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Abstract: Coarse woody debris (CWD) plays an important role in many forest ecosystem processes. In recent years, 
a number of new methods have been proposed to sample CWD. These methods select individual logs into the sample 
using some form of unequal probability sampling. One concern with most of these methods is the difficulty in estimating 
the volume of each log. A new method of sampling CWD that addresses this issue is proposed. This method samples 
each log with probability proportional to the volume of each piece of CWD. While this method generally has a smaller 
variance than the existing methods, the primary advantage is that a design-unbiased estimator of CWD volume is achieved 
without ever actually measuring the volume of any logs. This method, referred to as perpendicular distance sampling 
(PDS), is compared with three existing sampling techniques for CWD using a simulation study on a series of artificial 
populations. In every case, the variance of the PDS estimator of CWD volume was smaller than the variance of the 
competing methods, but the difference in the variance was not large between PDS and two of the competing methods. 
When estimating the number of pieces of CWD, the variance of the PDS estimator was one of the largest amongst the 
tested methods. An equally important result is that the variant of line intersect sampling used in this study, where the 
orientation of the line is the same at all sample points, performed poorly in every situation. This and other problems 
suggest that the suitability of this sampling technique for estimating CWD is questionable. 

RbumC : Les dCbris ligneux grossiers jouent un r6le important dans plusieurs processus Ccosysttmiques des forets. 
Rkemment, plusieurs nouvelles mdthodes ont Ctt? proposdes pour leur khantillonnage. Ces mdthodes stlectionnent 
les trongons individuels de bois en se basant sur une certaine forme d'dchantillonnage ii probabilitd inkgale. Mais, 
un probMme inhdrent A la plupart de ces mCthodes vient de la difficult6 A estimer le volume de chaque trongon. Une 
nouvelle mdthode est proposte pour rksoudre ce probkme. Cette mdthode sdlectionne chaque tronson avec une probabilitd 
proportionnelle 2i son volume. ComparCe aux mCthodes existantes, elle offre les avantages suivants : elle permet d'estimer 
le volume total sans aucune mesure du volume individuel des trongons, elle est non biaisCe et a une plus faible variance. 
Cette mCthode appelCe Cchantillonnage 21 distance perpendiculaire (EDP) a Ctd comparde 2 trois mCthodes existantes en 
simulant une sdrie de populations artificielles. Dans tous les cas, la variance de I'estimateur EDP du volume total est plus 
faible que celle des autres mCthodes, mais la diffkrence est faible compard 2 deux des mCthodes existantes. Par contre, la 
variance de I'estimateur EDP du nombre total des debris ligneux figure parmi les plus tlevtes des quatre mdthodes testCes. 
Un rCsultat tout aussi important est que cette variante de I'Cchantillonnage par ligne d'interception n'a pas une bonne 
performance lorsque I'orientation de la ligne est maintenue constante pour tous les points Cchantillonnts. Ce problkme 
alliC i d'autres faiblesses remettent en question la pertinence de cette mCthode pour I'estimation des dCbris ligneux 
grossiers. 

[Traduit par la RCdaction] 

introduction of global climate change, and a fuel source for forest fires. 
Standing CWD is defined as stumps and snags. Downed 

Recently there has been a substantial amount of interest in CWD is defined as any piece of downed dead woody material 
understanding the role of coarse woody debris (CWD) in forest that meets some lower size limit. Thus, downed boles, limbs, 
ecosystems. It is of current interest because it  serves as habitat tree butt sections and root masses, and large diameter logging 
for many plant and animal 'pecies9 a sink for the waste all fall into the category of downed CWD. Because of the 
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nonstandard form of any piece of CWD, there is no internation- 
ally recognized definition for what constitutes downed CWD. 
The type and size of the material designated as CWD varies 
among classification systems (Helms 1998). 

Early sampling methods for CWD were line intersect sam- 
pling (LIS) (Warren and Olsen 1964; de Vries 1979; Kaiser 
1983) and the related method of planar intersect sampling (Brown 
197 1 ). These methods are relatively efficient in terms of the 
time required to take measurements, and they can also be per- 
formed without any specialized field instrumentation. A num- 
ber of authors have also estimated CWD using adaptations of 
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fixed-area plot sampling (Shifley and Schlesinger 1994; Har- 
mon and Sexton 1996; Shifley et al. 1997; Pedlar et al. 2002). 
While these sampling methods are reasonable solutions, studies 
such as those of Pickford and Hazard (1978) and Bebber and 
Thomas (2003) suggest that the variance of the LIS and fixed- 
area plot sampling estimators can be large unless the sampling 
effort is substantial. To address the variance problems, foresters 
have long realized the benefits of unequal probability sampling, 
where the attribute of interest is positively correlated with the 
inclusion probability of each population element (see Schreuder 
et al. 1993, pp. 5658). The recent interest in CWD has led to 
the development of a number of new sampling methods that 
attempt to exploit this benefit. Examples include transect relas- 
cope sampling (TRS) (Stahl 1997, 1998), point relascope sam- 
pling (PRS) (Gove et al. 1999, 2001), and diameter relascope 
sampling (DRS) (Bebber and Thomas 2003). The one common 
element of these methods is the use of an angle gauge to select 
pieces of CWD. Thus, common to all three of these techniques 
is the use of unequal probability sampling, where the inclusion 
probability for each piece is proportional to length or length 
squared (TRS and PRS, respectively) or cross-sectional area 
at the midpoint of the log (DRS). One of the primary reasons 
for the development of these techniques is that the variance of 
the estimator of CWD volume tends to be small in compar- 
ison with the variance of the estimators used in conjunction 
with LIS or fixed-area sampling methods (Bebber and Thomas 
2003). The reason for the reduction in variance is that CWD 
volume is more highly correlated with the inclusion probability 
under these designs than when LIS or fixed-area sampling are 
employed. 

A common trait for many of the current sampling methods is 
that the log volume, denoted by V, must be measured for each 
piece of CWD that is selected. While methods for estimating the 
volume of a standing tree are well developed, volume estimation 
for CWD is more complicated for a number of reasons. Some 
of the problems are 

an estimate of the volume using methods such as randomized 
branch sampling (Gove et al. 2002), importance sampling (Fur- 
nival et al. 1986, 1993), and crude Monte Carlo (Valentine et 
al. 2001). Thus, the log volume is estimated by 

where E[E] = 0 and var[~] = 02. The estimator of log volume, 
for methods such as importance sampling, is design-unbiased, 
and no bias is incurred by the estimator of total CWD volume. 
The drawback with subsampling methods is the amount of time 
required to collect the additional measurements and the addi- 
tional variance component, E, associated with the estimation of 
the log volume (Gregoire et al. 2000; Gove et al. 2002). Williams 
and Wiant (1998, Tables 3-5) show some results for the increase 
of the standard error of the estimator when importance sampling 
was used to estimate log volumes of standing trees. In this study, 
the standard error of the importance sampling estimator ranged 
from 1.03 to 12.6 times larger than the estimator that used the 
true standing tree volume. Granted, these results were generated 
using only one importance sampling measurement per tree, but 
that the increase ranged from trivial (1.03) to substantial (12.6) 
is reason enough to warrant additional study or a rather sub- 
stantial investment of additional measurements. In summary, 
these two solutions illustrate the usual bias-variance trade-off 
that has been studied in other forestry applications, such as the 
centroid method versus importance sampling for log volumes 
(Wood et al. 1990; Wiant et al. 1996 and references therein). 

