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The probability of selecting a population element under line intersect sampling depends on the width 
of the particle in the direction perpendicular to the transect, as is well known. The consequence of 
this when using ell-shaped transects rather than straight-line transects are explicated, and 
modifications that preserve design-unbiasedness of Kaiser's (1983) conditional and unconditional 
estimators are presented. A case against beating multiple intersections as multiple probabilistic 
events is argued on the basis, also, of preserving design-unbiased estimation. 
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1 . Introduction 

Since its introduction to ecologists by Canfield (1941), line intersect sampling has found 
widespread application for the purpose of estimating plant abundance and cover. Also 
known as line intercept sampling (despite a quibbling distinction between the two terms by 
Pielou, 1985), the technique of using a line as a sampling unit and measuring some feature 
of the objects crossed by it has origins in many other fields, indeed some predating 
Canfield's exposition by many years. Much recent attention on monitoring ecosystems for 
biodiversity has focused on the use of line intersect sampling (LIS) for the assessment of 
coarse woody debris (CWD), e.g., Marshall et al .  (2000). Ringvall and Stihl's (1999) 
study of errors in the field implementation of LIS to assess CWD is a refreshing reminder 
that the reported accuracy of estimates of population attributes often will be overly 
optimistic. 

From a statistical viewpoint, some of the literature on LIS is misleading, or worse, 
incorrect. In particular, misconceptions about the theoretical and probabilistic under- 
pinnings of LIS appear distressingly often. Most authors fail both to distinguish design- 
based inference from model-based inference and to stipulate the inferential paradigm they 
implicitly invoke. An exception is Kaiser (1983) who treated the objects comprising the 
population as fixed, thereby obviating the need for the oft stated and unrealistic 
assumption that the objects to be sampled are distributed and oriented uniformly at random 
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over the region of interest. Instead he derived design-unbiased estimators of population 
attributes by assuming that randomness arises only through the random location, and 
possibly random orientation, of the sample transects. 

While the work reported here was prompted by consideration of LIS for CWD 
assessment, wherein needle-shaped logs, branches, and twigs constitute the population of 
interest, we adopt the generality of Kaiser by considering a population of arbitrarily 
shaped objects, termed particles. Likewise we take a design-based approach to inference, 
which implies that the sampling properties of estimators are derived from the 
randomization distribution of estimates from all, and perhaps infinite number of, samples 
possible under the sampling design (vide Gregoire, 1998; Dorazio, 1999). In addition to 
straight-line transects we consider ell-shaped transects formed by two line segments joined 
perpendicularly, as in Fig. 1. Ell-shaped transects have been discussed elsewhere (Hazard 
and Pickford, 1986; Marshall et al., 2000) with the apparent presumption that the same 
estimators as developed for straight-line transects would be used. So doing may sacrifice 
design-unbiasedness, as the probability of selecting a particular particle with an ell-shaped 

Figure 1. Example intersections of particles by straight-line transects and ell-shaped transects. 
Transect is located by (x,, z,) and oriented by 8,. The dashed lines indicate the convex hulls of the 
respective particles. 
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transect may differ from what it is when using a straight-line transect. We present a 
sampling protocol and corresponding estimators which specifically account for a particle's 
selection probability when using ell-shaped transects. Following Kaiser (1983) we 
consider estimation conditionally upon the orientation of the sampling transects, as well as 
unconditionally over all possible orientations. 

We also consider the case where a straight-line transect or segment of an ell-shaped 
transect intersects a particle more than once as illustrated in Fig. 1. Specifically, we 
examine, and are critical of, the practice of treating each intersection of a particle as an 
independent observation, as recommended in Marshall et al. (2000). 

Notation 

The notation developed in this and later sections is summarized in Appendix B. 
Let the population of interest, 9 ,  be the set of N discrete particles: 9 = { P I ,  . . . , P N ) .  

Each particle is assumed to be connected in the sense of Buck (1965, page 29), but nothing 
about the shape of a particle is presumed. Nor is anything about the spatial distribution of 
9 on the planar region of interest, d ,  assumed; indeed particles may overlap. We do not 
deal explicitly with LIS in a stratified population other than to mention that stratification 
may be usefully employed as a design strategy to create strata within which the spatial 
distribution of 9 is fairly homogeneous. 

