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[1] We present an uncertainty analysis of gross ecosystem carbon exchange (GEE)
estimates derived from 7 years of continuous eddy covariance measurements of forest-
atmosphere CO2 fluxes at Howland Forest, Maine, USA. These data, which have high
temporal resolution, can be used to validate process modeling analyses, remote sensing
assessments, and field surveys. However, separation of tower-based net ecosystem
exchange (NEE) into its components (respiration losses and photosynthetic uptake)
requires at least one application of a model, which is usually a regression model fitted to
nighttime data and extrapolated for all daytime intervals. In addition, the existence of a
significant amount of missing data in eddy flux time series requires a model for daytime
NEE as well. Statistical approaches for analytically specifying prediction intervals
associated with a regression require, among other things, constant variance of the data,
normally distributed residuals, and linearizable regression models. Because the NEE data
do not conform to these criteria, we used a Monte Carlo approach (bootstrapping) to
quantify the statistical uncertainty of GEE estimates and present this uncertainty in the
form of 90% prediction limits. We explore two examples of regression models for
modeling respiration and daytime NEE: (1) a simple, physiologically based model from
the literature and (2) a nonlinear regression model based on an artificial neural network.
We find that uncertainty at the half-hourly timescale is generally on the order of the
observations themselves (i.e., �100%) but is much less at annual timescales (�10%). On
the other hand, this small absolute uncertainty is commensurate with the interannual
variability in estimated GEE. The largest uncertainty is associated with choice of model
type, which raises basic questions about the relative roles of models and data.
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1. Introduction

[2] Efforts to accurately predict patterns of carbon
dioxide exchange between terrestrial ecosystems and the
atmosphere are currently limited by our ability to repre-
sent the relevant biogeochemical processes in unifying
models, which typically parameterize fluxes as a function
of environmental variables. Models of the global carbon
cycle need to accurately capture the dynamics of terres-
trial biosphere-atmosphere exchange at a range of time-
scales, because forcings and responses occur across a
broad temporal spectrum, from seconds (e.g., light capture
by leaves) to years (e.g., community dynamics). Field

biometric studies have historically been used to validate
model predictions at long timescales, and evaluation of
the rapid ecophysiological mechanisms has been limited
to important, but temporally sparse, leaf and soil chamber
measurements.
[3] In the past decade, at several hundred locations

around the world, eddy flux tower measurement programs
have been established to quantify ecosystem-atmosphere
CO2 exchange with high-frequency, near-continuous, multi-
year measurements. These net ecosystem exchange
(NEE) measurements provide another data source for
ecosystem model evaluation. One primary advantage of
using eddy flux data for process studies and model
evaluation is the continuity of the measurements, with
time intervals typically 0.5–1 hour. Many time series are
now between 5 and 15 years in duration (e.g., Harvard
Forest [Wofsy et al., 1993], Walker Branch Watershed
[Balddocchi and Vogel, 1996], and Howland Forest
[Hollinger et al., 2004]). Another advantage is that the
measurements are associated with a growing and coordi-
nated effort (e.g., AmeriFlux) to establish networks of
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towers that span a range of ecosystem types and envi-
ronmental conditions. Also, eddy flux sites tend to be
foci for a suite of other measurements including meteo-
rological variables, biometry, and other types of flux
measurements. The primary disadvantage, with respect
to understanding terrestrial biogeochemistry, is that mea-
surements of eddy flux do not themselves directly quan-
tify specific ecosystem processes but rather the net result
of several processes. Of secondary concern are occasional
instrument failures and other normal data collection gaps
and errors.
[4] Net ecosystem exchange observations record the

typically small imbalances between the gross component
fluxes of ecosystem respiration and photosynthesis [Wofsy
et al., 1993], and while NEE data can be compared to
model predictions, it is often more desirable to validate
modeled component fluxes independently. The gross
fluxes individually reflect distinct sets of processes whose
mechanisms might influence one another but are largely
separable. The net flux does not constrain the overall
dynamics as well as the component fluxes because the
net flux could be mistakenly modeled by gross fluxes
having large compensating errors. Furthermore, some
models, for example those driven by remote sensing
observations, focus on uptake by photosynthesis, also
known as gross ecosystem exchange (GEE), with little
or no attempt to predict respiration [e.g., Prince and
Goward, 1995; Xiao et al., 2004]. Models such as these
require independent GEE estimates for validation, and
eddy flux observations of NEE can be useful in estimat-
ing these independent GEE data sets.
[5] In principle, the eddy flux data, along with associ-

ated meteorological drivers (e.g., temperature, solar radi-
ation, humidity) contain enough information that will
allow separation of the net flux into its gross components
[Goulden et al., 1996a; Braswell et al., 2005], though
there is currently no agreed upon approach for doing so,
and the underlying uncertainties are not well quantified.
The basis for this disaggregation is the fact that nighttime
NEE reflects respiration processes only, and to the extent
that respiration can be predicted during the day on the
basis of relationships with predictor variables at night,
daytime GEE can be estimated essentially as the differ-
ence between NEE and modeled respiration. Thus GEE
estimates rely heavily on model predictions for large
contiguous intervals (i.e., all daylight hours). Like any
statistical inference, this process carries with it some
prediction uncertainty that should be quantified in order
to compare tower-based GEE with independent observa-
tions or model predictions.
[6] An additional factor that must be considered in

utilizing eddy flux data is the existence of missing data
resulting from inevitable instrumental lapses. Also, periods
of low atmospheric turbulence result in CO2 flux measure-
ments that are not representative of the actual ecosystem-
atmosphere exchange, and these data typically are removed
prior to analysis [Goulden et al., 1996b]. Altogether, the
resulting gaps can be extensive and nonrandomly distributed
in time. The implication for estimating GEE is that an
additional model to fill daytime NEE gaps must be defined
and parameterized, which adds some amount of quantifiable
prediction uncertainty.