The third solution involves an existing technique that avoids 
the need to measure log volume, that is, LIS. In the genral case of 
elevated logs, as illustrated by Kaiser (1983, example 2c), CWD 
volume can be estimated by measuring the cross-sectional area 
intersected by the vertical plane defined by the orientation of 
the line and the log. However, acquiring an accurate measure- 
ment when the orientation of the log and line are similar could 
be extremely difficult, especially if the log is large or heavily 

(1) The piece of CWD may be broken, sections may be miss- One 'ption to this measurement would be 

ing, or it may not be possible to accurately identify the the cross-sectiona1 area is 

tree species because of decay. This precludes the use of the frustrum of a cope or other solid. However, this assump- 

simple volume and taper models for at least a portion of tion would be questionable in light of the results of Matern 

the population. (1956, 1990 and reference therein) and others, who studied the 
suitability of assuming that the cross-section of a bole could 

(2) Taper models or volume equations generally do not exist 
for butt logs and root masses, which are forms of CWD. 

(3) Logs tend to "deflate" over time as they decay, becom- 
ing less circular in cross section because of the force of 
gravity and resultant loss of structure. 

There are three solutions to the problem of estimating log vol- 
ume. The first is to assume that logs are adequately described 
by some three-dimensional solid. For example, Robertson and 
Bowser (1999) assume a truncated cone and determine the vol- 
ume by measuring the diameters at each end and the total length. 
Thus, each log has a fixed volume estimate, VCone, and the only 
consequence of using such an assumption is that the estimator 
of volume will tend to be biased, with the magnitude of the bias 
of the estimator determined by a weighted sum of the individual 
errors between the approximated and true volume, which are 
given by VCo"C - V. The alternative approach is to subsample 
the log and take measurements at random locations to obtain 

be modeled by an ellipse. As Matem states "...the convex clo- 
sure of a stem differs from circular form in what can only be 
described as 'irregular'." Valentine et al. (2001, Appendix B) 
provide several alternatives to measuring cross-sectional area 
of a log intersected by an LIS segment. 

Another common trait for all of these methods is that the 
instrumentation necessary for implementation is simple and af- 
fordable (e.g., linear tape, prism, angle gauge). However, as 
noted by Bebber and Thomas (2003), the use of a laser range 
finder can greatly simplify fieldwork. While the savings in time 
afforded by modem instrumentation is always of interest, the 
question is whether better sampling methods are possible given 
modern instrumentation? 

One thing that is apparent from the literature is that CWD 
is one of the rare exceptions in forest sampling where the per- 
formance of the current sampling techniques is not well under- 
stood, and there may be alternative techniques to those already 
proposed. To motivate how one might improve on current tech- 
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niques, the following observations are made regarding CWD 
sampling: 

(1) By definition, a piece of downed CWD should be com- 
pletely accessible for measurement. Thus, sampling tech- 

, niques should take advantage of the fact that no part of 
the log is more or less accessible, and no remote mea- 
surements are required. 

(2) In comparison with other fixed costs, such as travel and 
crew time, the cost of modem instrumentation is becom- 
ing less of a bamer to adopting new methodology. 

(3) While numerous CWD attributes are of interest (e.g., 
number of pieces, distribution by size and decay class, 
length, surface area), it is felt that the volume of CWD 
debris is often the most important and the most difficult to 
estimate with a high degree of accuracy. Thus, a method 
that improves on the current state of the art should focus 
on efficiently estimating this attribute. 

(4) Measurement errors are almost always ignored in forest 
inventories. While the effects of measurement error are 
fairly well understood for some of the more common for- 
est inventory measurements, such as diameter, basal area, 
and height (Matern 1956,1990; Biging and Wensel1988; 
Gertner 1990; Williams et al. 1999), little is known about 
CWD because it has no consistent form. Thus, a new 
method that minimizes the impacts of known measure- 
ment errors offers advantages over estimation techniques 
that rely on assumptions that may not be correct. 

(5) With some exceptions (e.g., salvage sales of a recent 
blowdown, habitat for endangered species), CWD has 
no marketable value. Thus, resources for acquiring CWD 
data will tend to be substantially less than those for at- 
tributes such as standing tree volume. This means that 
it is unlikely that the number of logs tallied at a given 
point will be large or that stratification will be performed 
for the specific benefit of variance reduction for CWD 
estimators. 

Given these observations, we propose and test a new method 
referred to as perpendicular distance sampling (PDS). The ba- 
sic premise of this technique is that sampling for CWD can 
be performed quickly and with probability proportional to the 
true volume of each log. Thus, not only is it possible to obtain 
design-unbiased estimators of CWD that have appealing mini- 
mum variance properties, but concerns regarding the influence 
of measurements errors and errors associated with predicting or 
estimating volumes from models are also minimized. Thus, the 
objectives of this paper are (i) to develop the sampling design 
and derive the estimators for PDS, (ii) to compare PDS with 
some of the alternative sampling strategies for CWD to give a 
rough idea of the range of reductions in bias and variance of 
the estimators that are possible, (iii) to illustrate the possible 
biases associated with using simple approximations of the true 
volume, and (iv) to illustrate how the spatial distribution of logs 
influences the performance of CWD estimators. 

One problem with a study of CWD estimators is that the sam- 
pling strategy, measurement techniques, and study variables can 

vary greatly depending on the goals of the survey. For exam- 
ple, the variables of interest for a specialized study of CWD 
may include, volume, number of pieces, decay status, size dis- 
tribution, surface area, and number of fruiting bodies per log. 
On the other hand, the variables of interest for a multiresource 
large-scale inventory may be only volume and volume by broad 
size, habitat, or decay classes. This paper will compare CWD 
estimators in terms of a large-scale forest inventory. The results 
may not directly apply to all studies. 

