (Figure 8b). Moreover, because walk- 
through is conducted subplot by subplot, the identical re- 
mapping of all the satellite subzones is implicit (Figure 8c). 
Under our Monte Carlo theory, we actually "measure" an 
object's attribute density only at the sample point. If an 
object occurs in a satellite subplot, as in Figure 8e, then the 
object's walkthrough-corrected attribute density at the ten- 

ter point (see Figure 8f) must transfer to the sample point, 
and this is accomplished by the identical re-mapping of each 
subzone. 

In expectation, subplot-by-subplot walkthrough does not 
rotate all the attribute in slopover back into tract. At best, 
walkthrough is only expected to rotate all the attribute in 
each object's central subzone back into the tract. Residual 
attribute rnay remain in slopover sections of satellite sub- 
zones, as depicted in Figure 8c,f. The vectorwalk method 
moves the remaining out-of-tract attribute, point by point, 
from the sections of slopover to the central subzone. 

An object occurs in a cluster's central subplot if the 
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Figure 8. The vectorwalk method. (a) An object, which is centered in its inclusion zone, occurs in the central subplot of a cluster 
plot, which is shown with its direction vectors. (b) In expectation, walkthrough re-maps the attribute density in the object's 
central subzone (white, zero density; gray, uncorrected density; dark gray, double density). (c) Because walkthrough is 
conducted subplot by subplot, attribute densities in the satellite subzones are implicitly remapped in a pattern identical to the 
central subzone. (d) Inverse vectors terminate at matching points of the sample points. The attribute densities at out-of-tract 
matching points are shifted to the central subzone and added to the density at the sample point. In d, the object's attribute 
density was doubled by walkthrough at the sample point and implicitly doubled at the northwest matching point. Hence, 
overall, the object's attribute density at  the sample point is quadrupled, i.e., t, = 4. Walkthrough is conducted from the center 
point of each satellite subplot (e), which re-maps the attribute density in the central subzone and implicitly re-maps the satellite 
subzones in an identical pattern (0. In f, the object's attribute density is unchanged at the center point and the sample point, 
sot, = 1. 

sample point falls in the object's central subzone. For such 
objects, each of the cluster plot's inverse vectors terminates 
at a "matching point" in one of the object's satellite sub- 
zones. As shown in Figure 8d, each matching point has the 
same remapped attribute density as the sample point. The 
vectorwalk method shifts the attribute density at each out- 
of-tract matching point to the central subzone and adds this 
density to the total attribute density at the sample point. In 
Figure 8d, for example, the double density at the matching 
point in the northwest subzone is added to the double 
density at the sample point, yielding a quadruple density. 
Hence the object is tallied four times (t, = 4). 

The vectorwalk method derives its name from the fact 
that, in the field, we walk along each inverse vector to 
determine whether it terminates at a matching point inside 
or outside the tract. In expectation, the vectorwalks pull 
whole portions of attribute from the sections of slopover in 
the satellite subzones and place them in matching sections 
in the central subzone. In effect, different portions of at- 
tribute from different sections of slopover are heaped one on 
another. Because slopover sections may differ in shape, the 
resultant attribute map of the central subzone may resemble 
a patchwork quilt, with the attribute density uniform within 
each patch, but varying among them. Figure 9a shows-for 
the example in Figure 8-the expected maps of the attribute 
densities in the subzones after walkthrough, and Figure 9b 
shows the densities after the slopover is moved into the 

central subzone. Depending on where the sample point falls 
in the central subzone, the object may be tallied two, three, 
four, or six times. 

Note: there is no need to undertake vectorwalks from the 
center points of satellite subplots. If an object occurs in a 
satellite subplot, then its attribute density at the sample point 
equals its walkthrough-corrected density at the center point 
of the satellite subplot (Figure 80. A sampler's interest in an 
object properly begins and ends with the object's attribute 
density at the sample point. 