[7] One possible framework for constructing a time series
of ecosystem uptake (GEE), given the data and a choice of
models, is

G ¼
0 Night

R̂� F Day;No Gap

R̂� F̂ Day;Gap

8<
:

9=
;; ð1Þ

where G is GEE, F is the observed net flux (NEE), and R̂
and F̂ are the modeled respiration and daytime NEE,
respectively. Several previous studies have focused sepa-
rately on issues related to ‘‘gap filling’’ [e.g., Falge et al.,
2001], i.e., defining and evaluating the model F̂, as well as
the general problems of disaggregating NEE into compo-
nent fluxes, which has focused principally on choosing an
appropriate regression model for R̂ [e.g., Goulden et al.,
1996a]. More recently, however, data assimilation tech-
niques have been used to both fill gaps in flux records and
disaggregate NEE into component fluxes [Jarvis et al.,
2004; Gove and Hollinger, 2006].
[8] To most appropriately use eddy flux derived GEE for

comparison with process models, satellite data, or other
field observations, the statistical uncertainties associated
with the inference of daytime respiration and NEE during
gaps should be quantified so that error bars can be applied at
any given choice of timescale. Commonly used statistical
approaches for providing error bounds using analytical
formulas, such as the formula used to estimate the predic-
tion interval for least squares regression predictions, are not
applicable to these data because the underlying assumptions
of these approaches do not hold [Hollinger and Richardson,
2005]. For example, eddy flux CO2 data and the predictions
obtained from regressions using these data have (1) non-
constant variance, (2) nonindependence of residuals,
(3) non-Gaussian noise, and (4) potential sampling bias
due to the nonrandom distribution of data gaps. Hollinger
and Richardson [2005] conclude that the first three proper-
ties listed above result from a combination of the stochastic
nature of turbulence, occasional large instrument errors, and
the nonuniform occurrences of environmental driving con-
ditions (e.g. over 24 hours, there are far more instances of
zero solar radiation than higher values).
[9] Monte Carlo based statistical techniques such as

resampling with replacement (‘‘bootstrapping’’) [Robert
and Casella, 1999] provide a computational solution to
the problem of estimating statistical uncertainty in non-
linear model predictions and data with complicating
features such as severe heteroscedasticity. Previous studies
have utilized ad hoc approaches inspired by bootstrapping
to estimate uncertainties of net CO2 exchange. Often, the
technique is used to estimate uncertainty in a sum of flux
estimates over time. The most common application
includes the random simulation and filling of additional
data gaps [Falge et al., 2001; Griffis et al., 2003].
Another Monte-Carlo technique applied to net flux data
involves modeling and repeatedly resampling residuals to
estimate uncertainty [Saleska et al., 2003]. Uncertainty
due to gaps has also been estimated by creating seasonal
populations of daily carbon balance that are randomly
sampled for comparison with actual fluxes [Goulden et
al., 1996b]. Quantification of the measurement uncertainty
in flux observations has recently been addressed (this
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includes defining a suitable probability density function
and some measure of the variance) [e.g., Hollinger and
Richardson, 2005]. Following model parameter optimiza-
tion using maximum likelihood techniques, random noise
with the same statistical characteristics as the measure-
ment uncertainty of the original data can be added back to
the model output [Press et al., 1993]. By using repeated
simulation, as in a Monte Carlo approach, uncertainty
limits can be estimated for model parameters, gap-filled
values, or annual sums [e.g., Richardson and Hollinger,
2005].
[10] In this paper, we present an example of statistical

uncertainty estimation and error analysis for a GEE time
series, based on eddy flux data from the Howland Forest in
Howland, Maine, USA. Our analysis differs from previous
work in several ways. First, we are focusing on gross
ecosystem exchange, a component flux that reflects a
distinct set of ecosystem processes, as opposed to ecosys-
tem respiration or net flux. Second, we account for uncer-
tainty due to model parameterization as well as the

uncertainty associated with the random nature of the flux
observations (earlier studies have focused on one or the
other). We recognize that uncertainty in ecosystem flux
arises from sources other than the statistical modeling,
including different choices of friction velocity thresholds
for filtering, variability in tower footprint, and changes in
the system (i.e., insect infestations, large tree blow downs,
etc.). In this analysis, we estimate patterns of uncertainty
that are related only to statistical inference. Third, our
method does not require the generation of additional gaps
and therefore allows us to estimate statistical uncertainty at
any timescale, from half hour to multiyear. Last, we perform
a sensitivity analysis of the uncertainty of half-hourly to
annual GEE estimates using different modeling approaches
and different statistical assumptions, in an attempt to un-
derstand the effect of model choice on the estimates. We
examine and quantify the 90% prediction intervals for one
site, but our discussion of the general implications of our
results for the role of data and models in understanding
ecosystem processes is not site specific.