The estimators 

The tree-centered concept is often used to develop variable 
radius plot (VRP) sampling and areal sampling in general (see 
Husch et al. 1982, pp. 224-225). A similar approach will be 
used in this paper. The fundamental idea of the tree-centered 
approach is that visiting a sample point with coordinates (x, y) 
and selecting trees under VRP or fixed-area sampling is equiv- 
alent to an imaginary circle being drawn about each tree. Each 
tree is selected into the sample any time a sample point falls 
within the circle. This same idea will be used to develop the 
estimators in this study. The difference is that instead of using 
a tree-centered circle, each sampling technique defines an "in- 
clusion zone" about each log, and the log is selected into the 
sample whenever a sample point falls within the inclusion zone. 

Four different CWD sampling techniques were studied: LIS, 
PDS, PRS, and DRS. Transect relascope sampling was not im- 
plemented because it is expected to have variance properties 
that are similar to PRS. 

For each sampling technique, let the population cover an area 
denoted by A, assuming A is a flat plane with area 1 A 1. For each 
point visited on the ground, the estimator considered here is 

where zi is the attribute of interest for log i at point j, xi is its 
probability of inclusion, and n j is the number of logs tallied at 
the point. For this study, zi = & and 1 when estimating total 
CWD volume and number of pieces of CWD, respectively. The 
xi values given by xi = ai /I A 1, where ai is the area of the in- 
clusion zone within the boundary of the population. Mandallaz 
( 1993), Eriksson (1 9 9 3 ,  Mandallaz and Ye ( 1999), Williams 
(200 l), and Valentine et al. (2001) discuss methods of deriving 
the properties of this estimator by treating as a function of 
the random variable that determines the locations of the sam- 
ple points. Thus, the population of interest is the set of (x, y) 
coordinates for all points in A. A result of this method is the 
idea of a "sampling surface" (Williams 2001), which is a three- 
dimensional map of every possible sample outcome over A. 
This surface can also be thought of as a visualization technique 
for displaying the reference set (Gregoire 1998). For each sam- 
pling technique, the three-dimensional sampling surface can 
be constructed across the population using the following algo- 
rithm: 

( I )  For every log i, place the inclusion zone about the log. 

02003 NRC Canada 



Williams and Gove 

Fig. 1. Example data set consisting of two logs located within an 
area covering 1 ha. 

x axis (m) 

(2) Use the inclusion zone boundary to construct a three- 
dimensional solid of height zi I A I /ai, where ai is the area 
of the inclusion zone that falls within A. 

(3) Define the height of the surface at any coordinate (x, y) 
as the sum of the heights of the overlapping solids de- 
fined for each log that would be selected, i.e., i ( x ,  y) = 
Cy==l zi IAllai. 

As suggested by Gregoire (1998), a detailed description of the 
properties of i , ,  where * denotes LIS, PDS, PRS, and DRS is 
given in the Appendix. A small data set consisting of two logs 
is used to illustrate some of the properties of each sampling 
technique. These two logs will be used to visually illustrate 
the differences in the inclusion zone and the z i / i i  value for 
each sampling technique. Figure 1 shows the relative size and 
position of both logs within an area A that covers 1 ha. 

Developing line intercept sampling 
Of the methods studied, line intercept sampling is the most 

well developed and by far the most flexible of the methods. 
When this method is used, a line of length L is established at a 
random location, and logs are selected into the sample when the 
line and log intersect. Some options for implementing LIS are 
whether the line orientation is fixed or random at all locations, 
whether the log is included in the sample when part of the log 
is covered by the line or when inclusion is based on the line 
intersecting the central axis of the log (e.g., the long axis of the 
log is viewed as a line or needle for the purpose of inclusion in 
the sample), and whether the design- or model-based approach 
is used to make inferences about the population. Other options 
not discussed here include using an L-shaped transect (Gregoire 
and Valentine 2003). Interested readers should consult Kaiser 

(1983). He provides an extensive literature review and a con- 
cise development of LIS using the design-based approach to 
inference. 

There are two possible sources of randomization for LIS un- 
der the design-based approach. The first is the random (x, y) 
coordinate within A that is used to locate the transect. The sec- 
ond possible source of randomization is the orientation of the 
line, which will be denoted by 8. Kaiser (1983) notes that the 
distribution for 8 is usually either uniform[O, n) or 8 is a fixed 
constant. In the latter case, the only source of randomization 
is the location of the sample point. He refers to the case of 
8 = constant as the degenerate distribution for 8. He also notes 
that the attributes measured on each log can be viewed as ei- 
ther fixed quantities or random variables. The term degenerate 
is also used to refer to situations where the attributes measured 
on each log are a fixed quantity. 

Only one version of LIS was implemented in this study. It is 
loosely based on the CWD inventory techniques used by The 
Forest Inventory and Analysis program in the United States 
(Forest Inventory Analysis 2002). We use a sampling design 
where the orientation of the line is fixed for all samples (i.e., 
the degenerate distribution for O), and the attribute measured 
on each log is also fixed. This will be referred to as degenerate 
LIS. The term random-orientation LIS will be used to describe 
situations where 8 is nondegenerate. The long axis of the log is 
viewed as a line, and the log is selected into the sample when- 
ever the line crosses the long axis of the log. The log was viewed 
as a line because it simplified the implementation of the simu- 
lation study. Inference is made with respect to the design, as is 
common to all techniques in this study. We chose to implement 
degenerate LIS because many large-scale forest inventories use 
this approach to simplify training and data collection. It will 
be shown that this simplification negatively impacts the perfor- 
mance of LIS. 

For this study, the length of the line used for sampling is given 
by L, and the line is oriented parallel to the x axis (8 = 0). 
Logs are assumed to have no curvature with the length of each 
log given by H (height), and the orientation of each log is 
given by the angle 4 in radians. A log is included in the sample 
whenever the sampling line intersects the line that defined the 
center of the log (see de Vires (1986, pp. 242-250) for examples 
of viewing the log as a needle). The inclusion zone for log i, 
which is denoted by aLIS, is the area within which the log will 
be selected by the line. Thus, aUS forms a parallelogram of area 
aLIS = L H sin($). The LIS estimator of total CWD volume is 

where n ( x ,  y) is the number of logs tallied when the line is 
located with coordinates (x, y), and zi = 1 and Vi when esti- 
mating total number of logs and volume of CWD, respectively. 
The inclusion zone and the resulting zi lA l/aLtS for a data set 
containing two logs is depicted in Fig. 2. Note that the estimate 
derived from one of the logs is vastly different from that of the 
other. This can occur whenever a log has a similar orientation 
to that of the line and illustrates the potentially low correlation 
between the attribute of interest z and its inclusion probability 
IT when degenerate LIS is used. Also note that for this version 
of LIS, the volume of each log must be estimated, which is in 
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Fig. 2. Inclusion areas and response surface height for LIS with a fixed orientation. Note the substantial difference in the height of the 
response surface generated by each log. Schematic of the experimental setup. 

contrast with results given by Kaiser (1983, examples 2b and 
k). 

