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Abstract
Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE) and CO2 (FCO2) represent the ‘‘true’’ flux

plus or minus potential random and systematic measurement errors. Here, we use data from seven sites in the AmeriFlux network,

including five forested sites (two of which include ‘‘tall tower’’ instrumentation), one grassland site, and one agricultural site, to

conduct a cross-site analysis of random flux error. Quantification of this uncertainty is a prerequisite to model-data synthesis (data

assimilation) and for defining confidence intervals on annual sums of net ecosystem exchange or making statistically valid

comparisons between measurements and model predictions.

We differenced paired observations (separated by exactly 24 h, under similar environmental conditions) to infer the

characteristics of the random error in measured fluxes. Random flux error more closely follows a double-exponential (Laplace),

rather than a normal (Gaussian), distribution, and increase as a linear function of the magnitude of the flux for all three scalar fluxes.

Across sites, variation in the random error follows consistent and robust patterns in relation to environmental variables. For

example, seasonal differences in the random error for H are small, in contrast to both LE and FCO2, for which the random errors are

roughly three-fold larger at the peak of the growing season compared to the dormant season. Random errors also generally scale

with Rn (H and LE) and PPFD (FCO2). For FCO2 (but not H or LE), the random error decreases with increasing wind speed. Data

from two sites suggest that FCO2 random error may be slightly smaller when a closed-path, rather than open-path, gas analyzer is

used.
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1. Introduction

Measurements of surface-atmosphere fluxes of

carbon and energy at eddy covariance sites around

the world have provided important insight into how

different ecosystems function in relation to abiotic

environmental forcings (Baldocchi et al., 2001).

However, there is a growing recognition within the

eddy flux community that more attention needs to be

placed on quantifying the uncertainties inherent in these

measurements (Hollinger and Richardson, 2005). For

example, in the context of model–data fusion, Raupach

et al. (2005) argue that ‘‘data uncertainties are as

important as data values themselves’’ because the

specification of data uncertainties will affect not only

the uncertainty of the model, but also the model

predictions. Thus, since eddy covariance data are

increasingly being assimilated with terrestrial ecosys-

tem models (e.g., Braswell et al., 2005; Knorr and

Kattge, 2005; Raupach et al., 2005), a systematic

characterization of flux data uncertainties is needed.

The key issue is that although we want to know the

actual flux, F, we really measure x = F + d + e, where d

is a random variable (random measurement error)

whose characteristics are generally unknown and e is

any systematic error. The random error is therefore

distinct from potential systematic errors due to

incomplete spectral response, lack of nocturnal mixing

(u*) or other factors. Here, we focus on the random

error, but note that a complete description of total flux

measurement error also requires a quantification of the

systematic error or bias (Goulden et al., 1996;

Moncrieff et al., 1996). This latter task seems to be

especially difficult because if we knew the bias we

probably could correct it. Systematic errors, which

cannot be evaluated with the approach we use here, are

discussed elsewhere (e.g., Baldocchi, 2003).

While previous authors have attempted to put bounds

on the uncertainty associated with annual sums of fluxes

(e.g., net ecosystem exchange: Goulden et al., 1996; Lee

et al., 1999; Baldocchi et al., 2001; Griffis et al., 2003;

Morgenstern et al., 2004), surprisingly little is known

about the measurement errors associated with the

turbulent fluxes computed for a single integration period.

However, it is necessary to know the characteristics of the

random error, d, to properly conduct a number of

advanced parameterization schemes for model fitting

(e.g., maximum likelihood, van Wijk and Bouten, 2002;

data assimilation or model-data fusion, Knorr and Kattge,

2005; Raupach et al., 2005; Williams et al., 2005; Gove

and Hollinger, in press), to make statistical comparisons

between measurements and modeled predictions (vali-
dation), as well as to accurately estimate confidence

intervals on annual flux sums. Knowledge of the random

error has also been used in conjunction with Monte Carlo

techniques to assess the probability distribution of

parameter estimates for models fit to eddy covariance

data (e.g., Hollinger and Richardson, 2005; Richardson

and Hollinger, 2005).

The total flux measurement error is a composite of all

error sources, including errors associated with the

measuring equipment, source (footprint) heterogeneity,

and the turbulent nature of the transport process

(Moncrieff et al., 1996). If individual sources of

random error are quantified, they can be summed as

the root mean square (Taylor, 1997). Wesely and Hart

(1985) derived an expression for flux uncertainty that

considered instrument noise as well as sampling error

associated with turbulence. However, in the meteor-

ological literature, most researchers concentrate on the

uncertainty of the turbulent covariance, ignoring

especially the additional contribution of flux source

region heterogeneity (Katul et al., 1999).

Important characteristics of d include not only an

estimate of the expected magnitude of the random error

(the standard deviation of the distribution, s(d), is

convenient in this regard), but also the higher order

moments, such as skewness (is the distribution sym-

metric) and kurtosis (how peaked is the distribution). It is

also critical to know how the random error covaries with

environmental and ecosystem parameters. Ideally, we

would like to identify a probability density function

(PDF) that characterizes the random error. Commonly

this distribution is assumed to be normal (Gaussian), but

there are many other PDFs (log normal, logistic, double-

exponential, uniform, etc.), and one or more of these may

be a better fit than the normal distribution. In fact, it is

noteworthy that an analysis of the statistical properties of

turbulence in the boundary layer suggest that heat and

momentum fluxes may be Gaussian for near-neutral

conditions but are non-Gaussian as the atmosphere

becomes unstable (Chu et al., 1996). Since many

statistical analyses rely on the assumption of normality,

it is essential to know whether this assumption is met.

This is because if d does not follow a normal distribution,

and if the variance of d is not constant across all

observations yi, then optimization based on ordinary least

squares minimization will not yield maximum likelihood

parameter estimates (Press et al., 1993).

Our objective in the present paper is to use data from

sites within the AmeriFlux network (38 measurement

years, across a range of ecosystems: deciduous,

coniferous, and mixed forests, an agricultural site,

and a grassland) to conduct a cross-site analysis of the
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random errors associated with measured turbulent fluxes

of energy (H and LE) and CO2 (FCO2). We focus first on

quantifying the magnitude and PDF of the random error

at these sites, and secondly on determining whether the

characteristics of the random error vary across sites or in

relation to environmental parameters. Although other

studies of flux measurement error (Lenschow et al.,

1994; Mann and Lenschow, 1994) have tended to focus

on the relative error, s(d)/jFj, our emphasis here is on the

expected magnitude of the error, i.e., its standard

deviation, s(d). There are two reasons for this. First, the

relative error is not a very useful (or well-defined)

quantity as F ! 0, a situation that occurs at least twice a

day (for H, LE, and FCO2) during the growing season, as

well as during the winter months at many sites (for LE

and FCO2). Second, maximum likelihood estimation

and various data assimilation techniques require knowl-

edge of s(d), as it is an essential component of the cost

function to be minimized in the optimization. Raupach

et al. (2005) suggest that 1/s(d) is a measure of

confidence in the data, because data with low s(d) are

likely (but not necessarily, since d is a random variable)

to have smaller errors than data with high s(d). In the

maximum likelihood paradigm, the mismatch between

measured and modeled values is weighted by the

estimated [1/s(d)]n (where n = 2 in the case of weighted

least squares), such that observations with high

confidence receive more weight than those with low

confidence (Press et al., 1993).