The field protocols of the vectorwalk method are easy 
and straightforward. The cluster plot is centered at the 
sample point, though satellite subplots whose center points 
fall outside the tract are not installed. Walkthrough is ap- 
plied in each individual subplot from the subplot's center 
point. The walkthroughs from the center point provide a 
single or double tally for each object in a satellite subplot, 
i.e., for the kth object, t, = 1 or 2. The walkthroughs from 
the sample point in the central subplot provide a preliminary 
tally for each object in the central subplot, i.e., t; = 1 or 2. 
We also walk along each of the n - 1 inverse vectors from 
the sample point and count the number, s, that terminate 
outside the tract. We use this count to calculate the final 
tally value for each object in the central subplot, i.e., t, = (1 
+ s)tL. It turns out that the vectorwalks are unnecessary in 
radially symmetric designs, because the terminal points of 
the inverse vectors are the center points of the satellite 
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Figure 9. (a) Map of expected attribute densities in the subzones after 
walkthrough for the example in Figure 8 (white, zero density; 1, 
original single density; 2, double density). (b) In expectation, the 
vectorwalk method pulls the remapped portion an object's attribute 
from each slopover section and puts it in a matching section in the 
central subzone. In effect, portions of attribute from different sections 
of differing size are heaped in the central subzone, which results in an 
attribute-density map that resembles a patchwork quilt. In this exam- 
ple, the label of each section indicates the factor by which the original 
attribute density is multiplied to effect the correction for slopover and, 
thus, the number of times the object is tallied when a sample point falls 
into that particular section of the inclusion zone. (c) Under a modified 
protocol, a vectorwalk ends at the first encounter with the boundary, 
even if the inverse vector re-enters, and terminates at a matching point 
within the tract. An inclusion zone's attribute density map, under this 
protocol, may differ somewhat from the map that results from the use 
of the matching points (compare c with b). 

subplots. Hence, s is the count of satellite subplots that were 
not installed. 

In asymmetric designs, walking along an inverse vector 
from the sample point to the matching point could cause you 
to first leave and then re-enter the tract. If leaving the tract 
is potentially problematic, the protocols may be modified so 
that leaving the tract is unnecessary: Simply stop each 
vectorwalk on first encountering the boundary, count the 
number, s, of such stoppages, and use this count in exactly 
the same way as before to calculate the final tally. The 
resultant attribute density maps may differ between the two 
protocols (compare Figures 9b and 9c), but everything 
works out fine. 

If boundaries are straight with square corners, the mirage 
method can substitute for walkthrough in the subplots be- 
cause, in expectation, the mirage method folds the attribute 
in slopover sections of inclusion zones back into the tract, 
accomplishing the requisite re mapping of the attribute 
density. 

The Reflection Method 
The reflection method provides another viable alterna- 

tive to correct for slopover in radially symmetric cluster- 
plot designs. Although our primary focus is on symmetric 
designs in this section, the reflection method may also be 
applied-under specific constraints or with some 
modification-to asymmetric designs. Application of the 
method to asymmetric designs is described briefly at the end 
of this section. 

The reflection method for cluster plots can be viewed as 
a generalization of the reflection method described by Gre- 
goire and Monkevich (1994) for line intersect sampling. We 
begin with the establishment of the central subplot around 
the sample point. If the direction vectors terminate within 
the tract, the satellite subplots are established as prescribed 
by the design (Figure 10). However, if a direction vector 
intersects the boundary, then it is folded back over itself at 
the boundary and the center point of the reflected satellite 
plot is established within the tract at the terminus of this 
folded direction vector (Figure lOb,c). 

The reflection method incorporates the use of walk- 
through on a subplot-by-subplot basis. In expectation, the 
walkthrough re-maps the attribute density in any central 
subzone with slopover and, in so doing, implicitly re-maps 
the attribute density in the associated satellite subzones 

Figure 10. a) The reflection method for a cluster plot with a north (n), 
central (c), and a South (s) subplot. If a direction vector intersects the 
boundary of the tract (b and c), then it is folded back on itself and the 
center point of a reflected subplot-in this case a reflected northern 
subplot n,-is established where the folded vector terminates within 
the tract. 
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(Figure I la,b). Under the protocols of the reflection 
method, each point in a slopover section of a satellite 
subzone has a reflection point across the boundary and 
inside the tract, provided the tract is wide enough. The 
slopover point and its reflection point are equidistant from 
the boundary on a line parallel to the vector that marks the 
center point of the satellite subzone (Figure 1 la,c). In ag- 
gregate, the reflection points coalesce into a reflection of the 
slopover (Figure 1 lic). If a sample point falls within a 
reflected section of an object's inclusion zone, then the 
object is tallied by a reflected subplot. In the example shown 
in Figure 1 Id, the object is actually tallied twice (t, == 2), 
because walkthrough indicates that the center point falls in 
a section of the subzone where the attribute density is 
doubled. 