Developing perpendicular distance sampling 
Many forest sampling techniques are closely related to VRP 

sampling. Thus, an understanding of the benefits of VRP sam- 
pling will be helpful for the development of PDS. Probably the 
greatest advantage of VRP sampling is that estimates of basal 
area can be quickly and efficiently estimated. The reason for the 
statistical efficiency is that given a reasonable list of assump- 
tions (see Schreuder et al. 1993, p. 119), trees are selected into 
the sample with probability proportional to their basal area. The 
reason for the practical efficiency in terms of field effort is that 
only a count of the trees at each sample location is required. 
Thus, when an angle gauge is used, trees that are obviously in 
the sample do not require any measurements. Measurements of 
the basal area are required only to check if "borderline" trees 
should be included or excluded from the sample and when an 
estimate for an attribute other than basal area is desired (e.g., 
volume, number of stems). 

PDS is developed using the exact same reasoning. The ex- 
ception being the realization that CWD can be sampled with 
probability proportional to the actual volume of each log. This 
is illustrated in Fig. 3, where a series of CWD centered inclu- 
sion zones are drawn about a log. The property of each inclusion 
zone is that the area is 2 KPDS V, where V is the true volume of 
the log, K p ~ s  is a constant similar to the basal area factor in 
VRP sampling (see Husch et a1 1983, p. 228), and 2 represents 
the fact that the area enclosed on both sides of the log is twice 
the log volume. Note that KPDS is just a multiplicative factor of 
the log volume with units rn-'. For example, if K p ~ s  = 2 then 
the area of the inclusion zone is four times the log volume. 

The first reaction to this figure is that drawing an area that is 
proportional to log volume is nice, but not practical. However, 
note that the geometry for determining when a point falls within 
the inclusion zone is fairly simple. This is depicted in Fig. 3 and 
the algorithm for selecting a log is 

Fig. 3. Example inclusion zones (broken lines) for a series of 
different KpDs values. The profile of the log is given by the 
dark lines, while the broken lines indicate the boundaries of the 
inclusion zones. An example of a sample location, ( x ,  y), and the 
perpendicular distance, Ipdl, are given. 

log length 

(1) Measure the perpendicular distance, denoted by Ipdl, 
from the sample location (x, y) to the center of the long 
axis of the log. 

(2) Select the log if lpdl 5 K ~ D s ~ ~ ~ ~ ~ ~ ,  where g,,,, is the 
cross-sectional area of the log at the point of measure- 
ment. 

Also, note that the design-unbiased estimator of total CWD 
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volume is 

so the actual log volume is never measured. Note that just 
as in VRP sampling, logs where Ipd( is obviously less than 
K P D S ~ ~ ~ ~ ~ ~  can be selected into the sample with no actual mea- 
surements. Thus, the advantage for PDS is that only the small 
proportion of borderline logs need to be measured for cross- 
sectional area. Borderline logs can then be carefully measured 
to accurately determine whether their cross-sectional area is 
large enough to warrant inclusion in the sample. Matern (1956, 
1990) suggests that the mean of multiple diameter measure- 
ments can be used to accurately assess the convex closure of 
the cross-section. For highly decayed logs that have concave 
areas in the cross-section, the isopomorphic deficit should also 
be accounted for when determining g,,,,. While this seems 
like a complex set of measurements, note that a series of these 
measurements would be needed on every sampled log to es- 
timate the true volume using a technique such as importance 
sampling. Also note that because g,,,, never appears in the 
estimator, iPDs is essentially free of any measurement error, 
and measurements only need to be taken until it can be deter- 
mined whether the log is in or out of the sample. Thus, the 
measurement of isopomorphic deficit is not needed if the con- 
vex closure of the candidate log is too small to warrant inclusion 
in the sample. 

Figure 4 depicts the sampling surface for the two logs. Note 
that the height of the surface for both logs is identical. Esti- 
mators with this property tend to be very efficient because the 
variance is determined only by the random sample size (n (x , y )) 
at each point. 

It should be noted that similar sampling techniques for es- 
timating standing tree volume already exist in the literature. 
Examples include critical height sampling (see Kitamura 1962; 
Iles 1979, 1988, 1990) and the method of Ueno (1979, 1980). 
A summary of these techniques can be found in Schreuder et 
al. (1993, pp. 128-1 32). The primary difference between these 
methods and PDS is that the inclusion zone is three-dimensional 
rather than the two-dimensional inclusion zone that is common 
to all of the methods described in this paper. 

Developing point relascope sampling 
Point relascope sampling uses an angle gauge where the 

gauge angle q is much larger than that of VRP sampling. This 
wide angle gauge is used to select logs into the sample with 
probability proportional to the squared length, H ~ ,  of each log. 
The resulting inclusion zone forms a pair of overlapping circles 
on the side of each log. Using the results of Gove et al. (1999), 
with slightly different notation, the inclusion zone is given by 

where r = Hl(2 sin(q/2)), and n is the universal constant. 
The q value used here is equal to twice the angle v found in 
Gove et al. (1999). The estimator of total CWD volume is 

The inclusion zones for the same two logs is depicted in Fig. 5. 
Note that the height of the graph over the two inclusion zones 
varies, but the difference is not nearly as large as the difference 
for LIS (Fig. 2). 

Developing diameter relascope sampling 
DRS differs from traditional variable radius plot sampling ' 

only in the location at which the cross-sectional area measure- 
ments are taken and the orientation of the prism. To determine 
if a log is sampled, the midpoint of the log (H/2) is located, and 
the prism is oriented to determine if the log meets the criteria 
for selection. Thus, the inclusion of a log in the sample is pro- 
portional to the cross-sectional area of the log at the midpoint, 
with 

where KDRS is the gauge angle of the prism. The estimator of 
total CWD volume is 

The inclusion zone for the two logs is depicted in Fig. 6. 
A concern with both this technique and PDS is that the sec- 

tion of the stem that must be viewed to determine inclusion in 
the sample will not always be visible when the log lies on the 
ground. The other concern is that the prism measurement can- 
not account for decay of the log. Thus, proper implementation 
of the technique requires that all borderline logs are carefully 
measured to determine if the log should be included. 

Data description 

Data sets that adequately describe the location, orientation, 
shape, and volume of pieces of downed CWD are not available. 
Thus numerous CWD populations were created for the purpose 
of comparing the estimators. 