2. Method and data

2.1. Uncertainty in turbulence

Many authors have considered the random error in

flux measurements, even if results of such analyses are

not routinely reported. Finkelstein and Sims (2001)

provide a recent and comprehensive review. They also

improve on previous methods by showing how a

numerical integration of raw (high frequency) data can

correctly incorporate necessary lag and cross-correla-

tion terms. To provide a conceptual framework,

however, we return to the estimate for the relative

error in an aircraft flux measurement developed by

Lenschow et al. (1994) and Mann and Lenschow

(1994), which is derived from the basic equations of

turbulence:

sFðlÞ
jFj ¼

�
2tl

l

�0:5�
1þ r2

wc

r2
wc

�0:5�
1� a

zi

�
(1)
Here, sF(l) is the standard deviation of the random flux

measurement error for a flight leg of length l, rwc is the

correlation coefficient between the vertical wind velo-

city w, and scalar c, tl is the integral lengthscale for c, a

is the flight altitude of the aircraft, and zi is the height of

the boundary layer. For the surface (tower) approxima-

tion, we replace l with the averaging time, T, tl with tt,

the integral timescale (integral of the auto-correlation

function), take a
zi
¼ 0 (because for measurements near

the surface, a� zi), and note that rwc ¼ w0c0
swsc

to give

Eq. (2),

sFðtÞ
jFj ¼

�
2tt

T
ðaÞ

�0:5�
1þ ðw0c0=swscÞ2

ðw0c0=swscÞ2
ðbÞ

�0:5

(2)

with primed quantities denoting departures from time

averages (indicated by overbar).

This estimate is instructive because it separates out

errors in the variance of the covariance (term b) from

errors associated with the organization of turbulence

into large eddies and a finite integration period (term a).

The integral timescale, tt, is a measure of how long

turbulence remains correlated with itself and signifies

the scale of most flux transporting eddies, correspond-

ing to the peak of the power spectral density in vertical

velocity (Finnigan, 2000).

2.2. Length scales and mechanism of large eddy

production

Much of the pioneering work done in describing

atmospheric turbulence, the ‘‘Kansas experiments’’

(e.g., Businger et al., 1971; Wyngaard et al., 1971), was

carried out over short wheat stubble, a situation that can

be described as rough boundary layer turbulence where

the boundary is the ground surface. One of the key

results of this work was to provide strong experimental

support for Monin–Obukhov similarity (or scaling)

theory in the surface layer. A consequence of this

scaling is that the integral lengthscale will be related to

z=ū where z is the measurement height and ū is the mean

wind speed. In the roughness sublayer (where z is within

several times the canopy height h), however, turbulent

statistics and large-eddy structure observed over forests

appear different from those observed in the surface

layer (Finnigan, 2000). Raupach et al. (1996) postulated

that in these situations the roughness sublayer was more

akin to a mixing layer than a surface layer. Hydro-

dynamic instabilities in a mixing layer lead to the

production of large, coherent eddies in the near-surface
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region (�2–5h). This theory predicts that if shear at

canopy height exceeds some threshold level, instabil-

ities will trigger self-sustaining Kelvin–Helmholtz

(KH) waves with streamwise wavelength L, and that

L / h. Note, however, that if ū is sufficiently small,

then KH instabilities will not be induced. Mixing layer

theory is thus distinct from traditional surface layer

theory in that the characteristic lengthscale is related to

canopy height rather than measurement height. Katul

et al. (1998) investigated scaling over a pine and a

hardwood forest and found that the spectral peaks in

vertical velocity and co-spectral peaks in scalars are

well represented by the reciprocal of Iw, the vertical

velocity integral time scale

1

Iw

� 3:3
ū

h

This relationship also appears not to be sensitive to

atmospheric stability.

Whether the scaling of large eddies is controlled by

measurement height or vegetation height, the number of

events passing a measurement system remains

/ T � ū=ht , where T is the flux averaging time period,

ū is the mean horizontal velocity over T, and ht is the

appropriate height measure for the integral timescale.

Thus, if ht is relatively large and ū is small (perhaps

conditions over moist tropical forest), the problem of

adequately sampling a few large coherent eddies at a

short integration period should add appreciably to the

random error. When ht is smaller and ū greater (e.g.,

over crops or in the Great Plains) the many smaller

turbulent structures will add little additional uncer-

tainty. An initial conclusion to be drawn from this

analysis is that to reduce random flux error, the

integration period needs to increase as vegetation height

increases because of the larger size eddies, and also as

wind speed drops.

The micrometeorological methods described pre-

viously (e.g., Eq. (2)) generally require an estimate of tt,

the integral timescale, as well as knowledge of the flux

variance and covariances. There are three reasons why

these approaches to flux error quantification are less

than ideal. First, the timescale may depend upon canopy

height, measurement height, or some other factor

depending upon wind speed, canopy characteristics, and

stability (Katul et al., 1998; Wesson et al., 2003; Poggi

et al., 2004). Second, the estimate of the random error is

not independent of the flux measurement itself; rather,

both measurement and error estimate are based on the

same variances and covariances. Third, these methods

do not give any insight into the distributional properties

(e.g., PDF) of the random error; as shown by
Richardson and Hollinger (2005), in a maximum-

likelihood fitting paradigm, model parameters extracted

from flux data vary depending on the assumed PDF of d

because the optimization criterion is different.

2.3. Repeated sampling method

Finkelstein and Sims (2001) suggested that the

random flux measurement error could be characterized

if multiple independent observations were made in one

place. Hollinger et al. (2004) and Hollinger and

Richardson (2005) used simultaneous measurements

(X1, X2) from two towers separated by �775 m at the

Howland Forest AmeriFlux site to estimate the

characteristics of d. This analysis was based on the

assumption that the di at each tower are independent and

identically distributed.

Assume we have two simultaneous measurements of

the same quantity F :

x1 ¼ F þ d1 (3a)

x2 ¼ F þ d2 (3b)

where di is a random variable with variance s2 (d). We

can quantify the random error in the measured values

(x1, x2) by determining s(d). The variance of the dif-

ference (x1 � x2) is given by

s2ðx1 � x2Þ ¼ s2ðx1Þ þ s2ðx2Þ þ 2 covðx1; x2Þ (4)

Since d1 and d2 are independent and identically dis-

tributed

s2ðx1Þ ¼ s2ðx2Þ ¼ s2ðdÞ (5a)

covðx1; x2Þ ¼ 0 (5b)

By re-arranging (4) and substituting (5a) and (5b), we

obtain an expression (Eq. (6)) for s(d) that requires only

multiple realizations (i.e., repeated over time) of the

paired measurements (x1, x2):

sðdÞ ¼ sðx1 � x2Þffiffiffi
2
p (6)

Although results of the two-tower analysis were in

reasonable agreement with predictions of the Mann

and Lenschow (1994) sampling error model based on

turbulence statistics (Hollinger and Richardson, 2005),

there are few eddy covariance sites around the world

where two appropriately distanced towers are simulta-
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neously measuring fluxes from two independent patches

of similar vegetation. Hollinger and Richardson (2005)

developed an alternative method (‘‘daily-differencing

approach’’) that would enable the estimation of s(d)

even when researchers do not have a second tower.