It is worth noting that any location point in the slopover 
could serve as a sample point, if we allowed sample points 
to fall outside the tract. Were we to establish a cluster plot 
centered at a sample point, (01, in the slopover, and reflect 
the cluster plot about the boundary-hinging any direction 
vector at its intersection with the boundary-then this re- 
flected cluster plot would coincide with a cluster plot cen- 
tered at the reflection point of (0). Thus, in effect, the 
reflection method not only reflects the slopover into the 
tract, but also the points that sample its attribute density. 

The sections of reflection and the in-tract sections of the 
original inclusion zone define a "reflected inclusion zone." 
The shape of a reflected inclusion zone and the map of its 
attribute density depend on the proximity of the object to the 
boundary, the shape of the boundary line, and the orienta- 

Figure 11. a) A radially symmetric inclusion zone, shown with north 
and south vectors, slops over the boundary in the northern direction. 
(b) Walkthrough re-maps the attribute density in the central subzone 
and implicitly re-maps the satellite subzoues in an identical pattern 
(white, zero density; light gray, single density; dark gray, double 
density). (c) Each point in the north subzone has a reflection point 
inside the tract. The slopover point and its reflection point are equi- 
distant from the boundary on a line parallel to the north vector. The 
reflection method ignores the portion of an inclusion zone that lies 
outside the tract; instead, the method utilizes the reflection of the 
slopover, which is inside the tract. If a sample point falls in the 
reflected section of the inclusion zone, then the object is tallied by a 
reflected subplot. In d the object is tallied twice, because walkthrough 
indicates that the center point of the reflected north subplot (0) has 
double attribute density. 

tion of the object's original inclusion zone relative to the 
boundary line. For pedagogical purposes, most of our dia- 
grams show inclusion zones oriented perpendicular to a 
straight border (Figures 11 and 12). In Figure 12, we use 
labels to indicate which subplots would tally an object if the 
sample point were to fall into a particular section of a 
reflected inclusion zone, For example, if the sample point 
falls into a section labeled n,, then the object is tallied by the 
reflected north subplot. 

The shapes of reflected inclusion zones and their at- 
tribute density maps become quite complicated where 
boundary lines are curved (Figure 13). Indeed, the reflected 
portion of an inclusion zone may look somewhat smeared or 
distorted. Appearances notwithstanding, curved boundary 
lines do not vitiate the method; each point in a slopover 
section of a satellite subzone ordinarily has a reflection 
point inside the tract. The smearing is caused by the obliq- 
uity and curvature of the boundary. Two points that are 
close to each other in slopover may differ considerably in 
their respective distances to a curved or oblique boundary 
and, therefore, their respective reflection points inside the 
tract may be relatively far from each other. Nevertheless, 
area and attribute is conserved with curved and/or oblique 
boundaries. since the reflection of the infinitely many points 
in the slopover is point by point. In expectation, estimation 
under the reflection method is unbiased if (1) walkthrough 
rotates all the slopover in central subzones back into the 
tract, and (2) every point with nonzero attribute density in 
satellite slopover has a boundary reflection point inside the 
tract. 