2. Data

[11] Howland Forest is an AmeriFlux research site locat-
ed at 45.20�N and 68.74�W, about 35 miles north of
Bangor, ME. The site is dominated by red spruce and
eastern hemlock. The vegetation, soils, and climate of this
site have been thoroughly described elsewhere [Hollinger et
al., 1999]. The main eddy flux research tower has been
operational since 1995.
[12] We examined 7 years of CO2 flux data (NEE)

measured half-hourly from 1996 through 2002 (Figure 1a).
We screened out flux data with low friction velocity (u* �
0.25 m s�1 [Hollinger et al., 2004]). The friction velocity
screening, primarily, and the occasional instrument failure,
secondarily, combine to reduce the amount of available
data. There are also other periods when data do not meet
quality standards and are rejected. The resulting time series
of NEE data contain available observations for 49% of all
half-hour intervals (Figure 1b). To compute GEE for each of
the 61,362 daytime half hours in 1996–2002, we need to
model all 61,362 (100%) respiration values and 24,295
(40%) missing daytime NEE values. The NEE time series
is missing 39,382 (64%) nighttime observations. While the
nighttime measurements are not used directly in the GEE
estimates because we assume no photosynthesis occurs in
the dark, the valid nighttime NEE observations are used fit
the respiration model.
[13] Half-hourly meteorological data (including air tem-

perature, soil temperature, solar PPFD, and vapor pressure
deficit) from the Howland tower were used as driving
variables for the GEE modeling.

3. Methods

[14] To estimate GEE and the associated uncertainty
range given an observed NEE time series, the following
components are needed: (1) a statistical regression model,
(2) an expression for the likelihood of the data given a
model (which implicitly provides a cost function), and (3) a
strategy for calculating distributions that represent the
probability that a missing flux observation would have

Figure 1. (a) Time series of valid observations of NEE at
Howland Forest, Maine, and (b) the fraction available data
per week. In this study we used half-hourly data for
intervals in which u* > 0.25. Overall, the remaining
observations amounted to 49% of the total time intervals.
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taken a certain value. From these distributions, attributes
such as the mean and variance (i.e., uncertainty) of the GEE
estimates can be derived for any desired timescale.
[15] Our goal is to present a general analysis frame-

work to bracket GEE estimates, rather than to present a
comprehensive exploration of all possible model formu-
lations that could be used in this context. Therefore we
chose two previously employed models for respiration
and daytime NEE, one physiologically based [Hollinger
et al., 2004], and the other a fully empirical, nonlinear
regression model [e.g., Papale and Valentini, 2003]. Our
priority is to evaluate the magnitude and uncertainties
associated with each approach, but not to compare the
relative usefulness of the two approaches, primarily
because they utilize different amounts of information
from independent variables. We also evaluate two
assumptions about the underlying error distribution of
the modeled flux (i.e., the likelihood of the data given
the model). One is a Gaussian error distribution, giving
rise to least squares estimates; the other is a two-sided
exponential error distribution, giving rise to minimization
of absolute differences.
[16] We disaggregated the valid half-hourly CO2 flux

measurements into nighttime (PAR < 5 mmol m�2 s�1)
and daytime (PAR � 5 mmol m�2 s�1) periods. To model
daytime respiration, we fit both a typical physiological
ecosystem respiration model and an artificial neural network
to the observed nighttime flux data. These models, which
relate ecosystem respiration to observed biophysical varia-
bles (e.g., nighttime soil temperature), are then used to
estimate daytime ecosystem respiration on the basis of
daytime observations of the same variables. To fill gaps in
daytime NEE data, we again fit the same two types of
models to the observed daytime flux data, on the basis of
environmental drivers (e.g., daytime air temperature and
PAR), and then used the model to estimate daytime NEE on
the basis of the available data. We then estimated GEE using
equation (1), and calculated the uncertainty associated with
the modeling using a bootstrapping approach, which pro-
duces empirical distribution functions for the modeled
missing data.
[17] We examined the influence of three factors on GEE

estimates, resulting in eight sets of model results, parame-
ters, and posterior distributions. We used two different
models (physiological and neural network), assumed two
different error models (Gaussian and two-sided exponen-
tial), and applied the method to the two flux data sets
(respiration and daytime NEE) (equation (1)). In the fol-
lowing sections we discuss the details of these cases, and of
the bootstrap algorithm.

3.1. Physiologically Based (PB) Model

3.1.1. Respiration Component
[18] For respiration modeling, we used available night-

time respiration data to train a simple physiological model
of respiration: a three-parameter exponential function of soil
temperature at 5 cm depth, Tsoil [Lloyd and Taylor, 1994;
Hollinger et al., 2004], with one set of parameters, regard-
less of season:

R̂ ¼ Ae
�E0

Tsoil�T0ð Þ ð2Þ

where A is a scaling factor, E0 is the soil temperature-
adjusted activation energy (in degrees Kelvin), and T0 is a
reference soil temperature between 0�K and Tsoil. Because A
and E0 are highly correlated parameters [Richardson and
Hollinger, 2005], we fixed the value of E0 at 113.4 K
[Hollinger et al., 2004] and optimized the two remaining
independent parameters, using a constrained minimization
algorithm.
3.1.2. Daytime Net Ecosystem Exchange Component
[19] The physiological model we used to fill gaps in

daytime NEE combines the respiration component above
with a rectangular hyperbolic equation that relates photo-
synthesis to PAR, regulated by an optimum air temperature.
This Michaelis-Menten type functional relationship requires
fitting three additional parameters, for a total of five
independent parameters:

F̂ ¼
Ae

�E0

Tsoil�T0ð Þ � PmIPAR

IPAR þ Km

T2
air

a2
� 2Tair

a

� �
Tair > 0 and Tsoil > 0

Ae
�E0

Tsoil�T0ð Þ Tair � 0 or Tsoil � 0

8><
>: ð3Þ

where IPAR is the incident horizontal photosynthetically
active radiation and Tair is the air temperature. The
parameters are Pm, the maximum rate of photosynthesis,
a, the normalized parabolic air temperature response with an
intercept of zero, and Km, the photosynthetic half-saturation
constant. We used the previously optimized nighttime
values for A and T0 (section 3.1.1). When Tair or Tsoil is
less than 0�C we assume that GEE = 0 and F̂ = R̂.
[20] The PB model was chosen for its simple representa-

tion of the system (i.e., five parameters) and its relatively
wide use in the forest ecosystem community. For additional
simplicity, the parameters are assumed constant across
the years. Other analyses with Howland data suggest that
fitted parameters of similar models change seasonally and
between years [e.g., Hollinger et al., 2004; Gove and
Hollinger, 2006].

3.2. Artificial Neural Network (ANN) Model

[21] The physiological models used here represent a
family of functions whose characteristic shapes are con-
strained by prior knowledge of, or assumptions about, the
relationships between a set of independent variables and
the response (e.g., the soil temperature control of respi-
ration). In contrast, the ANN approach focuses solely on
characterizing the relationship between the valid NEE
measurements and the climate measurements, making no
assumptions about physiological processes, so the func-
tional dependence of daytime NEE and respiration on
biophysical predictor variables is not prescribed. Other
studies have used this modeling approach for the purpose
of gap filling flux data [e.g., Papale and Valentini, 2003].
[22] We apply essentially the same ANN architecture

separately to valid nighttime NEE data for modeling eco-
system respiration, and to valid daytime NEE data to model
NEE where it is unavailable. The respiration model is driven
by soil temperature, air temperature, surface soil moisture,
and a seasonal indicator in the form of sine and cosine
functions of the day of the year. The daytime NEE model
adds photosynthetically active radiation (PAR), vapor pres-

D08S03 HAGEN ET AL.: UNCERTAINTY IN TOWER-BASED GEE ESTIMATES

4 of 12

D08S03



sure deficit (VPD), and sine and cosine functions of the
hour of the day as additional input drivers.
[23] An artificial neural network model is a multistage

nonlinear regression function where the intermediate values
are called hidden nodes. For example, with two stages y =
f(g(x)), or more specifically:

yk ¼ f
XM
j¼0

w
2ð Þ
kj g

XD
i¼0

w
1ð Þ
ji xi

 ! !
; ð4Þ

where x represents the collection of independent variables in
the regression (in our case the biophysical drivers). The
outer function f(	) is usually linear and the inner function
g(	) is a nonlinear, typically sigmoidal function, such as the
hyperbolic tangent. The free parameters in this regression
are weights wji and wkj, which represent the strength of the
connection between the ith input and the jth intermediate
value (represented by the M evaluations of g) and also
between the jth intermediate value and the kth output value
y (in our case NEE or respiration). This ANN has D inputs
and M hidden nodes.
[24] This regression approach is referred to as a net-

work because all inputs can influence all outputs, depend-
ing upon the values of the weights. For estimating the
parameters, we use the standard backpropagation algo-
rithm [Bishop, 1995], which updates the weights for each
pair of {yk, xi} data vectors in order to minimize the
error. We also incorporate a Bayesian modification of
artificial neural networks [MacKay, 1994] that limits the
complexity of the model to that which is supported by
the data, avoiding the common neural network problem
of overfitting. In our study, we independently verified
that the models do not overfit (as part of the K-fold
validation exercise below) and, therefore, that the results
are not dependent on the choice of the number of hidden
nodes M.

3.3. Error Distribution

[25] There is evidence that errors associated with eddy
flux observation are better represented by a two-sided
exponential distribution than a Gaussian distribution, i.e.,
they are leptokurtic with outliers (Figure 2) [Hollinger and
Richardson, 2005; Richardson and Hollinger, 2005]. We
performed a multipart analysis with the two types of
regression models, considering in each case both an
underlying Gaussian and an underlying two-sided expo-
nential distribution. We evaluated the assumptions of
underlying error distribution by posterior analysis of the
model residuals.
[26] We alter our assumption of how the error is distrib-

uted by specifying the form of the cost function that is
minimized in the optimization routine. When assuming a
Gaussian error distribution, we minimized the usual least
squares error function. In the case of the two-sided expo-
nential distribution assumption, we minimized the weighted
absolute value of the residuals. We used weights based on
the recommendation of Richardson and Hollinger [2005]
that the intrinsic observational uncertainty is well repre-
sented by an exponential function of soil temperature. More
specifically, as can be seen in the data, the uncertainty in
flux observations scales with the magnitude of the flux (i.e.,
absolute error is larger when the absolute flux is larger), and
to obtain an independent estimate of that uncertainty, we
express the uncertainty as a function of soil temperature.