In this approach, we trade time for space, and use

flux measurements made on two successive days at one

tower as analogues of the simultaneous two-tower

paired measurements described above. A measurement

pair is considered valid only if both measurements were

made under ‘‘equivalent’’ environmental conditions,

defined here as at the same time of day (to minimize

diurnal effects) and under nearly identical environ-

mental conditions (mean half-hourly PPFD within

75 mmol m�2 s�1, air temperature within 3 8C, and

wind speed within 1 m s�1). These criteria were chosen

to balance two conflicting requirements: (1) sufficiently

similar environmental conditions that the difference

between the measured fluxes can be attributed to

random error and not differences in forcing variables;

and (2) a large enough set of measurement pairs to

accurately characterize the PDF of the random error. We

found that these rather stringent requirements are

frequently not met, so the sample size in one year for the

daily-differencing method is considerably smaller than

for the two-tower method. We considered including

what appeared to be ‘‘equivalent conditions’’ at time

lags longer than one day, but as the lag between

measurements increases, so does the risk of non-

stationarity in the physiological processes (e.g.,

seasonal trends in leaf area), which will increase the

estimated flux error. Although other abiotic factors,

such as vapor pressure deficit (VPD) or soil moisture,

vary over time and also exert controls on forest-

atmosphere fluxes, we found that imposing additional

selection criteria (e.g., VPD within 0.1 kPa and soil

moisture within 0.01% volume) resulted in an �80%
Table 1

Site information for AmeriFlux sites used in the error analysis

Site name Lat. Long. Data years Ecosystem

Howland-Main 458 150N 688 440W 1996–2002 Boreal tra

Howland-Argyle 458 20N 688 410W 2004 Boreal tra

Harvard 428 320N 728 100W 1991–2001 Temperat

Duke 358 590N 798 50W 1998–2000,

2001–2003

Temperat

WLEF 458 570N 908 160W 1997–2003 Mixed ev

deciduou

Nebraska 418 60N 968 170W 2002

2003

Soybean

Maize fie

Lethbridge 498430N 1128560W 1999–2001,

2002–2004

Grassland

Grassland
decrease in the number of measurement pairs, but only a

�10–15% decrease in the estimated error for FCO2 at

Duke. In heterogeneous landscapes, it may also be

necessary to impose a wind direction criterion, though

this would likely cause a dramatic reduction in the

number of paired measurements with which to estimate

s(d). For example, at the Harvard forest, the estimated

FCO2 error was only about 10% lower (with no

appreciable change in H or LE error), and the data set

considerably smaller, when daily-differenced measure-

ment pairs were excluded if the mean half-hourly wind

directions differed by more than �158.
Results from the daily-differencing approach have

been shown to compare favorably with random flux error

estimates derived using the two-tower approach (Hol-

linger and Richardson, 2005). For example, comparison

of s(d) versus Rn relationships suggested that the daily-

differencing approach leads to an overestimation of H

random error by about 20 W m�2, and an overestimation

of LE random error by about 20–25%, compared to the

two-tower approach. The s(d) versus wind speed

relationship suggested that FCO2 random error is

overestimated by about 20–25% compared to the two-

tower approach. The estimates of random flux error that

we present here should therefore be considered

conservative ‘‘upper limits’’.

Data for the present analysis were obtained for seven

eddy covariance sites within the AmeriFlux network

(Table 1), representing a diverse range of ecosystems

(deciduous, coniferous, mixed, temperate and boreal

forests; an agricultural site; and a grassland) and

instrument configurations (measurement heights from 3

to 396 m, with data from both closed- and open-path gas

analyzers). For most sites, at least 6 or more years of

data are available. The Howland-Argyle tower, for

which only a single year of data is available, is included

because it is a ‘‘tall tower’’ (instruments at 55 m on a
type Sonic

height (m)

Canopy height ū (m s�1)

nsition 29 20 2.63

nsition 55 15 4.12

e mixed 30 24 2.37

e conifer 15

20

15

18

1.38

1.61

ergreen and

s

30, 122, 396 20 3.32, 6.28, 8.23

field

ld

3

6

0.8

2.9

3.79

3.40

, dry,

, wet

6 18 (’01),

34 (’02)

4.82
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cell-phone tower) site located �20 km south-east of the

Howland-Main tower, in central Maine. At the Duke

site, a switch was made from a closed-path (1998–2000)

to open-path analyzer (May 1, 2001–2003) mid-way

through the data record. The WLEF ‘‘tall tower’’ site

has instruments mounted at three different heights (30,

122 and 396 m) on a single 447 m high television

transmitter tower in northern Wisconsin. The Nebraska

site offers a comparison between two agricultural crops

(soybeans, 2002, and maize, 2003), whereas at the

Lethbridge grassland site, the data record can be divided

into a low productivity drought period (1999–2001) and

a more productive non-drought period (2002–2004).

The height of vegetation and measurement systems

mean that measurements at most of the sites (Duke,

Harvard, Howland-Main, Nebraska, and lowest level of

WLEF) are in the roughness sublayer and thus subject to

mixing layer scaling. However, Howland-Argyle and

the middle level of WLEF are transitional between

mixing and surface layer scaling, and Lethbridge should

be considered in the surface layer (z > 5h). The top

level of WLEF (396 m) is interesting as it should be

considered in the daytime boundary layer where the

timescale depends upon boundary layer thickness. At

night the upper levels of WLEF are frequently above the

boundary layer (Davis et al., 2003) and thus cannot

evaluate the surface flux.

Quality control, flux corrections, and data editing

were left to the site PIs, except that for consistency

across all sites a standard u* = 0.25 threshold was

applied during nocturnal (PPFD < 5 mmol m�2 s�1)

periods. Site-specific procedures are described else-

where (Harvard, Barford et al., 2001; Howland:

Hollinger et al., 1999, 2004; Duke, Stoy et al., 2005;

WLEF, Berger et al., 2001; Davis et al., 2003; Nebraska,

Suyker et al., 2004; Lethbridge, Flanagan et al., 2002).

Note that estimates of FCO2 random error are

calculated using measurements of the turbulent flux

at instrument height z, rather than storage-adjusted

estimates of the net ecosystem exchange. Following

micrometeorological convention, a flux into the

ecosystem is defined as negative.

2.4. Estimation of distribution parameters for the

PDF of the random error

Previous work (Hollinger and Richardson, 2005)

found that the probability distribution of random flux

errors was better described by a double-exponential, or

Laplace, distribution than a normal, or Gaussian,

distribution. Unlike the Cauchy distribution, which

has a superficially similar shape, the moments of a
double-exponential distribution are well-defined, and

the single distribution parameter (the scale parameter,

b) is easily determined. A double-exponential distribu-

tion with mean zero has the following probability

distribution function:

f ðxÞ ¼ e�jx=bj=2b (7)

The double-exponential distribution has a standard

deviation of s ¼ ð
ffiffiffi
2
p
Þb. An unbiased estimator for b is

b̂ ¼
PN

i¼1 jxi � x̄j
N

(8)

The double-exponential distribution is characterized by

a more pronounced central peak (jxj < 0.5s), and longer

tails (jxj > 2.3s), than a normal distribution (Fig. 1).