The reflection method is straightforward to implement in 
the field. Simply establish the cluster plot as you would in 
the interior of the tract, but when walking to a satellite 
center point-if the boundary is encountered-reflect off 

Figure 12. The shape of a reflected inclusion zone depends on the 
proximity of the object to the boundary line, among other things. The 
label for a particular section of reflected inclusion zone indicates which 
subplot or subplots would tally the object if the sample point were to 
fall in that section (c, central; n, north; n,, reflected north; s, south; w . 
c, central with walkthrough; w , n, north with walkthrough; w n,, 
reflected north with walkthrough). For example, n, + s indicates that 
the object is tallied by the reflected north subplot and the south 
subplot, and w . n, indicates that the object is double-tallied by 
walkthrough in the reflected north subplot. 
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Figure 13. The reflection method works for curved boundaries, but 
reflections of slopover can look quite distorted. (a) Expected attribute 
densities after walkthrough. (b) The reflected inclusion zone. Labels 
indicate which subplots tally the object when the sample point falls in 
a particular section of the reflected inclusion zone (see Figure 12 for 
labeling conventions). 

the boundary and install the satellite subplot within the tract 
rather than beyond the boundary. In addition, one must 
implement the walkthrough method within the individual 
subplots. Of course, these protocols (and the theory behind 
them) hold for radially symmetric cluster plots with four or 
more satellite subplots. 

The reflection method can also correct for slopover in 
asymmetric cluster designs if suitable precautions or mod- 
ifications are made at the design or sampling stages. If the 
directional orientations of cluster plots are selected uni- 
formly at random, then even radially asymmetric clusters 
can be viewed as symmetric in expectation. Thus, in expec- 
tation, the reflection method, as described above, will elim- 
inate slopover bias for asymmetric, randomly oriented clus- 
ter designs. 

Alternatively, the reflection method itself can be gener- 
alized to handle asymmetric clusters with fixed orientation, 
e.g., the FIA design. Specifically, if the reflection proce- 
dures are defined in terms of the inverse vectors, rather than 
the direction vectors, then the method can be applied to 
asymmetric clusters. Under this procedure, the cluster plot 
is installed in the usual manner. However, if a direction 
vector intersects the boundary, the vector is abandoned 
without installing either a subplot or a reflected subplot. 
Whether or not n subplots are already installed, we must 
also undertake vectorwalks along each of the inverse vec- 
tors. If, and only if, an inverse vector intersects the bound- 
ary, then it is folded at the boundat-y and a reflected subplot 
is centered at the point where the folded inverse vector 
terminates inside the tract. Of course, walkthrough is con- 
ducted in all the resultant subplots, if need be. In practice, 
this reflection procedure may result in the installation of a 
cluster of iz, more than n, or fewer than it subplots. While 
intuitively unappealing, more than or fewer than ti subplots 
is not problematic: Recall that subplots merely serve to 
identify those objects whose inclusion zones-or, in this 

case, whose reflected inclusion zones-include the sample 
point. 

Residual Bias 

A11 four slopover correction methods conserve area and 
attribute within the inclusion zones of the N objects in a 
tract, d. Thus, integration of the attribute density across the 
land area of an inclusion zone, I,, provides the attribute, yk, 
i.e., 

A total attribute, r, in sd is estimated by 

where the 12 in the estimator is the number of subzones in an 
inclusion zone, not the number of installed subplots. The 
value of n is not altered by any of the correction methods. 

In expectation, 

The estimator is unbiased, i.e., E[?J = r, only if integration 
across the in-tract land area of each object's inclusion zone 
provides the object's attribute, i.e., 

In other words, the estimator is unbiased only if the slopover 
correction method can successfully move all of the attribute 
in the slopover sections of every inclusion zone back into d. 
Generally, however, some residual amount of attribute will 
remain in slopover somewhere around the boundary of a 
tract, but this residual may be quite small. For example, 
Ducey et al. (2004) reported that, in simulations, the walk- 
through method reduced under-estimation of tree volume of 
a 46.5-ha tract in New Hampshire from 6.7% to 0.1 1 %  
when the tract was sampled with fixed-radius circular plots. 
To put it another way, walkthrough rotated all but 1.64% of 
the attribute in slopover into the tract. 

Discussion 

In this article we have restricted our interest to cluster- 
plot designs that comprise a central subplot centered at a 
sample point and constant number of satellite subplots in a 
fixed arrangement, all subplots having the same fixed ra- 
dius. Each of our four correction methods for slopover 
works with curved boundasies and corrections usually can 
be carried out without leaving the tract. 