3.4. Uncertainty Analysis

[27] Ecosystem carbon flux is an aggregate property of a
system containing many physical, chemical, and bio-
logical interactions. For example, nighttime NEE generally
increases exponentially with increasing soil temperature,
and a simple physiological model captures the basic rela-
tionship (Figure 3a). However, substantial noise (i.e., model
residuals) remains after this simple relationship has been
accounted for (Figure 3b). This residual noise is due to both
measurement uncertainty and model uncertainty (i.e., noisy
data and an imperfect model), with model uncertainty
potentially due to both parameterization and choice of
functional form. In addition, the variance of these residuals
can be heteroscedastic (i.e., not constant with respect to one
or more of the independent variables); in this case, the
residual variance varies with soil temperature (Figure 3b).
[28] Many approaches to uncertainty estimation (e.g.,

least squares regression) assume that the data have constant
variance and Gaussian noise, and that the regression model
has independent identically distributed residuals. Eddy flux
observations and associated models generally do not con-
form to these assumptions, but computational solutions
exist. The bootstrapping approach (resampling with replace-
ment) to uncertainty assessment is one of several techniques
more appropriate than conventional analytic methods for
data with heteroscedastic and nonnormally distributed
errors. This method assumes that the observed data repre-
sent only one possible realization out of many, and recon-
structs a large number of alternate realizations based on
random resampling of residuals. Bootstrapping brackets the
range of unobserved values conditioned on the assumption
of the model and its associated likelihood function [Efron
and Tibshirani, 1993].

Figure 2. Residuals of a model fit to nighttime NEE, or
ecosystem respiration (shaded bars), distributed with a
kurtotic peak around zero. This distribution resembles a
two-sided exponential distribution (dashed line) more than a
normal distribution (solid line).
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[29] Previous studies have used Monte Carlo analyses for
estimating modeling uncertainty in NEE and GEE, but most
provide a measure of variability centered on the mean
response of a model prediction at a point in time, and do
not consider the additional uncertainty due to the random
deviations from the mean response of any individual eddy
flux observation [e.g., Griffis et al., 2003; Richardson and
Hollinger, 2005]. Other studies have accounted for the
random processes associated with NEE, but have not
considered the uncertainty in the mean response [e.g.,
Saleska et al., 2003]. Uncertainty about the mean response
is known as the confidence interval, while this same
uncertainty plus the additional uncertainty due to inherent
variations in the data is called the prediction interval. In this
study, we present uncertainty as a 90% prediction interval,
which brackets uncertainty about an estimate based on new
data (i.e., gap filling), which is an appropriate statistical
measure of our knowledge (or lack of knowledge) about
predicted values. Below, we outline our implementation of
the nonparametric resampling approach (bootstrapping),
which is based on the statistical theory of Efron and
Tibshirani [1993] and recent algorithms described by others
[e.g., Robert and Casella, 1999].
[30] The bootstrap is a simulation based calculation of the

properties of an arbitrary estimator, typically the bias or the

standard error, and can also be used to calculate confidence
and prediction intervals. Since in the bootstrap algorithm the
data are resampled, there is no underlying assumption about
the statistical distribution. In regression models, where the
statistical assumptions pertain to the model errors, the
residuals are resampled and added back to the fitted values
to create bootstrap replicates of the data. The regression
model is then refit to each replicate, and the resulting
empirical distribution of the recalculated estimators pro-
vides the desired properties. In our case we evaluate the
statistical properties (90% prediction intervals) of the esti-
mators for the response where the original data were
missing. This procedure makes no assumptions of the
statistical distribution of the residuals. To account for
heteroscedasticity as a function of a covariate variable we
propose a simple residual binning (step 3 below). The text
below outlines the bootstrap algorithm:
[31] In step 1, the regression model (either PB or ANN) is

fit to the valid observations (e.g., Figure 3a).
[32] In step 2, the residuals from this fit are calculated

(e.g., Figure 3b), and the variance of the residuals is
examined for a significant dependence on the driving
variables (e.g., soil temperature).
[33] In step 3, if there is significant heteroscedasticity, the

main driver of the nonconstant variance is identified. The

Figure 3. (a) Nighttime flux (respiration) fit using an Arrhenius function [Lloyd and Taylor, 1994] of
soil temperature (shaded line; see equation (2) in text). (b) Variance of the residuals from this model,
which is heteroscedastic, with variance increasing at higher temperatures. (c) One example of the 1000
artificial data sets, constructed by randomly adding residuals (bootstrapping) to the simple fitted function
in Figure 3a. (d) A histogram of soil temperature for the entire time period. Each bar is split into fraction
of half-hours having a valid respiration observation (dark shading) and fraction needing modeled
respiration (light shading). Bin locations and sizes from this histogram (Figure 3d) were used to construct
the artificial data sets (Figure 3c).
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range of this driving variable is divided into several inter-
vals, and the residuals are binned on the basis of the value
of the driving variable at the time of measurement (e.g.,
Figure 3d). In the analysis, both daytime NEE and respira-
tion residuals, for both the PB and ANN models, were
divided into eight bins on the basis of soil temperature.
[34] In step 4, an artificial data set (e.g., Figure 3c) is

created by adding the ‘‘model fit’’ predicted values (the line
in Figure 3a) to random residuals drawn with replacement
from the correct bin (Figure 3b).
[35] In step 5, a revised PB or ANN model is fit to the

bootstrapped data set (e.g., Figure 3c).
[36] In step 6, this bootstrap model is used to predict flux

values for the gap points (e.g., Figure 3d).

[37] In step 7, a residual (from step 2) is added to the
predicted value (from step 6) in the same manner as
described in step 4, to simulate the effect of random noise
on any predicted or gap filled point. This step ensures that
we capture the statistical prediction error, not just the
uncertainty due to model parameterization.
[38] In step 8, repeat steps 4–7 above N times (we used

N = 1000).
[39] In step 9, predicted values and prediction intervals

are calculated using the empirical distributions of the results
(e.g., Figure 4a). Every gap point in the time series will
have N estimated values from N realizations of the
resampled and refit time series. Calculation of the quantiles
of these values yields many metrics, including the median
and 90% prediction limits.
[40] In step 10, N complete component flux time series

are generated by using the measured value at every point in
the time series where there is an observation and by using a
bootstrap-predicted value for those time steps with no
measurement. Expected values and prediction limits for
sums of fluxes are estimated from these N synthetic time
series (Figure 4b).