Furthermore, whereas �1s encompasses 68% of a

normal distribution, the figure is 76% for a double

exponential distribution (cf. �2s = 95% of a normal

distribution, 94% of a double-exponential distribution).

2.5. Analysis of random error scaling relationships

We interpret our results by considering the Mann and

Lenschow (1994) model described in Eqs. (1) and (2)

and the integral timescale estimate. As previously

discussed, either traditional or mixing layer scaling

theory suggests that the integral timescale depends on

the dimensionless ratio ht=ūT , where ht is the

appropriate height measure for the integral timescale,

ū is the mean wind speed at the measurement height,

and T is the sample period length. From Eq. (2), we

expect the standard deviation of the random flux error,

s(d), to scale as a function of the product of the absolute

value of the mean flux (jFj) and the square root of this

dimensionless ratio:

s/ jFj
ffiffiffiffiffiffi
ht

ūT

r
(9)

In our analysis of scaling relationships, we omit the

three tall-tower data sets (Howland-Argyle, and the 122

and 396 m instruments on the WLEF tower) for which

mixing layer scaling may not be appropriate. Further-

more, assessment of the effect of ht and T on s(d) is

difficult given the small data set, seasonal variation in

vegetation height at some sites (e.g., Nebraska), and the

fact that h and z co-vary with other site characteristics.

Re-analysis of the raw data from a single tower may be

the best way to examine the dependence of s(d) on T.

We focus instead on the scaling of the random error with
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Fig. 1. Probability distribution functions of a normal distribution and

double-exponential distribution compared. The x-axis is scaled in

terms of the standard deviation, s. Vertical lines at x = �2.3s and

x = �0.5s indicate the intersection points of the two distributions.

That is, the double-exponential distribution has a more pronounced

central peak (jxj < 0.5s) and much longer tails (jxj > 2.3s). In panel

(A), the y-axis is shown with a standard linear scale; in (B), the y-axis

scale is logarithmic (base 10), to better illustrate the very long tails of

the double-exponential distribution.

Table 2

Statistical properties (first four moments) of the inferred random flux

measurement error, d, for Harvard Forest (1991–2001), across the

entire year, during the growing season (days 122–295), and under

different Rn and PPFD conditions, for fluxes of energy, water and CO2

Flux Number of

observations

Mean S.D. Skewness Kurtosis

H (W m�2) 14563 0.4 27.2 �0.5 36.1

JD 122–295 8358 0.2 26.8 �1.0 40.2

Rn > 400 699 �8.0 46.5 0.0 3.3

Rn < 100 12458 1.3 25.0 �0.6 51.5

LE (W m�2) 12053 �0.9 17.0 �0.4 29.1

JD 122–295 7275 �1.2 20.2 �0.4 22.3

Rn > 400 579 �10.5 49.7 0.0 2.1

Rn < 100 10261 �0.1 9.5 1.2 24.4

FCO2 (mmol

m�2 s�1)

13471 0.0 2.1 0.3 15.2

JD 122–295 7738 �0.1 2.5 0.2 10.2

PPFD >1000 772 �0.3 2.9 0.0 8.4

Day 6760 �0.1 2.2 0.5 15.0

Night 6711 0.0 1.9 0.0 14.9

Random errors inferred using the ‘‘daily-differencing’’ approach,

where d ¼ ðx1 � x2Þ=
ffiffiffi
2
p

, with x1 and x2 paired measurements sepa-

rated by 24 h.
F and ū. This is done first by calculating s(d) for each

site across all possible F � ū bins, and then conducting

an analysis of variance on the resulting data set, with ‘‘F
bin’’ and ‘‘ū bin’’ as ANOVA factors. Factors are

considered significant at P � 0.05.

3. Results

3.1. Statistical properties of the inferred random

error

The daily-differenced paired fluxes (ðx1 � x2Þ=
ffiffiffi
2
p
Þ

indicate that the inferred random flux error, d, has, as
expected, a mean value close to zero (results for Harvard

Forest are shown in Table 2; similar data for Howland-

Main are found in Hollinger and Richardson, 2005). The

standard deviation of the flux differences varies among H,

LE, and FCO2, and in relation to environmental factors,

e.g., time of year or time of day. The distribution of the

flux differences is, for the most part, symmetric, because

the skewness is close to zero, but the distribution is more

strongly peaked than a normal distribution, because the

kurtosis is generally �3. Under certain conditions (e.g.,

Rn > 400 for H and LE) the distribution is much less

peaked (kurtosis � 2–3) than under other conditions

(e.g., Rn < 100, kurtosis = 51 for H, 24 for LE). Results

from the other sites (not shown) are similar, and the

patterns of variation in relation to environmental factors

are consistent across sites. However, the standard

deviation of the flux differences varies among sites,

especially for LE and FCO2 (Table 3, see below).

At all sites, and for each of H, LE, and FCO2, the

distribution of the flux differences, and hence d, is more

closely approximated by a double-exponential, rather

than a normal, distribution (results for Harvard,

Howland-Argyle and Lethbridge shown in Fig. 2; at

other sites, the shape of the distribution is similar and

varies only in scale). The distribution of the flux

differences is strikingly similar at Harvard (Fig. 2) and

Howland-Main (Hollinger and Richardson, 2005): at

these two forested sites, the canopy height is similar and

mean wind speeds are comparable.
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Table 3

Random error estimates (expressed as the standard deviation of a double-exponential distribution with scaling parameter b, where sðdÞ ¼ ð
ffiffiffi
2
p
Þb) for

measured fluxes of energy (H, LE) and CO2 (FCO2) across the entire year, during the growing season (days 122–295), and under different Rn and

PPFD conditions

Flux (
ffiffiffi
2
p

) b by site

Howl.

2 tower

Howl.

(Main)

Howl.

(Argyle)

Harv. Duke

98–00

Duke

01–03

WLEF

30 m

WLEF

122 m

WLEF

396 m

Nebr.

2002

Nebr.

2003

Lethbr.

99–01

Lethbr

02–04

H (W m�2) 19.5 24.6 23.3 24.1 21.0 22.5 15.7 19.9 15.4 16.1 16.0 18.6 18.4

JD 122–295 23.1 24.2 21.8 23.7 20.0 21.3 15.7 19.0 15.6 15.4 15.7 18.1 16.2

Rn > 400 56.9 67.8 72.2 49.1 35.2 40.6 41.0 49.3 59.5 22.7 23.6 36.1 35.3

Rn < 100 10.4 21.9 18.2 22.0 17.2 18.5 13.3 16.5 12.9 14.5 14.2 16.7 16.9

LE (W m�2) 16.5 11.2 15.2 11.9 18.4 26.0 12.8 16.6 25.0 14.3 16.7 5.8 6.0

JD 122–295 26.6 15.6 17.5 14.6 27.5 31.0 17.2 25.9 33.6 15.8 17.4 7.4 8.7

Rn > 400 51.6 60.7 72.3 52.9 55.2 62.0 75.6 100.2 169.7 28.0 33.1 21.7 38.1

Rn < 100 7.0 8.3 9.8 7.8 6.7 14.4 7.3 9.7 15.6 11.1 12.9 3.9 3.4

FCO2 (mmol

m�2 s�1)