The size and form of each log is loosely based on real data. 
The data set used comprised N = 183 ponderosa pine (Pinus 
ponderosa Dougl. ex P. & C. Laws) trees. For each tree, diameter 
outside bark d and length h measurements were taken every 
1.22 m (4 ft) on felled trees collected at various timber sale 
sites on the Black Hills National Forest, U.S.A. A total of 2010 
diameter and height measurements were taken, with most trees 
having between 3 and 10 sections. Diameter at breast height D 
and total height H from a 0.305 n~ (I ft) stump to the tip were 
also recorded for each tree. 
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Fig. 4. Inclusion areas and response surface height for perpendicular distance sampling. Note that the height of the response surface for 
each log is identical. 

Fig. 5. Inclusion areas and response surface height for point relascope sampling. Note the shape of the overlapping circles that form the 
inclusion zones and that the height of the response surfaces differs for the two logs, but not as drastically as for line intercept sampling. 

For this study, the diameter and cross-sectional area were 
needed at every point on the stem as well as the true volume. To 
meet this requirement, a taper function was fitted to the data. 
The problem with using a single taper equation derived from 
these data is that every log in the data set would have the same 
profile, which could affect the outcome of the study. Individual 
taper functions could not realistically be fit to each tree because 
many of the smaller trees only had three to five measurements. 
To address this problem, an individual taper function for each 
tree was created using the following method. First, a Max and 
Burkhart (1976) taper equation was fitted to the 2010 (d, h )  
values. From this function, a set of 30 (d, h)  values that repre- 

sented the profile of an "average" tree was derived by using the 
mean D and H values from the data set. The final step was to fit 
a new taper equation to the data for each tree where the differ- 
ence in taper between each tree was created by perturbing each d 
value with a random multiplicative error 6 -- uniform(0.9, 1. I). 
Thus, the model fit to each tree was 

where H' = 1 -h i /  H, and E' -- N(0, a2e). While this function 
is not a standard taper function, such as the ones proposed by 
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Fig. 6. Inclusion areas and response surface height for diameter. Each inclusion zone is a circle and it is a function of the log diameter 
at the midpoint (H /2 )  of the log. 

Fig. 7. Relative diameter versus reIative height profiles for each 
log in the data set. 

using 

relative log length 

Max and Burkhart (I 976)- it simplified the simulation study and 
adequately fit the data. The taper functions for each tree in the 
data set are displayed in Fig. 7. 

Each taper function was used to generate the volume of each 
tree using the true D and H, with the volume being calculated 

One of the goals of the study is to illustrate the effects of using a 
simple approximation to the true volume. To meet this goal, the 
volume was approximated by a right circular cone as suggested 
by Robertson and Bowser (1999). The volume of this cone is 
given by VCone = nd&,  H/ 12, where dsWmp is the diameter 
of the log at the stump height. 

Once the set of trees was constructed, the next step was to 
arrange them as pieces of downed CWD within a forest stand. 
A series of populations was created with each population be- 
ing a square with total area I A 1 = 1-96 ha. Each downed log 
was given a random orientation 4 between 0 and n/2. Trees 
where randomly reflected about the x and y axes so that all 
angles of rotation from 0 to 2n rad would be possible. Each 
log was then randomly located within A in accordance with a 
uniform distribution. One trait of downed CWD that will influ- 
ence the performance of the estimators, particularly degenerate 
LIS, is the orientation of the logs. In steep terrain and areas 
with high winds, the orientation of the logs is not likely to be 
random. To address this issue, the distribution of the 4 angle 
was varied. The first data set, referred to as RAND, was created 
using a completely random orientation, with the distribution of 
4 being #uni -- uniform(0, n/2). The second and third data 
sets were generated so that the orientation of the logs would 
mimic a consistent north-south and east-west pattern in their 
distribution. The angle of orientation for the east-west data 
sets was calculated using 4 = ( I  - b)& + b&llo, where 
4x/10 - uniform(O,n/lO) and b - Bernoulli(0.6). If this dis- 
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tribution is used, roughly 80% of the logs are oriented within 
2n/10 rad (36") of the x axis, which is considered the direc- 
tion of east-west orientation. The north-south orientation data 
set was created using a similar distribution, with the difference 
being that the orientation of the logs is with respect to the y 
axis. These two data sets will be referred to as NorS and EasW, 
respectively. Figures 8a and 8b shows the distribution of the 
size and orientation of logs in the NorS and RAND data sets, 
respectively. 

An important factor in understanding the efficiency of each 
sampling technique is the relationship between the inclusion 
probability (n) and the variable of interest (z), with a high de- 
gree of correlation usually indicating a smaller variance. The 
correlation coefficient, p, between z and n for PDS, PRS, and 
DRS was p = 1.0,0.79,0.97, respectively. The p values for 
LIS varied with the log orientation of each data set and were 
p = 0.04,O. 16,0.41 for the EasW, RAND, and NorS data sets, 
respectively. The correlations reported here for PRS fall within 
the range of previously reported values in the northeastern U.S. 
and Sweden (Gove et al. 2001; Ringvall et al. 2001). Figure 
9 shows the relationship between z and n for the NorS data 
set. The perfectly linear relationship between z and n can be 
seen for PDS. However, the most interesting feature is the very 
strong linear relation between z and n for DRS. This appears to 
be a peculiarity of this data set and is not expected to hold for 
other species or situations where some logs are more heavily 
decayed. 

Simulation study 

Rather than use a Monte Carlo simulation, the bias and vari- 
ance results were determined by calculating the appropriate 
expected values of each estimator using the results in Williams 
(2001). The bias and variance for a sample of size rn = 1 is de- 
rived by approximating the integrals in eqs. A.2 and A.3 (in the 
Appendix) with a Riemann sum using a very fine grid spacing 
over A. The grid spacing used was 0.2 m (7.8 in.). 

The method of edge-correction implemented in this study 
was to set the area of the population A to be such that the in- 
clusion zone for every log fell completely within A (Ducey et 
al. 2003 and references therein). This method is known to in- 
crease the variance of the estimators over the alternative edge- 
correction methods, such as the reflection method proposed for 
LIS (Gregoire and Monkevich 1994). One side-effect of us- 
ing this approach is the differences in the variance of the four 
methods may have been more dramatic if an alternative edge- 
correction strategy were used. However, it should be noted that 
it is not our intention to over- or under-state the performance of 
any one of the methods. 

In the field, pieces of CWD would be selected using very 
different measurement techniques, and the amount of time re- 
quired to draw a sample will vary depending on factors such as 
size of the logs, terrain, height and density of the understory, and 
the instrumentation used. Thus, a direct comparison is not pos- 
sible. Because these factors cannot be realistically mimicked in 
a simulation study, the method of "equalizing" the four tech- 
niques was to equalize the expected number of pieces of CWD 
sampled at each point. This was done by first choosing an q 
value for PRS and then setting parameters of the other methods 
so that the expected number of logs (E [ n ]  = EL, xi) tallied at 

each ( x ,  y) coordinate within A was the same for all methods. 
This is equivalent to setting the average inclusion zone to be 
the same for each method, though the minimum and maximum 
inclusion zones differ greatly among the methods. 