3.5. Validation

[41] We used two measures of performance to evaluate
both the PB and the ANN models both for filling unavail-
able daytime flux and for estimating daytime respiration.
First, we conducted a standard K-fold cross validation of the
nighttime respiration models and daytime NEE models
[Hastie et al., 2001], which allowed us to quantify out-of-
sample model error. We split all the valid data into K
randomly distributed groups. Initially, group 1 is set aside
for testing, while the models are parameterized on the basis
of groups 2 through K. The fitted models are then used to
predict the group 1 observations. Next, group 2 is set aside
for testing, while groups 1 and 3 through K are used for
training. This pattern proceeds until all K groups have been
withheld for testing. We then computed the root mean
squared error (RMSE), the weighted absolute value of the
error (WAD), the correlation coefficient (R2), and mean bias
as measures of model performance.
[42] A second evaluation of model performance allows us

to investigate the accumulation of uncertainty as model
predictions are aggregated (by summing) into longer tem-
poral intervals. There are few long periods without missing
observations (Figure 1b), but we identified in the 7-year
Howland NEE time series 13 days having zero gaps and
73 days having only one gap. We compared the observed
48 half-hour total NEE to the 1000 model predicted NEE
values for these 86 complete and near-complete days. While
the models used in this analysis were generated without the
data from the 86 days of interest, the uncertainty estimates
were taken from the bootstrapping analysis described in
section 3.5.

4. Results and Discussion

4.1. Half-Hourly Time Step

4.1.1. Parameter Optimization
[43] The physiological parameter values that minimize

the cost functions applied to the observed data are similar to
the parameter values fit by Hollinger et al. [2004] in their

Figure 4. (a) Bootstrapping algorithm produces empirical
probability distributions for each daytime half hour. Most
half-hourly distributions of simulated GEE are leptokurtic
and skewed, like the example displayed here (1630–
1700 LT on 28 June 1997). (b) Aggregating (by summing)
the half-hour GEE simulations to the annual scale, for each
bootstrapped data set produces an annual empirical
distribution. These predictions are generally approximately
normally distributed.
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analysis (Table 1), though they used a different subset of the
data (1996 only). The artificial neural network used four
hidden nodes (M = 4; equation (4)) for both the respiration
model and the daytime NEE model. The optimized neural
network parameters (i.e., weights) are not physiologically
meaningful and therefore their values cannot be compared
with other studies.
[44] The residuals generated from the respiration model

fit resembled a two-sided exponential error distribution
more than a Gaussian distribution (Figure 2), which is in
agreement with the observation that flux measurement
uncertainty follows a Laplace rather than a Gaussian distri-
bution [Hollinger and Richardson, 2005]. This was also true
for residuals from other models’ fits (not shown). By
changing the assumption of how the error is distributed,
one changes the optimal parameters. There are many
combinations of parameter values that fit the data nearly
equally well. The flatness of the cost function near the
optimum has been described thoroughly elsewhere [Radtke
et al., 2002; Hollinger et al., 2004; Hollinger and
Richardson, 2005].
4.1.2. Model Validation
[45] The K-fold cross validation results show that both

modeling approaches (ANN and PB) reproduce observed
daytime NEE and nighttime respiration reasonably well at
the half-hourly timescale, with all coefficient of determina-
tion values (R2) greater than or equal to 0.49 (Table 2). For
respiration, the ANN and PB models fit the data approxi-
mately equally well, probably because both models are
based primarily on soil temperature (with the addition of
the time variables in the ANN approach). However, there is
a larger discrepancy between the ANN and PB model fits to
the daytime NEE observations.
[46] The ANN modeling approach has a lower mean error

than the PB approach in every case, expressed either as root
mean squared error (RMSE) or weighted absolute deviation
(WAD). This is expected because ANN provides more
flexible choices for the functional dependence than the
physiological model and a larger set of input variables.
The daytime NEE models are less accurate (i.e., they have
higher RMSE or WAD) than the respiration models, likely
because daytime NEE observations have higher variance
than nighttime respiration observations.
[47] Changing the assumption of error distribution has a

small effect on the cross-validation results of the respiration
model, increasing the error (e.g., RMSEgauss � RMSEexp or
WADexp � WADgauss) by at most 5%. This change has a
slightly larger effect on the daytime NEE models, increasing
the error by up to 10%. The magnitude of change in this K-

fold error statistic is an indication of the model’s sensitivity
to assumptions about the error distribution and the daytime
NEE models are more sensitive to this assumption.
[48] The cross-validation results indicate that all models

assuming a Gaussian error distribution have no statistically
significant model bias (Table 2). The models using weighted
observations and a two-sided exponential distribution in the
cost function, however, all show a significant bias. This bias
is an expected by-product of the model assumptions,
particularly the weighting of observations. The weighting
scheme assumes that the observations taken during high soil
temperatures are less reliable and, therefore, the influence of
residuals taken at high soil temperatures is reduced. These
assumptions reflect a belief about how best to accommodate
heteroscedastic data and occasional large instrumentation
errors [Richardson and Hollinger, 2005].
4.1.3. GEE Estimates
[49] Each modeling approach (PB/ANN and Gaussian/