1.5 2.0 2.4 1.8 2.9 3.7 1.7 1.6 2.3 1.9 2.4 0.4 0.6

JD 122–295 2.5 3.2 4.1 2.3 3.1 4.3 2.4 2.4 2.5 2.3 3.0 0.6 1.2

PPFD >1000 2.5 3.8 3.4 2.8 4.1 4.9 2.1 3.2 5.6 1.8 2.8 0.7 1.4

Day 1.7 2.4 2.7 1.9 3.1 3.9 2.1 1.9 2.2 1.9 2.6 0.5 0.8

Night 0.9 1.5 1.9 1.7 2.3 3.1 1.1 1.1 2.5 1.8 1.1 0.3 0.2

Howland ‘‘2 tower’’ data from Hollinger and Richardson (2005), where random errrors were estimated using simultaneous measurements from two

flux towers separated by �775 m; all other errors estimated using the ‘‘daily-differencing’’ approach, as described in text.
A double-exponential distribution is leptokurtic in

that it has a tighter central peak than a normal distribution

(Fig. 1). In Fig. 3, 1:1 comparison (cumulative expected

versus observed) plots are shown for double-exponential

and normal probability distributions, using data from

Harvard Forest as an example. Compared to a normal

distribution, the double-exponential distribution is

clearly a better approximation to the observed distribu-

tion of the flux differences. Within the probability range

�0.05–�0.95 (note that the range is slightly wider for H,

and slightly narrower for LE), the observed distribution

of the flux differences coincides with that of a double-

exponential distribution. The tendency for both distribu-

tions to diverge from the 1:1 line at both low (<0.01) and

high (>0.99) cumulative probabilities is indicative of the

fact that the tails of both distributions are much shorter

than what is actually observed for the flux differences. To

put this another way, extreme flux outliers occur with far

greater frequency than would be expected under either of

these two standard probability distributions. Although

not shown, cumulative probability plots from other tower

sites were very similar, and exhibited a characteristic

divergence from the 1:1 line at very low and very high

cumulative probabilities.

3.2. Characterizing the distribution

From here onwards, we use the standard deviation of

the flux differences (i.e.,s(d) from Eq. (6)) to characterize
the distribution of the random flux measurement error.

For a double-exponential distribution with scale para-

meter b (Eqs. (7) and (8)), s(d) is simply calculated as

(
ffiffiffi
2
p

) b. Estimates of s(d) for H, LE and FCO2 are

summarized in Table 3 for the sites included in the

present study; the previously published ‘‘two-tower’’

estimates for Howland-Main are included for compara-

tive purposes. The overall random error in H tends to be

somewhat larger than the overall random error in LE, but

somewhat smaller than the random error in LE during the

May to mid-October (JD 122–295) ‘‘growing season’’.

The random error in FCO2 is larger during the day than at

night, and larger during the growing season than the rest

of the year. These patterns are quite consistent across

sites. The random error in H varies little among sites,

whereas the random error in LE is markedly lower at

Lethbridge than any of the other sites. Random errors for

H fluxes are comparable at Harvard, Howland-Main and

Duke. However, the Duke LE random error (twice as

large as at Howland-Main for JD 122–295) and FCO2

random errror (40% larger during the day, twice as large

during the night) are considerably larger than at these

other two forest sites. Note that the magnitude of FCO2 at

Duke is generally larger than at Harvard or Howland-

Main (Law et al., 2002), but LE is similar among these

three forested sites (Wilson et al., 2002).

At the WLEF tower, random errors in LE and FCO2

(but not H) increase with measurement height. The

FCO2 (but not H or LE) random error is consistently



A.D. Richardson et al. / Agricultural and Forest Meteorology 136 (2006) 1–18 9

Fig. 2. Histograms depicting the frequency distribution of the inferred random flux measurement error, d, for energy (H and LE) and CO2 (FCO2)

fluxes at three sites within the AmeriFlux network. (A)–(C): Harvard Forest, MA; (D)–(F): Howland-Argyle, ME; (G)–(I): Lethbridge, Alberta. The

solid gray line depicts a normal distribution, whereas the dotted black line shows a double-exponential distribution.
larger for the maize crop than the soybean crop at the

Nebraska site. Finally, during the more productive years

(2002–2004) at Lethbridge, LE and FCO2 (but not H)

random errors are larger than during the drought years

(1999–2001) at the same site.

3.3. Random error in relation to flux magnitude and

system characteristics

As suggested by the above results, and Eq. (2), the

random flux error scales with the flux magnitude. For

the forested sites (Howland-Main, Harvard, Duke and

WLEF 30 m), the flux magnitude (‘‘F bin’’) accounts

for 64% of the variance in FCO2 random error, with an

additional 10% accounted for by wind speed (‘‘ū bin’’);

other factors (including, for example, ht and T)

excluded from the ANOVA model account for the

remaining 26%. Similarly, at both the Nebraska

agricultural site and the Lethbridge grassland site, both

F and ū account for a significant amount (agricultural

site: F bin = 50%, ū bin = 29%; grassland: F bin = 74%,

ū bin = 16%; all P � 0.001) of variation in FCO2

random error.
For H and LE, the flux magnitude generally accounts

for 50–75% of the variation in s(d) (P � 0.001 for each

of the forested, Nebraska, and Lethbridge sites).

However, for H and LE, there is no dependence of

the random error on ū at any of the sites (LE: P = 0.38,

P = 0.86, and P = 0.33 at the forested, Nebraska, and

Lethbridge sites, respectively; H: P = 0.08, P = 0.46,

and P = 0.61, in the same order).

The dependence of FCO2 random error on wind-

speed varies somewhat according to vegetation type

(Fig. 4). At the Lethbridge site, where high wind speeds

(up to 16 m/s) are common, there is virtually no change

in the FCO2 random error (�0.30 mmol m�2 s�1) at

wind speeds of 5 m/s or more. With this exception, the

windspeed-FCO2 random error relationship is reason-

ably well approximated by a curve of the form

gðūÞ ¼ a=ðūÞb, where a = 2.7 � 0.2 (mean � 1 s.e.),

b = 0.36 � 0.07 (forested sites, Fig. 4A), a = 1.0 � 0.1,

b = 0.43 � 0.05 (Lethbridge, Fig. 4B), and

a = 4.2 � 0.2, b = 0.62 � 0.05 (Nebraska, Fig. 4C).

For both energy and CO2 fluxes, the relationship

between flux magnitude and random flux error is linear,

as illustrated for the forested and grassland sites in
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Fig. 3. 1:1 comparison (cumulative expected versus observed) plots

confirm that the observed distribution of the inferred random flux

measurement error, d, is better approximated by a double-exponential

distribution than a normal distribution, because the double-exponen-

tial distribution lies closest to the 1:1 line (the vertical lines in each

panel denote the range over which the double-exponential distribution

coincides with the observed distribution of d). However, neither the

normal nor the double-exponential distribution adequately captures

the very long tails of the observed distribution of d. Data are shown for

the Harvard Forest, MA.