The walkthrough method largely solves the slopover 
problem for radially symmetric cluster-plot designs. The 
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advantages of the walkthrough method include quick iden- 
tification of objects that do not require correction, and the 
requirement to check only a single point for those that do. 
However, a large dispersed inclusion zone with large dis- 
tances between satellite subzones is a disadvantage and may 
require an unreasonable amount of walking in the field. As 
was noted, however, walkthrough can be conducted graph- 
ically in the office with a map detailing the positions of the 
objects of interest in the different subplots and the positions 
of the plot centers relative to points on the boundary line. 

The walkabout method largely solves the slopover prob- 
lem for cluster-plot designs where satellite plots are a con- 
stant distance from the central subplot and where the angle 
between adjacent direction vectors is constant. Walkabout 
as illustrated above, with a 120" rotation, applies to the FIA 
cluster-plot design. However, the method generalizes 
readily, at least in theory. 

For example, one could perform walkabout given the 
radially symmetric cluster-plot design shown in Figure 5.  
This design would require a 90" right-hand turn, no turn 
(straight) if the right-hand reflection point were in slopover, 
and a 90" left-hand turn if the no-turn reflection point were 
in slopover. This walkabout approach would require more 
walking than walkthrough, but it would be more robust to 
boundary wrapping, because three of the four satellite sub- 
zones of an object's inclusion zone could slop over the 
boundary. This same walkabout procedure could substitute 
for walkthrough on an individual subplot. The mirage 
method may use as many as three mirage points outside the 
boundary, when sample points fall near square corners. 
Walkabout with 90' angles is not only a surrogate for 
mirage at square corners, but it is also applies more gener- 
ally and does not require leaving the tract. 

As a practical matter, field implementation of the walk- 
about method for cluster plots involves a large amount of 
walking, unless the cluster-plot design is very compact or 
the objects sampled are very sparse. Even for the three-sat- 
ellite design emphasized here, it is likely to be somewhat 
difficult to judge a priori which objects require walkabout. 
Finally, it rnay be quite difficult to turn and maintain odd 
rotations (such as 120") using only a hand compass. For all 
these reasons, mapping the boundary and implementing 
walkabout in the office may prove quite attractive. Of 
course, mapping the boundary entails mapping the entire 
section of boundary that slices through the inclusion zones 
of any objects in the cluster plot. 

The vectorwalk method largely solves the slopover prob- 
lem for both radially symmetric and asymmetric cluster-plot 
designs, and also for irregular cluster-plot designs, where 
the direction vectors differ in length andlor where the angles 
between adjacent direction vectors differ. The method 
works even if all the satellite subzones of an object's inclu- 
sion zone slop over the boundary. Only half of the central 
subzone needs to be inside the tract. This method also is 
easy to implement in the field, requiring relatively quick and 
easy subplot-by-subplot walkthrough corrections, aug- 
mented by at most n - I vectorwalks from the sample point. 

One minor concern regarding the vectorwalk method 

relates to the fact that all portions of an object's attribute in 
slopover are translated to, and heaped in, the central sub- 
zone of the inclusion zone. This concentrates a lot of at- 
tribute density in a small area, which means that some 
objects in the central subplot have substantial influence in 
the estimation process. Another minor concern relates to the 
re-mapping of the attribute densities in the satellite subplots. 
If more than half of the central subzone is in slopover, or the 
object is tightly wrapped by the boundary, some residual 
slopover is inevitable. In expectation, the residual slopover 
in the central subzone may magnify in satellite subzones. 

Like the vectorwalk method, the reflection method is 
easy to apply. Moreover, if a symmetric cluster-plot design 
is used, application of the reflection method always results 
in the installation of the prescribed number of subplots in 
each cluster. With the exception of the walking required for 
the subplot-by-subplot walkthrough method, the reflection 
method requires only as much walking as a cluster plot 
installed in the interior of the tract. Compared to the vec- 
torwalk method, which heaps the slopover density in the 
central subzone, the reflection method tends to smear the 
slopover density over a larger area inside the tract, which 
may yield smaller sampling variances. And, as was noted, 
the protocols of the reflection method for symmetric radial 
designs also apply to asymmetric or irregular designs with 
random orientation. The protocols for asymmetric or irreg- 
ular designs with fixed orientation are also easy to apply in 
practice, though the number of installed subplots rnay vary 
among clusters near the boundary. 