Remark 1 There appears to be abiding confusion in the LIS literature over the necessity 
and desirability of assuming that the particles are randomly located and oriented in d .  
While inference about 9 following LIS surely may be based on a model of complete spatial 
randomness, the implicit adoption of such a model hardly is necessary. Eberhardt (1978) 
recognized but did not elaborate on this point. Kaiser (1 983) addressed the issue directly. 
We emphasize that the random placement of the line transects presumed in the present 
work is not in any way intended as a proxy for a failed assumption of random placement of 
particles in d ,  but instead is a deliberate and direct appeal to classical sampling theory, 
as embodied inter alia in Cochran (1977), which bases inference solely on the distribution 
of possible estimates under the design. 

Associated with the i-th particle, Pi, is a measurable characteristic, say yi, whose value is 
fixed in the sense that it in no way depends on whether Pi is included in the sample or how 
it is intersected by a transect. The total y in the population is 

Letting the area of d be denoted by A, a population descriptive parameter to be estimated 
from the sample data might be the density of 9 on at: 

Z 
A = - .  

A 

Thus, when yi = 1 for all Pi, then A is the usual expression of population density in terms 
of the number of individuals per unit area, viz. A s A, = N I A .  Alternatively, when yi is the 
cross-sectional area of Pi when orthogonally projected onto d ,  then A is the conventional 
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expression of cover (vide McIntyre, 1953). While these two choices for y are special cases 
of common interest, we do not restrict ourselves to just these. Indeed, yi may take on 
values of just 1 or 0, indicating respectively the presence or absence of some attribute. In 
this case it might be of interest to estimate the proportion, p, of 9' with this attribute: 

For more general yi, p is a measure of mean size. In this article, we focus on the estimation 
of 1, p, and N. 

We imagine that a sample of M transects, each of fixed length L, is established on d, 
and that the m-th of these is located by the coordinate pair (x,, 2,) in d. For sake of 
specificity, we adopt the protocol that this coordinate location of the transect coincides 
with the midpoint of a straight-line transect (see Fig. 1). For an ell-shaped transect, we 
specify the coordinate location as the join point of the two segments, where each segment 
has length L/2. We assume that edge conditions are handled in the manner described by 
Kaiser (1983), the reflection method introduced by Gregoire and Monkevich (1994), or 
some other means that does not insinuate a design-bias into the estimators we consider. 

We further assume that the transect locations, (x,, z,, m = I ,  . . . , M) are assigned at 
random in d ,  or that at least one transect is randomly located and the remaining transects 
are spaced systematically around it. While it is unlikely that any particular particle will be 
intersected by more than one line, nothing in the sampling protocol prevents this event 
from occurring. Hence, in the common vernacular of the sample survey literature (cf. 
Cochran, 1977), LIS is a form of sampling with replacement. 

Let 8, denote the orientation of the m-th transect with respect to some arbitrarily 
established reference direction 8 = 0, as illustrated in Fig. 2. For ell-shaped transects we 
assume that one segment has direction em, and that this serves to indicate the orientation of 
the transect (see Fig. 3). The direction of the other segment is 8; = 0, &n/2. 

Remark 2 It is advisable to adopt a consistent protocol which assigns 8, and 0; in 
advance of sampling to the two segments; e.g., from the vertex, let 8, orient one segment 
of the ell, and then orient the other segment always in direction 0; = 0, - n/2  or always 
in direction 8; = 8, + n/2. We advise particularly against letting field conditions 
influence the orientation assigned to one or the other segment of the transect, because this 
practice makes it impossible to truly discern the selection probabilities of particles in d. 

In the following we consider two cases. In one, 8, is selected uniformly at random over 
the interval [0, n) for each transect, and henceforth denoted as 8, -- q [ O ,  z]; in the other, 0, 
is fixed in advance of sampling at some common value, say 0, = 8 for m = 1,.  . . , M. 

Regardless of whether 0, is random or fixed a priori, we let AC denote the estimator of 1 
conditionally on dm, viz. 

where is thz conditional estimator of 1 based on the m-th transect only. Exact 
expressions for A: are given in the next section. 

Similarly, but only for the case where 8, - U[O, n],  let 2 denote the unconditional 
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Figure 2. (a) Inclusion area of particle Pi for a straight-line transect whose location is its midpoint; 
(b) an example of a straight-line transect which partially intersects Pi.  

estimator of A based on the m-th transect only, i.e., the estimator which accounts for the 
randomness of 8,. These then are averaged over all M transects yielding 

In an evident fashion, j? and ;iiu will be used to denote the conditional and unconditional 
estimators of p. 