Fig. 4. Scaling of FCO2 random flux measurement error with mean

wind speed for three vegetation types. (A) Forested sites; (B) grassland

site; (C) agricultural site.
Fig. 5. The random error does not !0 as F! 0 (as

would be predicted on the basis of Eq. (1)) for any of the

three fluxes. Thus, there appears to be an underlying

base uncertainty that is present regardless of the size of

the flux. One implication of this is that the relative error

tends to become smaller as the magnitude of the flux

becomes larger. For F� 0, both H (Fig. 5A and B) and

LE (Fig. 5C and D) random errors increase more rapidly

with increases in the flux magnitude at the forested sites

compared to the Lethbridge grassland (Table 4).

Furthermore, at the forested sites, the FCO2 random

error increases by 0.63 � 0.09 mmol m�2 s�1 for every

1.0 mmol m�2 s�1 increase in jFj for F� 0 (nocturnal

efflux), but by only 0.19 � 0.02 mmol m�2 s�1 for
every 1.0 mmol m�2 s�1 increase in jFj for F � 0

(daytime uptake) (Fig. 5E). Similarly, the slope of the

relationship is less steep for F � 0 than for F� 0 at the

grassland (Fig. 5F). This is probably related to the more
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Fig. 5. Scaling of H, LE, and FCO2 random flux measurement error with flux magnitude for four forested sites (panels A, C, E) and one grassland

site (panels B, D, F). Best-fit linear regressions (fit separately for fluxes �0 and �0) are indicated.
intermittent nature of nocturnal turbulence compared to

daytime turbulence (Fitzjarrald and Moore, 1990).

Under nocturnal conditions, external factors such as

passage of clouds may enhance the intermittency of the
Table 4

Random flux measurement error (sðdÞ ¼ ð
ffiffiffi
2
p
Þb scales linearly with the mag

and F � 0

Flux Veg. type F� 0

H Forested 19.7 (3.5) + 0.1

Grassland 17.3 (1.9) + 0.0

LE Forested 15.3 (3.8) + 0.2

Grassland 8.1 (1.7) + 0.16

FCO2 Forested 0.62 (0.73) + 0

Grassland 0.38 (0.25) + 0

Note: Standard errors for parameter estimates are in parentheses. All slope
fluxes (Cava et al., 2004). (Our estimated b should not

be construed as a measure of intermittency: note that

although the slope of flux magnitude versus random flux

error relationship is steeper at night than during the day,
nitude of the flux (F), but the best-fit linear regressions differ for F� 0

F � 0

6 (0.01)H 10.0 (3.8) � 0.44 (0.07)H

7 (0.01)H 13.3 (2.5) � 0.16 (0.04)H

3 (0.02)LE 6.2 (1.0) � 1.42 (0.03)LE

(0.01)LE No data

.63 (0.09)FCO2 1.42 (0.31) � 0.19 (0.02)FCO2

.30 (0.07)FCO2 0.47 (0.18) � 0.12 (0.02)FCO2

coefficients are significantly different from zero (P � 0.01).
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the mean b is higher during the day than at night

because the fluxes are generally larger during the day;

see Table 3).

From the above analysis, it would appear that

differences among sites in the estimated random flux

error (Table 3) can be principally attributed to cross-site

differences in the mean flux magnitude, with secondary

effects related to vegetation type and wind speed (and,

possibly, ht and T).

3.4. Seasonal patterns in the flux uncertainty

Because of the way in which the random flux error

generally scales with the flux magnitude, the random

error varies seasonally (Fig. 6). At all sites, the random

error in H is relatively constant (�20 W m�2) throughout

the year, reaching a maximum (23.7� 2.0 W m�2) in

April and a minimum (17.4 � 1.1 W m�2) in August

(Fig. 6A). By comparison, LE random error is generally
Fig. 6. Seasonal course of the random flux measurement error (means

across all sites; error bars represent �1 s.e. of the mean). (A) H

random error varies by less than �30% across months, whereas LE

random error increases at least four-fold between winter and summer;

(B) FCO2 random error also follows a strong seasonal pattern. Leth-

bridge data for unproductive drought years (99–01) and more pro-

ductive non-drought years (02–04) illustrate how the random error is

larger when the flux itself is larger (i.e., June–September).
<5 W m�2 during the winter months, and >15 W m�2

from May–September (Fig. 6A).

Seasonal patterns in FCO2 random error also mimic

the seasonal course in NEE; the random error is small in

the winter months, when fluxes are negligible, and

increases several-fold by July (Fig. 6B), when rates of

photosynthetic uptake and soil respiration are both near

their annual maxima. The seasonal course of FCO2

random error at Lethbridge during the drought years

(1999–2001) contrasts with the seasonal course

during the more productive, non-drought, years

(2002–2004): from June through September, the

random error during the drought years is about 50%

lower (Fig. 6B), presumably because of drought effects

on both photosynthesis and respiration during the

growing season.

The random error tends to scale, in a manner that

varies seasonally, with Rn (for H and LE) and PPFD (for

FCO2) (Fig. 7). The scaling relationships with Rn and

PPFD are important because they can be used to

estimate s(d) independently of the actual measured flux

(if the actual measured flux was used, in conjunction

with the scaling relationships presented in Table 4, for

example, then the estimated s(d) would be positively

correlated with the actual, but unknown, measurement

error: a random error causing the net flux to be under-

estimated would also result in under-estimation of s(d),

and a random error causing the net flux to be over-

estimated would result in over-estimation of s(d)). We

compare these relationships (summarized in Table 5) for

the forested and grassland sites, and for JD 122-295

(‘‘growing season’’) versus the rest of the year

(‘‘dormant season’’). At the forested sites, but not the

grassland site, the H random error scales more steeply

with Rn during the dormant season (Fig. 7A and B;

Table 5). The opposite appears to be true for LE random

error, which scales more steeply with Rn during the

growing season at both forested and grassland sites

(Fig. 7C and D; Table 5). The difference in seasonal

patterns between H and LE can be attributed to seasonal

changes in the energy balance. At the forested sites,

FCO2 random error (across the entire PPFD range) is

about twice as large during the growing season

compared to the dormant season; at the grassland site,

the seasonal difference is closer to four-fold (Fig. 7E and

F; Table 5). The slope of the PPFD-FCO2 random error

relationship is steeper (Table 5) at the forested sites than

the grassland site for two reasons: first, because at a

given PPFD, FCO2 is larger at the forested sites than the

grassland site; and second, because for a given FCO2

bin the random flux error tends to be larger at the

forested sites than the grassland site (Fig. 5E and F).
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Fig. 7. Relationships between random flux measurement error and magnitude of driving variables at four forested sites (panels A, C, E) and a

grassland site (panels B, D, F). H and LE random errors scale with jRnj, and FCO2 random error scales with PPFD. Best-fit linear regressions fit

separately for JD 122-295 (‘‘growing season’’) and the rest of the year (‘‘dormant season’’).