All four of our corrections methods generalize to clus- 
tered point designs involving Bitterlich sampling or point 
relascope sampling (Gove et al. 1999), where satellite 
points, rather than fixed-radius plots, are arranged radially 
about a sample point. In these "point methods'hn object's 
size and shape determines the area and shape of its dis- 
persed inclusion zone, and an angle-gauge is used to deter- 
mine whether the inclusion zone includes the sample point. 
However, the walkthrough, walkabout, vectorwalk, and re- 
flection protocols are the same as for fixed-radius cluster 
plots. 

When viewed from the perspective of slopover correc- 
tion, radial symmetric cluster-plot designs seem a better 
choice than asymmetric designs. The walkthrough method 
for cluster plots is a viable correction alternative for sym- 
metric designs, especially if the locations of objects and 
boundary points are mapped. The vectorwalk rnethod ben- 
efits from the fact that direction vectors and inverse vectors 
are coincident. Thus, the center points of the satellite sub- 
plots are the matching points of the sample point. and so the 
inverse-vectorwalks are unnecessary. And, as was noted, the 
reflection method always yields the prescribed number of 
subplots inside the tract. In large-area cluster designs where 
subplots may be 100 m or even 1 km apart from each other, 
any method that involves extra walking may be viewed with 
a jaundiced eye. Under symmetry, however, the vectorwalk 
and reflection methods remain viable and appealing alter- 
natives, since these methods require no extra walking apart 
from the subplot-by-subplot walkthrough corrections. 
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Unlike the methods proposed in this article, Mandallaz 
(1 99 1 ) considered cluster sampling where sample points are 
allowed to fall outside the tract. The nurnber of subplots in 
a cluster plot is defined by the number of center points that 
fall within the tract, so cluster size is a random variable. 
Slopover bias is corrected on a subplot-by-subplot basis, for 
example, with the walkthrough method. Estimates of T that 
obtain from individual cluster plots are not unbiased. How- 
ever, if we average the estimates of T that obtain from the 
individual subplots of all the clusters, we obtain an asymp- 
totically unbiased estimate of T, where the bias diminishes 
as the nurnber of subplots increases. In effect, Mandallaz's 
point estimator formally ignores the cluster design and 
treats all the subplots of all clusters as independent plots. 
Variance estimation, however, is still based on cluster 
means weighted with the cluster size. Of course, the esti- 
mator of T is asymptotically unbiased only if the slopover 
correction method is completely successful at the subplot 
level. By contrast, if completely successful, each of the four 
correction methods presented in this article provides for an 
unbiased estirnate of T from the measurement at a single 
sample point. And, of course, with the measurements from 
two or more sample points, we can calculate an unbiased 
estimate of the sampling variance. 

Maps of objects and boundary points offer another pos- 
sibility for slopover correction: the calculation of the area of 
the in-tract portion of each inclusion zone that slops over the 
boundary. Let c, be the area of the in-tract portion of the kth 
object's inclusion zone, then 

unbiasedly estimates T, provided the object locations and 
boundary spline are accurate. It is likely that this method 
would require more detailed mapping compared to that 
required for a graphical application of walkthrough or walk- 
about. And, it is important that field crews realize that 
boundary mapping may be necessary even where none of 
the subplots overlaps the boundary. 

Yet another way to deal with cluster-plot slop would be 
to abandon the use of cluster plots, but that is not likely to 
happen because large scale inventories that use cluster-plot 
designs have become institutionalized. Besides, all things 
considered, cluster-plot designs may be more efficient than 
single-plot designs, as sampling with a cluster of small 
subplots around a sample point may provide a more "rep- 
resentative sample" with lower variance if the dispersed 

coverage of each cluster plot results in more uniform at- 
tribute densities among sample points. 
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