An important assumption for this study is that all measure- 
ments of length, diameter, and cross-sectional area are made 
without error. Thus, given the assumption that no measure- 
ment error exists in any variable, each of the estimators is 
design-unbiased, with the only statistic of interest being the 
variance of the estimators. The study variables were the num- 
ber of pieces (i(N),) and the total volume (i(V),) of CWD, 
with * = LIS, PDS, PRS, DRS denoting the sampling technique 
used. The variances v[~(N).] and v [ ~ ( v ) , ]  are reported for 
each method. To facilitate the comparison between the existing 
methods and PDS, the relative efficiency 

was used to express how many times larger the standard error of 
the other methods was when compared with PDS. The relative 
efficiency for i ( N )  is defined analogously. An advantage of 
using RE to compare estimators is that the number of points 
required to achieve equal variance with each of the existing 
techniques, denoted by mEv, is 

To illustrate the effects of estimating the volume of each piece 
of CWD using a simple approximation, the simulation was also 
run where the volume of each piece was approximated using 
the truncated cone method suggested by Robertson and Bowser 
(1999). The bias is express as a percentage using 

where * = LIS, PRS, and DRS. Because log volume does not 
appear in the PDS estimator of volume (eq. 3), the cone approx- 
imation is not relevant. 

Results 

The results for the simulation study are given in Table 1. 
One disconcerting results is the bias (>26%) in the estimators 

of CWD volume when the volume is approximated by a cone. 
While these results cannot be generalized to other populations, 
it is probably safe to assume that situations exist where the bias 
in CWD volume estimators is quite large when volumes are 
estimated from assumed models (e.g., taper function, Newton's 
or Smalian's formula). 

As expected, the PDS estimator of volume consistently has 
the smallest variance across all three data sets. One somewhat 
surprising result is how competitive both PRS and DRS are 
in terms of variance, with the difference in relative efficiency 
being only 1.02 to 1.07. Thus, it can be concluded that the 
random sample size, n (x, y), at each point accounts for most of 
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Fig. 9. Log volume versus the inclusion probability for each method. 
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the variance in the PRS and DRS estimators for these data sets. 
However, one should remember that the correlation between the 
volume of each log and the inclusion probabilities for DRS is 
probably higher than would be encountered in many situations. 
When estimating the number of logs, PRS and DRS are clearly 
more efficient than PDS, with the RE ranging from 0.94 to 0.98, 
with PRS always the most efficient estimator for this variable. 

The variance of LIS is larger than that of the other methods 
in every situation except for estimating the number of logs for 
the NorS data, where LIS has a marginally smaller variance 
than PDS. The performance of degenerate LIS when estimat- 
ing CWD volume is especially poor. LIS requires 1.3-2.9 times 
more lines than PDS to achieve the same variance. Comparing 
LIS to PRS, which is the next least efficient estimator, shows 
that even in this situation PRS is substantially more efficient, 
as 1.17-2.6 times as many lines would be required to achieve 
equal variance. These results are in line with those reported 
by Pickford and Hazard (1978), who note that LIS "...requires 
considerable sampling effort to satisfy a high level of preci- 
sion even under ideal conditions." Another interesting feature 
of Table 1 is the bias for LIS. This result appears to be an error 
because all of the estimators are design-unbiased. However, this 
result occurs because the integral in eq. A.2 is approximated by 
a Riemann sum. This bias is due to the grid approximation of 
the inclusion zone and will occur whenever the orientation of 
the log and line only differ by a small amount, with small be- 
ing about 2" to 4 O  in this study. When this situation occurs, the 
inclusion zone and the resulting inclusion probability are very 
small, while the log volume may actually be quite large. When- 
ever one of these logs is selected into the sample, the slightest 
error in measuring the inclusion zone can result in an extremely 
large overestimate of the true ius value. Thus, even a small 
error in approximating the inclusion probability has a dramatic 
impact on the performance of the estimator. While decreasing 
the grid spacing always reduced the bias, it could not be made 
small enough to eliminate the bias using available workstation 
and software technology.2 While computing problems are of in- 
terest, the more important point is that the same problems exist 
in a field application of degenerate LIS, where the assumption 
that logs are straight and can be accurately measured may not 
always apply. Thus, a measurement error of only lo or 2" in 
determining the orientation of a log can badly bias the estima- 
tor whenever the orientation of the log and line are similar. To 
illustrate a worst case scenario, use the population means of 
H = 17.8 m and V = 0.7 m3, a line length of L = 10 m, as- 
sume n ( x ,  y) = 1, and suppose the actual orientation of the 
log is 4 = 2" (0.035 rad), but the measured orientation is only 
$ = l o  (0.017 rad) . The resulting estimates are iLls = 1101.3 
and 2202.3 for q5 = 2" and lo, respectively. Thus, a measure- 
ment error of 1" doubles the estimate of the population total. 
Also note that the true population total is only 127.8 m3, so the 
difference between the two estimates is roughly 8.6 times larger 
than the population total. Granted, the inclusion probability for 
such logs is small, so outrageous estimates such as these are 
likely to be rare. However, given the number of samples in a 

* ~ a c h  simulation consumed was approximately 70 h using R on a 
Linux-based dual Athlon 1.2 GHz computer. Simulation time and 
memory requirements increase exponentially with decreasing grid 
spacing. 

large-scale inventory, such as the Forest Inventory Analysis, this 
problem is very likely to occur. 

To better understand the performance of LIS, the data sets 
were revised so that no log orientation angle 4 was allowed 
to be within 0.07 rad (4") of the x axis. This was done to put 
a lower bound on the amount of error that could occur in the 
approximation of the inclusion zone for LIS. The results are 
shown in Table 2, where it can be seen that both the bias and 
variance are reduced, though the variance is substantially larger 
than that of the competing methods. This result shows how sen- 
sitive degenerate LIS is to log orientation. An important point is 
that the other methods are essentially unaffected by log orien- 
tation, and the simulation still produced very consistent results 
for PDS, PRS, and DRS using a grid spacing that is 5 to 10 
times coarser than that used to produce reasonable results from 
the LIS estimator. This suggests that PDS, PRS, and DRS will 
be much more robust to measurement errors than this variant 
of LIS. 

Discussion 

As with any forest sampling method, there are a number of 
additional issues that must be addressed before it can be applied 
in the field. The following discussion addresses some of these 
issues and additional research is currently being performed. 