Table 5

The random flux measurement error (sðdÞ ¼ ð
ffiffiffi
2
p
Þb) scales linearly with the magnitude of the driving variables (absolute value of net radiation, jRnj,

and PPFD) for H, LE and FCO2

Flux Veg. type Growing season Dormant season

H Forested 16.3 (1.2) + 0.057 (0.003) jRnj 20.0 (1.3) + 0.077 (0.004) jRnj
Grassland 13.4 (1.4) + 0.044 (0.004) jRnj 17.6 (1.6) + 0.043 (0.005) jRnj

LE Forested 17.7 (3.4) + 0.086 (0.009) jRnj 8.6 (3.7) + 0.039 (0.011) jRnj
Grassland 4.5 (1.2) + 0.052 (0.003) jRnj 3.0 (1.3) + 0.032 (0.005) jRnj

FCO2 Forested 2.71 (0.14) + 0.75 (0.13) � 10�3 PPFD 1.32 (0.14) + 0.87 (0.16) � 10�3 PPFD

Grassland 0.77 (0.05) + 0.32 (0.09) � 10�3 PPFD 0.18 (0.05) + 0.09 (0.05) � 10�3 PPFD

Note: Standard errors for parameter estimates are in parentheses. All slope coefficients are significantly different from zero (P � 0.01), and all slope

coefficients are significantly different between growing and dormant season (P � 0.01).
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Table 6

Random flux measurement errors for FCO2 fluxes measured using closed-path and open-path (WPL corrected for concurrent H and LE fluxes) gas

analyzers at the Nebraska agricultural site, compared across the entire year, during the growing season (days 122–295), and under different PPFD

conditions, for both soybean and maize crops

Closed–path IRGA Open-path IRGA

n F s(d) Rs(d) F s(d) Rs(d)

Soybeans

All observations 599 �2.29 1.78 0.78 �1.96 1.62 0.83

JD 122–295 437 �3.27 2.06 0.63 �2.72 1.91 0.70

PPFD > 1000 206 �6.28 1.75 0.28 �5.27 1.49 0.28

Day (PPFD � 5) 530 �2.94 1.87 0.64 �2.54 1.66 0.65

Night (PPFD < 5) 69 2.70 1.13 0.42 2.48 1.27 0.51

Maize

All observations 553 �4.62 2.29 0.49 �4.38 2.37 0.54

JD 122–295 401 �6.66 2.79 0.42 �6.28 2.64 0.42

PPFD > 1000 166 �14.37 2.82 0.20 13.85 2.62 0.19

Day (PPFD � 5) 470 �5.87 2.48 0.42 �5.66 2.52 0.45

Night (PPFD < 5) 83 2.44 1.18 0.48 2.84 1.57 0.55

F is the mean measured flux, which tends to be somewhat smaller in absolute magnitude for the open-path system. The random error is compared

both in terms of its absolute magnitude (standard deviation of the inferred random error, s(d)) and its relative magnitude (RsðdÞ ¼ sðdÞ=F). Estimates

are calculated based only on measurement periods when data are available from both analyzers. Units for F and s(d) are mmol m�2 s�1; Rs(d) is a

unitless ratio.
3.5. Differences between closed- and open- path

gas analyzers

CO2 flux measurements made with an open-path (e.g.,

Li-Cor LI-7500) gas analyzer must be adjusted for

density effects due to concurrent H and LE fluxes (Webb–

Pearman–Leuning [WPL] correction, see Webb et al.,

1980), and these corrections can, under certain conditions

(when H is large and FCO2 is small, as in late winter or

over sparse canopies), be larger in magnitude than the

actual flux being measured. Errors in H and LE will also

be propagated in the process of WPL correction. It has

been suggested (Hollinger and Richardson, 2005),

therefore, that the open-path analyzer measurements of

FCO2 may be noisier or less reliable than those made

using a closed-path analyzer (e.g., Li-Cor LI-6262). Data

from the Nebraska site, where simultaneous measure-

ments using both an open- and closed-path analyzer were

made in 2002 and 2003, allow investigation of this issue.

Across all observations, for the soybean crop the

FCO2 random error is larger (by �10%) with the open-

path analyzer than the closed-path analyzer, whereas the

reverse (by �3%) is true for the maize crop (Table 6).

But, regardless of crop, when the analysis is limited to

nocturnal periods, the random error is larger (by>12%)

for the open-path analyzer than the closed-path analyzer

(Table 6). However, these comparisons are confounded

to some degree by the fact that WPL-corrected open-

path fluxes tend to be smaller in magnitude than those

measured with the closed-path system (by about 10–

15% for the soybean crop; by about 3–5% for the maize
crop, except at night, when open-path fluxes are 16%

larger, see Table 6). Therefore, to account for this, we

compare the instruments using a measure of relative

error (RsðdÞ ¼ sðdÞ=F). These results (Table 6) suggest

that the relative random error is slightly lower (by

�10% or less) for the closed-path analyzer; the

difference is negligible during the day, but on the order

of 15–20% during the night.

At the Duke site, a closed-path analyzer was used for

the first three years of operation before being replaced

with an open-path analyzer in May 2001. However, the

closed- versus open-path comparison is not as direct as

at the Nebraska site, because during this time, the height

of the instruments above the canopy (and hence ū and

the measurement footprint) was also changed due to

forest growth. Nevertheless, the FCO2 random error for

the open-path years (2001–2003) at Duke is about 20%

higher than during the closed-path years (1998–2000)

(Table 3).

Therefore, in light of the Nebraska and Duke data, it

would seem reasonable to conclude that when an open-

path gas analyzer is used, the random error in the

measured turbulent flux is probably somewhat larger

than when a closed-path analyzer is used.

4. Discussion

4.1. Implications for model fitting

The analysis presented here demonstrates that the

random error in tower-based measurements of energy
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and CO2 fluxes follows consistent patterns across sites in

a range of ecosystems. These robust results are in full

agreement with data presented previously for just the

Howland-Main tower. The distribution of the random

error is better approximated by a double-exponential,

rather than a normal, distribution. The random flux error

is also heteroscedastic, meaning that its variance is not

constant. For H, LE, and FCO2, the standard deviation of

the random flux error increases as a linear function of the

magnitude of the flux, as would be expected from theory.

However, both slope and intercept of these scaling

relationship vary somewhat among sites, and according

to whether the flux is positive or negative (Fig. 5).

Nevertheless, the similarity of the characteristics of the

random error at Harvard and Howland-Main, suggests

that it may be possible to identify model systems that

could be used as a basis for estimating the random errors

at other sites that share comparable vegetation, meteor-

ological, and instrumentation characteristics.

Ordinary least squares fitting yields maximum

likelihood parameter estimates when the data meet

the assumptions of normality and homoscedasticity.

However, when these assumptions are not met, other

fitting methods should be used. Given the double-

exponential distribution of the random error in turbulent

flux measurements, maximum likelihood fitting should

be based on minimizing the sum of the absolute, rather

than squared, deviations; since the random error is

heteroscedastic, the absolute deviations should further

be weighted by the reciprocal of the estimated standard

deviation of this error (Press et al., 1993). A key

difference between fitting by the least squares criterion

and the absolute deviation criterion is that with least

squares, outliers exert a much stronger influence on the

fit, precisely because the deviations are squared. When

the sum of the absolute deviations is minimized, outliers,

which may have no biological significance, are not given

undue weight. One area where the choice of fitting

paradigm is highly relevant is gap filling: Richardson and

Hollinger (2005) report that when the standard Howland

gap-filling routine is implemented using the absolute

deviation criterion, the mean (1996–2002, �1 S.D.)

annual NEE is boosted by 44� 9 g C m�2 y�1. In

percentage terms (26 � 9%), this represents a substantial

increase in the estimated NEE.