When transects are randomly located, the sampling variance of 2 can be estimated 
design-unbiasedly by 

Similarly, 

provides a design-unbiased estimator of the variance of 2. Multiplication by ( A / N ) ~  
converts the above to variance estimators of and p, respectively. Under systematic 
placement o_f transzcts, these variance estimators are likely to overstate the sampling 
variance of AC and RU, respectively. 

3. Estimation of density 

We consider Pi to be in the sample selected by the m-th transect if it is intersected 
completely by it, or with some restrictions, partially intersected by it. In the latter case we 
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Figure 3. (a) Inclusion area of particle Pi for a ell-shaped-line transect whose location is its vertex; 
(b) an example of an ell-shaped transect which completely intersects Pi. 

assume that the transect length is sufficiently long to preclude both ends of a straight-line 
transect or both ends of a segment of an ell-shaped transect from falling within Pi. The 
restriction is that a partial intersection of Pi qualifies it for inclusion in the sample with 
probability 112, as per McIntyre (1953), Lucas and Seber (1977), and Kaiser (1983). This 
can be accomplished by choosing one end of each transect in advance of sampling to be the 
end for which partial intersections will be ignored. Or one can decide in an adaptive 
fashion by flipping a fair coin upon each occurrence in the field of a partial intersection. 

For ell-shaped transects, a broader spectrum of intersections must be considered. For 
sake of specificity we adopt the convention of allowing only those partial intersections that 
do not involve the vertex of the transect, i.e., we consider particles to be excluded from the 
sample if the vertex happens to be located beneath Pi. 

For the m-th straight-line transect located at its midpoint (x,, z,), Pi will be included 
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into the sample if (x,, z,) falls within the unshaded portion outside Pi ,  and it will be 
included with probability 112 if (x,, z,) falls within the lightly-shaded regions outside Pi 
(Fig. 2(b)). Note that the particle, Pi ,  is partially intersected whenever the midpoint of the 
transect line falls in one of the lightly shaded areas depicted in Fig. 2(b). If we let ti, = 1 if 
Pi is included in the sample from the m-th straight-line transect, and ti, = 0 otherwise, 
then as demonstrated by Kaiser (1983) 

where wi(Om) is the width of Pi perpendicular to 0,. (We assume trivially that all measures 
of distance such as L and wi(O,) have identical units, which multiply together to give a 
measure of area with identical units to that of A. This avoids the notational messiness of 
having to account explicitly for conversion factors, which, if neglected, can cause non- 
trivial aberration in the computed estimates!) 

When using ell-shaped transects, Pi will be included in the sample from the mth transect 
if (x,, z,) falls within the shaded or unshaded area around Pi (Fig. 3(a)). If (x,, z,) falls 
within the shaded region, then Pi will be completely intersected by both segments of the 
transect; let the area of this region be denoted by l l / i (Om7 0;) .  In parallel fashion to the 
development for straight-line transects, let ti, = 1 if Pi is intersected by only one segment 
of the transect; and ti, = 2 if it is intersected by both segments; and ti, = 0 otherwise. 
Therefore, 

where wi(Om) is the width of Pi perpendicular to 0 ,  and wi(O;) is its width perpendicular 
to 0;. Also, 

These probability results for the random variable ti, can be used to derive its expected 
value conditionally upon the orientation of the m-th transect. For a straight-line transect the 
two coincide: 

whereas for the ell-shaped transect it is 

where @,(Om) = ( ~ ~ ( 0 , )  + ~ ~ ( 0 : ) )  12. 
A design-unbiased estimator of R which is conditional on the orientation of the m-th 

transect is 
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where i €9 is used to indicate that the summation extends over all particles, Pi, in the 
population. Evidently, (4) is a linear, homogeneous e s t i m a t ~  (vide Heyadat and Sinha, 
1991, page 23). For straight-line transects (4) collapses to A; = 1/L xi, y m  yi/wi (Om), 
where i~ 9, indicates summation over all particles, Pi, included in the sample Jrom 
the m-th transect; for ell-shaped transects it can be simplified only to A;, = 
1 /L xi, y m  timyi/Wi (O,,,J, because ti, will either be 1 or 2 depending on how a sampled 
particle is intersected. The implication of the latter result for field implementation of ell- 
shaped transects is that the maximal width of Pi perpendicular to both 0, and 0; must be 
measured regardless of whether Pi is intersected by both segments of the transect (multiple 
intersections of Pi by a straight-line transect or by one segment of an ell-shaped transect 
are discussed in Section 6. 