Exponential) produces one time series of daytime NEE and
a second of daytime respiration, both at half-hour intervals.
The daytime NEE time series contains observed fluxes
where data are available, and modeled fluxes where they
are not. The daytime respiration time series has only
modeled fluxes. By applying the bootstrapping algorithm,
we generate one thousand time series, each representing a
simulated potential time series that includes uncertainty in
the model parameters as well as uncertainty due to the
random nature of the flux observation. One thousand GEE
time series are estimated by subtracting the 1000 daytime
NEE time series from the 1000 respiration time series
(equation (1)). Thus each daytime half hour has 1000
simulated GEE estimates that approximate the distribution
of values that could have been observed given the data and
the modeling assumptions. The simulated GEE estimates for
any half hour can be displayed as a histogram (Figure 4a).
From this histogram, we can extract several statistics of
interest, including the mean, median, upper 90% value, and
lower 90% value.
[50] At the half-hour timescale, the GEE estimates gen-

erated from the bootstrapping algorithm are often skewed
(Figure 4a). This skewness reflects a skewness in the model
residuals and, ultimately, in the flux observations them-
selves. The nighttime flux (i.e., respiration) record contains

Table 1. Optimal Parameter Values for the Physiological Modelsa

Gaussian Exponential

Respiration
A 149.1 149.9
E0 113.4 113.4
T0 251.8 252.8

DayNEE
Pm 22.3 18.8
Km 344.8 300.1
a 22.4 24.4

aE0 is fixed in this exercise.

Table 2. K-Fold Validation Results for All of the Model Filling

Approaches

Gaussian Error

R2 Bias, mmols m�2 s�1 RMSE

Respiration
Artificial neural net 0.53 ± 0.01 0.00 ± 0.02 2.21 ± 0.04
Physiological 0.51 ± 0.01 �0.03 ± 0.02 2.28 ± 0.03

DayNEE
Artificial neural net 0.75 ± 0.01 �0.00 ± 0.01 3.12 ± 0.04
Physiological 0.50 ± 0.01 �0.01 ± 0.03 4.56 ± 0.04

Two-Sided Exponential Error

R2 Bias, mmols m�2 s�1 WAD

Respiration
Artificial neural net 0.52 ± 0.01 0.27 ± 0.02 0.67 ± 0.01
Physiological 0.50 ± 0.01 0.28 ± 0.01 0.71 ± 0.01

DayNEE
Artificial neural net 0.70 ± 0.01 0.16 ± 0.03 1.31 ± 0.02
Physiological 0.49 ± 0.00 �1.04 ± 0.03 2.86 ± 0.02
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more unusually high flux measurements (i.e., positive; flux
out of the canopy and into the atmosphere) than unusually
low (i.e., negative) flux measurements, while the daytime
flux record is skewed in the opposite direction. To estimate
GEE, we subtract daytime NEE flux from respiration, which
magnifies the skewness in the GEE estimates.
[51] At the half-hour scale, the GEE estimates generated

from the four approaches are never significantly different at
the 90% prediction limit level. While the median boot-
strapped estimates predicted from any approach at any half
hour are different, the statistical uncertainty reflected by the
90% prediction limits is large relative to this difference. The
ANN models generally predict slightly higher GEE during
half hours with high IPAR than the PB models. During low
IPAR levels, the PB models predict higher GEE than the
ANN models.

4.2. Daily Time Step: Validation of Complete-Day NEE

[52] Both model approaches validate reasonably well
using the 86 complete-day data points (all R2 > 0.48),

though the ANN has a higher correlation and a lower
RMSE and mean bias (Table 3 and Figure 5). In the context
of this analysis, changing the assumption of normally
distributed residuals to an assumption of two-sided expo-
nentially distributed residuals does not improve the accuracy
of the predictions. The 90% prediction limits around each
daily prediction in this small sample are apparently under-
estimates of the actual uncertainty, as only about 70% of the
prediction limits touch the 1:1 line.

4.3. Annual Time Step: GEE Estimates and 90%
Prediction Limits

[53] Annual GEE estimates for each modeling approach
are generated by aggregating each of the 1000 individual
GEE time series to the annual scale. At this scale, annual
GEE estimates are approximately normally distributed
(Figure 4b). They are no longer significantly skewed or
kurtotic, so that the mean estimates and the median esti-
mates are effectively equal.

Table 3. Complete Day Validation Results for the NEE Gap Filling Approaches, Based on 86 Days With Fewer

Than Two Missing Half-Hour Intervals

R2 RMSE, g C m�2 day�1 Daily Mean Bias, g C m�2 day�1

Gaussian error
Artificial Neural Net 0.75 0.74 �0.23
Physiological 0.53 1.15 �0.50

Two-sided exponential error
Artificial Neural Net 0.72 0.74 �0.05
Physiological 0.48 1.16 �0.52

Figure 5. Modeled versus measured daily NEE for 86 complete or nearly complete days in the
Howland Forest time series, using four model and error distribution combinations: (a) PB Gaussian,
(b) PB exponential, (c) ANN Gaussian, and (d) ANN exponential. Error bars represent 90% bootstrap
intervals.
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[54] The annual GEE sums estimated in this analysis
(Figure 6) are generally consistent with previous estimates
for the Howland site using the same data [Hollinger et al.,
2004], and with those based on mechanistic model predic-
tions (e.g., PnET model [Aber et al., 1996]). This similarity
includes the overall absolute values of the magnitude of the
flux as well as the rank order of annual values. However,
focusing especially on interannual patterns, there is a
consistent offset between the modeling approaches.