Knowledge of the random errors in half-hourly flux

measurements is critical for evaluating the accumulated

uncertainty in temporally-integrated (daily, monthly,

annual) fluxes. At the Howland site, Monte Carlo

simulations (Richardson and Hollinger, 2005) indicate

that accumulated random error in measured (day + -

night) net CO2 fluxes is about � 20 g C m�2 y�1 at 95%
confidence. The accumulated random error due to gap

filling (given a particular gap filling model) adds a

further � 10–15 g C m�2 y�1, for a total random error

in (measured + filled) NEE of � 25 g C m�2 y�1, or

about 13% of the net exchange. However, at sites with

poorer data coverage, or larger FCO2 random errors at

the half-hourly level, the annually integrated random

error will be larger. Furthermore, systematic errors will

add additional uncertainty. At the Harvard site, Goulden

et al. (1996) estimated a 90% confidence interval due

to sampling uncertainty of� 30 g C m�2 y�1 for annual

NEE, compared with a total confidence interval

(considering systematic errors, sampling uncertainty,

and under-estimation of nocturnal respiration) of�30 to

+80 g C m�2 y�1.

4.2. Interpretation of scaling relationships

The fact that the magnitude of the flux is the primary

factor driving the random flux measurement error is in

agreement with the Mann and Lenschow (1994) error

model based on turbulence statistics. However, whereas

the Mann and Lenschow model predicts that uncertainty

of all fluxes should scale with 1=
ffiffiffī
u
p

, our results indicate

that this occurs only for FCO2. The exact cause for this

discrepancy is unclear, although it may be related to the

location of the flux exchanging layer(s) within the

ecosystem. Katul et al. (1999) investigated the spatial

variation in turbulence statistics from six towers over

three days in the Duke pine forest, in what can be

considered the first direct assessment of random flux

measurement errors by multiple, independent measure-

ments. Single-tower measurements above the canopy

were shown to represent horizontally averaged flow

statistics, i.e., the ‘‘canonical dynamics’’ of turbulent

transport, and the scaling of turbulent statistics was

similar at each tower and thus not overly sensitive to

location. Relevant to the present study, Katul et al.

found that the coefficient of variation (CV) of

H < LE < FCO2, and concluded that the observed

pattern resulted from the H exchange occurring at the

top of the canopy, whereas LE and CO2 are exchanged

throughout the canopy and are also influenced by

stomatal resistance. Lai et al. (2000) demonstrated that

90% of the sensible heat flux occurs within the top third

of the canopy, compared to 80% within the top half of

the canopy for latent heat. FCO2 is an extreme case in

that the ground surface is frequently a CO2 source while

the canopy is a sink. Efficient mixing of the entire

canopy-understory-forest floor system may require

particularly energetic and less frequent eddies. For this

multi-layered system, FCO2 random error is therefore
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expected to depend strongly on ū. In ecosystems with

short or sparse canopies, the CO2 exchange sites may

be more appropriately thought of as a single layer,

and FCO2 random errror would, therefore, be less

dependent on ū. In support of this hypothesis, the

ū-FCO2 random error relationship is relatively flat

across the entire range of wind speeds at the Lethbridge

grassland site where the canopy and ground layers are

essentially in immediate proximity.

Another explanation for the lack of relation between

windspeed and H or LE random error may be related to

the distinct effect of the fluxes of these quantities on

atmospheric stability. Increasing fluxes of both scalars

is associated with increasing buoyancy, directly con-

tributing to atmospheric mixing.

A practical consequence of the fact that FCO2 random

error increases dramatically at low wind speeds for most

sites is that windy sites are to be preferred because this

will lead to better sampling of the larger eddies which,

over a forest, are responsible for most of the turbulent

transport (Raupach et al., 1996). Within the roughness

sublayer, random error likely decreases with z because ū
increases with z � h. Spatial (footprint) integration also

is improved with increasing z. However, the results from

Howland-Argyle are instructive. At 55 m, the measure-

ment height is near the top (or out) of the roughness

sublayer governed by mixing layer scaling, and random

error is increased: for example, daytime growing season

FCO2 random error at Howland-Argyle has a standard

deviation of 4.2 mmol m�2 s�1 (n = 262), compared with

3.3 mmol m�2 s�1 (n = 2924) at Howland-Main. (Under

low wind conditions, e.g., ū � 2:0 m s�1, this difference

is even more pronounced: 7.7 mmol m�2 s�1 (n = 28) at

Howland-Argyle, compared with 4.3 mmol m�2 s�1

(n = 1119) at Howland-Main). Moving out of a mixing

layer and into the surface layer where the length scale

depends upon tower height results in increasing random

error. Similarly, based on the theory of Lenschow and

Stankov (1986), Berger et al. (2001) demonstrated that

the relative error for H and FCO2 at WLEF increased

with measurement height normalized by boundary layer

height (zi), up to, and including, z/zi � 1. To a certain

extent, however, longer integration periods, which are

necessary to adequately capture the low frequency range

of the cospectra, can compensate for the height caused

error increase (e.g., Berger et al., 2001; Malhi et al.,

2002).

5. Conclusion

Results from seven eddy covariance tower sites in the

AmeriFlux network have been used to show that the
PDF of the random flux measurement error in H, LE

and FCO2 is approximated by a double-exponential

distribution. This distribution has a much tighter central

peak than a normal distribution. The standard deviation

of the random error is not constant, but rather scales

with the magnitude of the flux, and varies in relation to

other environmental parameters (e.g., wind speed for

FCO2). It should be possible to apply these scaling

relationships to other study sites with characteristics

similar to those used here (i.e., agricultural crops,

grasslands, and temperate/boreal forests). The exact

relationships are probably different in tropical forests

(very tall trees and generally low wind speeds)

compared to the forests studied here, but it is virtually

certain that even in such systems the random error will

scale with the magnitude of the flux, and follow a

Laplace distribution. We note, however, that in non-

ideal flux sites (where factors such as topography,

footprint heterogeneity, or fetch, may be problematic)

the total flux uncertainty may be dominated by

systematic, rather than random, errors.

The broader implications of these results are two-

fold. First, these results provide a foundation for

incorporating information about random flux errors in

model-data synthesis problems: correct specification of

a cost function requires knowledge of this uncertainty.

Because the random error is non-normal and hetero-

scedastic (non-constant variance), two of the assump-

tions underlying least squares optimization are violated.

Maximum likelihood estimation techniques, which

make use of information about the distribution of the

random error, have been developed for the double-

exponential case with non-constant s(d), and are

therefore preferable to least squares methods.

Second, these results can be used to estimate

confidence intervals on fluxes at various time scales;

in conjunction with Monte Carlo methods, for example,

the estimated random error in gap-filled NEE can be

evaluated at the annual time step (but note that confidence

intervals need to be calculated on a site-by-site basis

since both the half-hourly errors, and the distribution of

data gaps, vary among sites). This is a required first

step before defensible, statistically-based comparisons

can be made either across flux tower sites, or between

fluxes and biometric estimates of carbon sequestration.
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