Boundary correction 
The boundary reflection method (Gove et al. 1999) may be 

used in the situation when a portion of the log's inclusion zone 
lies across the population boundary. Simply, in the boundary 
reflection method, the population boundary is reflected about 
each log that is tallied as "in" on a PDS point (Fig. 10). Bound- 
ary reflection for PDS can be shown to be unbiased in all prac- 
tical cases; the proof mirrors that given for PRS (Gove et al. 
1999). Geometrically, the proof is trivial. Figure 10 shows a 
simple example where the total inclusion area a1 is equal to 
0; + 02 + 03 + O4 Here, area O3 is that portion of the in- 
clusion area that lies outside the population boundary. When 
the boundary is reflected about the log, its reflected area, 04, 
is exactly equivalent to that of 0 3  and lands perfectly within 
the original inclusion area a 1. In addition, the remaining por- 
tions 0; and 0 2  are equivalent by symmetry, thus completing 
the geometric proof. It is important to recall that boundary re- 
flection is object centric and is applied to each tallied piece of 
CWD when a sample point falls near the population bound- 
ary. Operationally, therefore, the boundary reflection method 
might become somewhat tedious in situations where there are 
many logs tallied on a given point, or when the boundary is not 
approximated by a straight line. In such cases, an alternative 
field implementation of the boundary reflection method, termed 
"walkthrough" (Ducey et al. 2003), may be used in the field. 
With this method, even curved and irregular boundaries can 
be handled with relative ease. Since the walkthrough is simply 
a field implementation of boundary reflection, the underlying 
theory is the same. Referring again to Fig. 10, two scenarios 
are possible in this case for the walkthrough under PDS. If the 
sample point falls in zone 02,  then the log is always tallied 
once, because the point falls between the log and the boundary 
and no reflection is necessary. The other possibility is for the 
point to land either in zone 0; or 04. In walkthrough, because 
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Table 1. Simulation results for estimating the volume of downed CWD and number of logs. 

CWD volume (m3) Number of logs 

Data set LIS PDS PRS DRS LIS PDS PRS DRS 

Eas W 
B m n e  

Bs im 

SE 
RE 

NorS 
Bcone 

Bsim 

SE 
RE 

RAND 
Bcone 

Bs im 

SE 
RE 

Note: Two types of bias are given. The first is the bias due to approximating the volume using a cone (Bcone). 
The second is the simulation bias due to the approximated integral (Bsim). The standard errors (SE) and relative 
efficiency (RE) for each CWD sampling technique are listed below the bias results. LIS, line intercept sampling; 
PDS, perpendicular distance sampling; PRS, point relascope sampling; DRS, diameter relascope sampling. 

Table 2. Simulation results for estimating the volume of downed CWD and number of logs. 

CWD volume (m3) Number of logs 

Data set LIS PDS PRS DRS LIS PDS PRS DRS 

EasW 
&one 

Bs im 

SE 
RE 

NorS 
Bcone 

Bs im 

SE 
RE 

RAND 
Bcone 

Bs im 

SE 
RE 

- --  

Note: All data sets were modified so the orientation of the log and line never differed by less than 0.035 rad 
( 2 O ) .  Two types of bias are given. The first is the bias due to approximating the volume using a cone (Bcone). 
The second is the simulation bias due to the approximated integral (Bsim). The standard errors (SE) and relative 
efficiency (RE) for each CWD sampling technique are listed below the bias results. LIS, line intercept sampling; 
PDS, perpendicular distance sampling; PRS, point relascope sampling; DRS, diameter relascope sampling. 

the boundary has not been physically reflected, we handle this 
situation as one zone, 0, = 0; + 0 4 ,  i.e., any point where the 
log is tallied, but where the log is between the observer and the 
boundary. To implement the walkthrough, proceed as follows. 
Measure (pacing may be good enough in most cases unless the 
log is close to borderline) the distance from the sample point 
perpendicularly to the center axis of the log (Ipdl). Now con- 
tinue (walkthrough) along the same path towards the boundary 
for the exact same distance. If you cross the boundary before 
finishing the offset leg, the log is tallied again (twice in total); 

if you finish within the population boundary, the log is only 
tallied once. With a little imagination, it should be clear that 
curved or piecewise-linear boundaries can be handled without 
bias using the boundary reflection (walkthrough) method. This 
is proven for PRS, and fixed-area plots of different shapes by 
Ducey et al. (2003) and their proof extends to PDS as well. 

Sampling multistemmed trees 
To this point, the study has only addressed the performance 

of PDS in the context of single-stemmed logs, when in many 
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Fig. 10. Example of the boundary reflection method as applied to perpendicular distance sampling. The inclusion zone (- - -) is shown 
to intersect the tract boundary (-) leaving area O3 outside the tract. The reflected boundary (- - -) produces area O4 when reflected 
about the log. Points landing in 0; or O2 tally the log once; those landing in 0 4  tally it twice (see text for details). 

f 
Tract Boundary 

. 

\ Reflected Boundary 

situations logs are multistemmed. This issue has been addressed 
by Gove et al. (2002) for PRS by employing randomized branch 
sampling to subsample the log. This is also a situation where 
the use of random-orientation LIS would be advantageous. 

The solution for PDS is straightforward and views a multi- 
stemmed log as a collection of individual stems. Some concerns 
about this approach are determining consistent rules for pro- 
portioning volume to each stem at the location where the fork 
occurs and the difficulty of determining cross-sectional area at 
the fork. However, it should be noted that none of the methods 
are particularly adept at handling this situation. 

For PDS, it is assumed that each log is straight for the inclu- 
' sion area to be proportional to the volume of the log. If the log 
is curved, then a design bias will occur in the PDS estimator 
given in eq. 3. We expect this bias to be small provided the 
logs have a relatively small degree of curvature. One solution 
for minimizing the bias caused by a log with a high degree of 
curvature would be to approximate the log as a collection of 
straight sections. The problem with this approach is that while 
it could decrease the bias, it would likely increase the variance 
of ZpDS at a faster rate. Quantifying the degree of bias and test- 
ing alternative solutions is beyond the scope of this paper, but 
it is a topic that is currently being studied. 

K p ~ s  guidelines 

Preliminary field testing in thecentral and northeastern United 
States suggests that PDS is relatively simple to implement. In 
both situations, the fieldwork for PDS was implemented using 
readily available instrumentation (e.g., linear tape and calipers). 
One useful aid is a table of limiting distances as a function of 
log diameter. Tables 3 and 4 provide limiting distances, (pd,,,,, 1, 
as a function of log diameter in both metric and English units. 
These tables raise an important issue with PDS, which is that 
the search distance can be very large when the sample design 
is such that a large number of logs will be tallied at each point. 