For the case where 0, - U[O, n ] ,  m = 1, . . . , M, one could consider, as an alternative to 
A;, an estimator that unbiasedly estimates 1 when accounting not only for all possible 
locations but also all orientations of sample transects. For this alternative estimator, the 
unconditional expected value of ti, is needed. Since E[wi(O,)] = E [ W ~  (@;)I = E[wi], say, 
then E[tim] = L x E[wi]/A for both straight-line and ell-shaped transects, providing that the 
procedures for dealing with partial intersections are those described above. (This result is 
closely related to the Buffon needle problem (vide Beckrnann, 1971).) Accordingly, the 
unconditional estimator of A is 

Example 1 Using (4)  for_the case where yi = 1 for all particles yields a conditional 
estimator of AN = N / A  as 2; = /A ,  where for the mth straight-line transect 

and for the m-th ell-shaped transect it is 

in both cases leading to 

An analogous unconditional estimator of AN replaces wi (0,) and wi (0,) in fi; with E [wi] . 

Remark 3 Implicit in Example 1 is that the area, A, of the region being surveyed need 
not be known to estimate R, and in particular AN. However, A must be known in order to 
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estimate N as in the above example, and to estimate z more generally, at least for the 
implementation of LIS we have described. Realistically, the boundaries of at must be 
known, even if its area, A, must be determined later. 

Depending on the application, wi (0), the width of the particle perpendicular to the actual 
orientation of the transect, may be easier to measure than E[wi], the particle width 
averaged over all possible orientations. However, for connected particles and when 
0, - U[O, n ] ,  E[wi] is calculable as E[wi] = ci /n ,  where ci is the circumference of the 
convex hull enclosing Pi. This circumference can be measured by wrapping a tape 
measure around the outer edge of Pi as projected onto the plane d (the length of the 
dashed line surrounding each particle in Fig. 1). To foresters this is the familiar result that a 
random calipering of tree diameter is identical, on average, to a measurement with tape of 
tree girth, divided by .n ( M a t h ,  1956). Moreover, with a needle-shaped particle whose 
length from end to end, li, substantially exceeds its "diameter", then ci = 21, to a suitable 
degree of approximation. Hence 

as has appeared in Marshall et al. (2000) and elsewhere in the forestry literature. 

Remark 4 Many investigators likely would opt to use the conditional estimator when all 
transects are oriented in a direction perpendicular to some baseline or some gradient 
evident in the distribution of Pi, as in Warren and Olsen (1964). The conditional estimator 
may be preferred, also, in the situation where the common orientation a_ngle, 6, is a 
realization of a U[O, n] random selection. However for the latter case AU would be 
appropriate, also. Conversely, even when the 8, are selected uniformly at random 
separately for each transect, one might opt to use the conditional rather than the 
unconditional es@mator_of 1 if the requisite jeld measurements were easier to garner. A 
choice between AC and AU may also be made on the grounds of which is more precise. 
Although this may be dzflcult to discern in any particular situation, one is free to select 
that estimator with the smaller estimated sampling variance without risk of insinuating 
bias. 

4. Estimation of mean size 

For general y,, an estimator of mean size, p, conditional on the orientations of the sample 
transects is 

where 2 is defined in (1) and is developed in the first example. An unconditional 
estimator of p is given by 
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Both (7) and (8) are design-biased estimators of p. The design-bias of both is negligible for 
large M with the sampling design described above. 

Remark 5 We note that even in the unlikely situation where the size o f ~ h e  population, N,  
is known, (7) is likely to be a more precise estimator of p than AIZC/N, for reasons 
explained by Sai-ndal et al. (1992, pages 180-81). Similarly, using an estimate of N in (8) 
rather than N will usually provide a more precise unconditional estimator of p. 

The naive estimator of p given by 2 (or 2) divided by the total number of particles in 
the sample is distinctly ill-advised: not only is its bias likely to be appreciable, it is not 
even a consistent estimator of ,u, sensu Cochran (1977, page 21). 

5. Use of an auxiliary variate to obviate measurement of Y 

While the estimators (4) and (5) given above are design-unbiased and somewhat familiar 
by virtue of their simplification in certain applications, they can be improved upon by the 
introduction of an auxiliary variate, say qi(Om), whose measure on Pi at the m-th transect 
may depend on the orientation of the transect. As demonstrated by Kaiser (1983), a 
judicious choice of qi(O,) may obviate the need to measure yi on the sampled Pi. This 
feature has not been widely recognized nor has its advantage been widely appreciated by 
ecologists. Kaiser's conditional estimator is 

and the unconditional estimator is 

An example will illustrate the usefulness of the auxiliary variate. 