[55] The bootstrapped estimates of the annual 90% pre-
diction intervals average 40 g C m�2 year�1 for the ANN
approach and 30 g C m�2 year�1 for the PB approach. The
year-to-year variability in GEE is smaller than the magni-
tude of uncertainty at the annual timescales in at least three
of the six pairs of adjacent years (i.e., three of six pairs in
the PB and four of six pairs in the ANN). Changing the cost
function to reflect the assumption of exponentially distrib-
uted error slightly reduces our estimates of statistical un-
certainty (Figure 6). All methods agree in predicting higher
GEE at Howland over the 1998–2001 period than before or
after this time.

4.4. Statistical Uncertainty in GEE Estimates Across
Time

[56] The 90% annual prediction intervals from the differ-
ent methods are generally offset from one another and in
many cases do not overlap. This may be due to the fact that
our analysis accounts only for uncertainties associated with
statistical modeling, and is consistent with the likely influ-
ence of other external factors. The offset of prediction
intervals within a year also shows that uncertainty related
to model selection contributes considerably to the overall
range of possible GEE estimates. This overall range is
difficult to quantify comprehensively because the total
number of models that can be used is not finite. However,
the two models used here represent two extremes, both in
terms of the number of variables and the way in which the
variables are used.
[57] Though the nonlinear regressions are quantitatively

more accurate than the physiologically based regression,
there is no objective basis for choosing one approach over
the other. A process-oriented model (e.g., equations (2) and
(3)) may contain useful prior functional constraints about
ecosystem carbon fluxes. Alternatively, a regression model
that synthesizes the data record most accurately (e.g.,
equation (4)) may be the best choice if we desire estimates
that mimic the behavior of the data rather than provide
insights about the processes or capacity for extrapolation.

5. Conclusions

[58] Tower-based estimates of GEE represent a potentially
important source of ecosystem information that is derived
by a combination of data and models. As such, they require
more analytical processing than most data sets that are
considered ‘‘observations,’’ but they also are likely to be
used as data to a greater extent than most quantities that are
considered ‘‘model outputs.’’ The objective of this analysis
was to provide a framework for estimation of uncertainty in
tower-based GEE time series. Specifically, we are interested
in quantifying the prediction intervals associated with
regression models that are needed to (1) extrapolate respi-
ration into the day and (2) fill missing NEE values in the
day. These prediction intervals correspond to the range of
values we would likely observe, given the valid data and the
model assumptions. We have used a computational tech-
nique that is intended to bracket the range of likely
observations, but it is not guaranteed to bracket the
unknown ‘‘true’’ values of GEE flux. We did not explore
a large number of different regression models, but instead
illustrated the issue by using two different modeling

Figure 6. Time series of annual GEE. (a and b) Same data
at different scales. In Figure 6a, the difference in estimates
of annual total GEE from the four modeling approaches is
small relative to the magnitude of GEE, as is the statistical
uncertainty. In Figure 6b, the annual GEE estimates do
exhibit dependence on the method chosen for gap filling
daytime NEE and respiration modeling. The statistical
uncertainty due to model fitting and the random variability
of the observations is comparable to the uncertainty due to
model selection. Interannual variability in GEE is partially
masked by statistical uncertainty and nearly completely
masked by model selection uncertainty, but the overall
patterns are almost identical (i.e., the rank correlation is
very high).

D08S03 HAGEN ET AL.: UNCERTAINTY IN TOWER-BASED GEE ESTIMATES

10 of 12

D08S03



approaches. Valid arguments could be made for the use of
either approach, and we do not recommend one over the
other.
[59] The statistical uncertainty in annual GEE estimates at

Howland Forest associated with each model type, is about
30–40 g C m�2 year�1 (90% prediction limit). Our results
indicate that the uncertainty due to model assumptions is
greater than the statistical uncertainty associated with any
particular model. The combined uncertainty due to model-
ing in the GEE estimates is nearly the same magnitude as
the interannual variability. These estimates are similar in
magnitude to the uncertainty in NEE arising from system-
atic errors associated with choice of nocturnal u* threshold
[Hollinger et al., 2004].
[60] While our analysis indicates a relatively small

amount of uncertainty in the absolute value of GEE at the
annual scale, this relative uncertainty is much larger at
shorter timescales and is a dominant feature when consid-
ering half-hourly to daily fluxes (Figure 7). Furthermore, the
interannual variability of the GEE flux, which is a key focus
point for research into process controls linking environment
and ecosystems, is often masked by the uncertainty from
one year to the next. The implications of this result are
potentially significant, and should be investigated indepen-
dently at other sites and with other methods. On the other
hand, the consistent patterns of the variability between
model types indicate that some insight can still be gained
about larger trends without considering explicitly the abso-
lute magnitude of the GEE flux (Figure 6b).
[61] The complexity of this data set and the nature of the

GEE calculation make error estimation sensitive to statisti-

cal assumptions. The impact of our choice of underlying
error distribution assumption was significant, but less so
than the differences associated with the selection of a
model. While future work is needed to further integrate
sources of uncertainty, evaluate alternate modeling tech-
niques, and generalize results across multiple sites, this
paper represents an initial step in the characterization of
uncertainty in gross ecosystem fluxes from the bottom up
(e.g., in situ observations) and is useful in conjunction with
top-down estimates (e.g., satellite observations, model
inversions).
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