Table 3. Limiting distances for perpendicular distance sampling 
(PDS) with metric units using two different Km values. 

Perpendicular distance, Ipd, 1 (m) 

Log diameter, KPDs = 500. volume KpDs = 250, volume 
d (cm) factor = 10 m3/ha factor = 20 m3/ha 

Note: Each K p ~ s  value has an associated volume factor expressed in 
cubic metres per hectare. 

Conclusion 

This study suggests that PDS is a viable solution for estimat- 
ing down CWD volume. However, one of the most significant 
results of this study is to show the advantage of sampling with 
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probability proportional to a study variable that is difficult to 
accurately measure. Thus, the greatest advantage that PDS has 
over other methods is that by sampling proportional to log vol- 
ume, the actual measurement of log volume is avoided. Another 
potential application that exploits this advantage would be the 
estimation of the surface area of CWD, though it would require 
a different inclusion zone. While the amount of time required 
to assess the inclusion of borderline logs in the sample might 
be significantly longer than that of other methods, the addi- 
tional time will probably be recovered because no additional 
measurements on the sample logs are required. 

While PDS has many attractive features, it is not appropri- 
ate in every situation. For the estimation of CWD volume, it is 
hard to image how any of the alternative methods can compete 
in terms of mean square error, regardless of the time and effort 
expended taking detailed measurements on each log. However, 
it would not be wise to use PDS in a study where attributes other 
than volume are to be estimated. This is because acquiring the 
inclusion probability requires measuring the log volume, which 
would be very time consuming. While the inclusion probabil- 
ity could be approximated, every study variable could have a 
substantial bias due to errors in the approximated n's. In this 
situation, alternatives such as PRS and DRS would certainly 
be better in terms of overall efficiency (time and means square 
error of the estimators). When the goal of the survey is to esti- 
mate a wide range of attributes (e.g., size distributions, number 
of logs, volume, biomass), PRS might be slightly better than 
DRS because it is more efficient at estimating the number of 
logs, and the measurement (length) that is necessary for de- 
termining the inclusion probabilities might be more accurate 
than a measurement of diameter, girth, or cross-sectional area, 
especially on decay-deflated logs. 

Even degenerate LIS, which has consistently been shown to 
have a higher variance for most attributes and would likely suf- 
fer from bias problems, has some advantages. For example, it 
is the easiest method to implement in situations where the un- 
derstory vegetation is so thick that the candidate logs cannot be 
clearly seen. However, Ringvall and Stah1 (1999) have demon- 
strated that logs can be missed using LIS, even though con- 
ventional wisdom would dictate otherwise. Forest conditions 
where this is a concern can be found on the western slopes of 
the Cascades in Oregon and Washington, but are rarer across 
the rest of the United States. 

LIS where the orientation of the line is random at each point 
would not be affected by the same problems because the random 
orientation ensures that small inclusion zones are not paired 
with large log volumes. However, it might not be realistic to 
assume that an accurate measurement of the cross-sectional 
area can be performed in the amount of time allocated to CWD 
sampling in most large-scale inventories. One could assume that 
this cross-sectional area could be approximated by assuming a 
geometric solid, such as an ellipse, and determining the cross- 
sectional area of the vertical plane that intersected this solid. 
However, this would require a con~plex series of measurements, 
and results of Matern (1956, 1990) suggest that this type of 
approximation is problematic for the much simpler problem of 
estimating basal area. 

While PDS, PRS, and DRS were surprisingly competitive in 
virtually every situation tested, degenerate LIS will be one of the 

Table 4. Limiting distances for perpendicular distance sampling 
(PDS) with English units using two different Kpos values. 

- -- 

Perpendicular distance, I pd,, I (ft) 
Log diameter, KpDs = 435.6, volume KpDs = 217.8, volume 
d (in.) factor = 50 ft3/acre factor = 100 ft3/acre 

Note: Each KPDS value has an associated volume factor expressed in 
cubic feet per acre. 

least efficient methods for estimating any attribute associated 
with CWD. Some of the more serious concerns raised here with 
degenerate LIS can be addressed by using LIS with a random 
orientation or an L-shaped transect (see Gregoire and Valentine 
2003). However, it is common to see Y or + shaped transects 
used in the estimation of CWD, whose statistical properties 
have never been derived nor tested. While this supposedly sim- 
plifies the data collection process, it also pairs the incorrect in- 
clusion probability with the cross-sectional area measurement. 
The concern is that the bias and variance properties of the esti- 
mator associated with these hybrid methods is not known, and 
it is possible that the performance could be much worse than the 
results for degenerate LIS presented here, especially in situa- 
tions where logs are not randomly oriented. Given that the time 
or cost savings associated with these hybrids, over an appropri- 
ate implementation of LIS, are probably nonexistent, we can 
see no valid reason for the continued use of these techniques. 
We conclude that LIS is a viable method of sampling CWD only 
under strict adherence to a well-established sampling strategy 
for LIS. The only remaining concern with LIS will be whether 
the measurements of cross-sectional area can be made and how 
robust these techniques are to measurement errors. 
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Appendix A: 

With the exception of the inclusion zones, the properties of all 
four estimators are identical in the context of survey sampling. 
As suggested by Gregoire (1998). a concise description of the 
properties of 2,. where t denotes LIS, PDS, PRS, and DRS is 
as follows: 

The area of interest is a two-dimensional plane, A, of area 
IAl, and the target parameters are total volume and number of 
pieces of downed CWD within A. Inference follows the design- 
based framework, which views the population as fixed. The 
only source of randomness is the selection of sampling loca- 
tions (points), which are determined by generating the (x, y) 
coordinates of m independent sampling locations from a uni- 
form distribution over A. Thus, the probability density function 
of the sample locations is f (x, y) = 1/(A 1. At each location 
the logs selected by each of the sampling techniques are tallied. 

These data are then used to determine the total volume estimate 
of CWD at the point (x, y), denoted by 

where n(x, y) is the number of logs tallied at the point with 
coordinates (x, y), a,? is the area of the inclusion zone falling 
within A for log i and sampling technique *, and zi is the 
parameter of interest. The infinite set of &(I, y) values over 
A forms the reference set, with the reference distribution being 
the infinite set of all equally likely samples. 

All of the estimators studied here are design-unbiased with 
the expected value of 2, given by 

where N is the number of logs. The estimator of CWD using 
the m point samples is 2, = l l m  xy=, &, where Zi is the 
estimator for point i. The variance is given by 

The sample-based variance estimator is derived from the ob- 
served variation among the m sample points. Thus, for the m 
randomly located points, the design-unbiased estimator of the 
variance is 
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