Example 2 We suppose that Pi is a plant, more specijically the canopy of a plant 
projected orthogonally onto the ground. The characteristic of interest, yi, is its canopy 
area, ai, projected onto d. Thus, I. = 1/A xi,, ai, known variously as cover, coverage, 
and composition. Let qi(Bm) be the length of intersection, say Ii(8,), of Pi with the line in 
d which contains the m-th straight-line transect (n.b., Ii(Om) is the length of interception 
by the transect when Pi is completely intersected; however, the tortuous wording in the 
definition of Ii (0,) is meant to emphasize that in the case of a partial interception, Ii(B,) is 
longer than just the interception length.) In this case, the product random variable, 
ti,qi (8,) has conditional expected value 

as derived by Lucas and Seber (1977). Therefore a conditionally unbiased estimator of 
cover from the m-th straight-line transect is 



Line intersect sampling 

For an ell-shaped transect, let qi(O,) = Ii(O,) if Pi is intersected by the segment of the 
transect oriented in the 8, direction; or qi(Om) = I , ( O ~ )  i fp i  is intersected by the segment 
of the transect oriented in the 0; direction; or qi(O,) = r i ( O m )  = ( ] , (Om)  + ~ ~ ( 0 ; ) )  /2 
whenever both segments of the transect intersect Pi. With qi so defined, 
E [timqi (0,) 1 Om] = Lai/A, for ell-shaped transects, too (see Appendix A). Thus (9) remains 
design-unbiased and can be simplijied to 

Because E[timqi(Om)(Om] evidently does_ not gepend on Om, the unconditional expected 
value of timqi(O,) is Lai/A, also. Thus A: = Ah in this case. Hence the auxiliary variate 
enables unbiased estimation of canopy cover both conditionally on transect orientation, 
and unconditionally, without the need to measure or devise an approximate measure of the 
projected canopy area of any individual plant canopy. 

The above can be extended to the situation where yi is the area of a gap in forest cover 
(vide Runkle 1985, 1992; Battles et al., 1996), or area of a body of water on a map. Kaiser 
(1983) exemplifies other applications of LIS using an auxiliary variate to aid estimation of 
A when using straight-line transects. These all can be extended to accommodate ell-shaped 
transects, too. 

6. Dealing with multiple intersections 

In Fig. 1 is shown a forked particle that might, for example, represent a piece of CWD; an 
irregularly shaped particle that might represent a lake or a gap in forest cover; and a long, 
narrow, 9-shaped particle that might represent a stream, a road, or a branch-like piece of 
CWD. We consider the case where a straight-line transect or a segment of an ell-shaped 
transect intersects Pi more than once. 

For pieces of forked CWD, Marshall et al. (2000, page 12) suggested that the two tines 
of the fork be treated as separate pieces when a single transect intersects both tines. For 
multiply-intersected 9-shaped and @-shaped pieces, they suggest that each "piece is 
actually treated as . . . separate pieces", one for each intersection. There is an inherent 
ambiguity to this practice, however, that is troublesome: one wonders whether a forked 
particle is to be treated as two distinct particles in the event that a straight-line transect or a 
segment of an ell-shaped transect crosses both tines, but only as a single particle when 
crossed but once beneath the fork. It seems perverse to let the manner in which particles 
are intersected implicitly define the number, N, of particles in the population 9, as N then 
becomes a random variable. Moreover, for a particle that lacks a clear forking structure, 
such as the 9-shaped particle or the irregularly-shaped particle of Fig. 1, its subdivision 
into multiple particles would be problematic, because the boundaries separating the 
subdivisions are not clearly suggested by the shape or structure of the particle. There is an 
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ambiguity, too, in how to assign the portion of the forked piece in Fig. l a  that is below the 
fork; e.g., if the particle length li is to be measured when Pi is crossed by the transect, a 
protocol must be established that stipulates whether this length include that part of Pi 
below the fork only when the larger of the two forks is intersected, only the smaller, or 
both. 

We think that connected particles ought not be subdivided further, irrespective of how 
they may be intersected by the line transect: each discrete but connected particle 
constitutes one element of 9. Furthermore, we think that population descriptive 
parameters such as A and p be estimated in a fashion that does not rely on the artifice of 
treating each particle as multiple identical particles corresponding to multiple 
intersections. In direct contrast to DeVries (1979, page 44), we advise, for straight- 
line transects, that ti, = 1 in (4) and ( 5 )  irrespective of the number of intersections of 
the m-th transect with Pi; and for ell-shaped transects, that ti,,, = 1 or 2 (as explained in 
Section 3), also irrespective of the number of intersections of each segment of the 
transect with Pi. With this protocol (4) remains a conditional estimator that is design- 
unbiased for estimation of A, and (5) remains unconditionally unbiased. By implication, 
both (4) and (5) will biasedly estimate il if multiple intersections of Pi are treated as 
separate, independent intersections. For sake of clarity, we emphasize that intersections 
of Pi by two or more transects are to be treated and recorded as separate, independent 
probabilistic events. 

Notwithstanding the above admonition, it might be useful on occasion to let the 
auxiliary variate, qi(B,), be the number of intersections of Pi with the m-th transect, as 
illustrated by the following example. 

Example 3 Let yi be the boundary length of Pi, so that z is the total length of perimeter of 
all particles in d. Let qi(O,) be the number of times that the boundary of Pi is intersected 
by the line in d containing the mth transect. Note that for each of the particles displayed 
in Fig. I ,  qi = 4. As shown by Kaiser (1983, Equation (3.8)) 

is an unconditionally unbiased estimator of A. Here, the judicious choice of qi(O,) 
obviates the need for the more costly measurement of yi itself. One useful application of 
this result occurs when particles are fibers or roads within d having the characteristic 
that their width is negligible compa~ed to their length. In this case yi = 21i, where li is the 
length of the road within d. Thus, & , I 2  unbiasedly estimates the length of road per unit 
area in d (Mateh, 1964). 

We caution against reading to much into Example 3. In particular, it is not an 
endorsement to always use the auxiliary variate, q,, to record the multiplicity of 
intersections. It is a useful device for this particular application (estimating total boundary 
or road length), but it may well be counterproductive for other applications. 

A As an alternative to (11) to estimate total length of road, one could consider 
A:, = n / L  xi,,m yi/ci for both straight-line and ell-shaped transects. For the forked piece 
in Fig. 1, ci is the length of the dashed line enclosing the particle. With this estimator, a 
special case of (5), multiple intersections by a single transect are not counted as more than 
one intersection; moreover, yi must be measured. 
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Monte Carlo approach to LIS 

The derivation of estimators for LIS also can be approached from the theory of Monte 
Carlo integration. Valentine et al. (2001) distinguished two Monte Carlo approaches to 
LIS: a line method, which is an application of importance sampling (vide Gregoire et al., 
1993), and a point method, which is a two-stage application of importance sampling and 
crude Monte Carlo. The point method is actually simpler, since the two-stage selection of 
the sample point reduces to choosing coordinates (x,  z) at random in d. In effect, the 
method is a continuous analog of simple random sampling: each sample point is selected 
with probability density 1/A and the attribute density of y (i.e., the amount of y per unit 
land area) is measured at that point. 

Since y is an attribute of discrete particles, its distribution over the land may be spotty, in 
which case the density of y at a sampling point might have a large probability of being nil 
over much of the landscape. Consequently, the Monte Carlo sampling would be inefficient. 
Moreover, if one or more particles do happen to sit atop a sample point, the field 
measurement of the attribute density of y over that point may be problematic, if not 
impossible. This inefficiency is alleviated and the mensuration becomes straightforward if 
we assume that the attribute, y,, is spread evenly over a region d i ( d i  E d )  with area ei. If 
any part of di overlaps the sample point, then the attribute density, yi/ei, is measured. In 
the Monte Carlo approach to LIS, the size and shape of di is matched to the length of the 
transect line, whose role is to serve as an instrument to indicate when the sample point, 
(x, z), is within di. 

For example, let us suppose that a straight transect line, centered at the mth sample 
point, has orientation 8, and length L, as before. Let us consider the protocol where partial 
intersections of a particle are accepted at one end of the transect line and ignored at the 
other. Then di is equivalent to the inclusion zone of the particle as shown in Fig. 2a, 
except that the shaded region on, say, the left side is omitted, and the shaded region of the 
right side is retained. An alternative protocol was used suggested by Valentine et al. (2001) 
for Monte Carlo LIS, i.e., accept a partial intersection if the intersecting end of transect 
line cuts at least half across the particle. Under either protocol, the area of di is 
ei = Lcui(Bm). 

Total y in d ,  z,, is estimated unbiasedly from the tally at the m-th point by 

The estimator of the density of y per unit land area is simply: 

Under either stated protocol, 
estimator. 

this density estimator is equivalent to (4), the conditional 
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8. Discussion 

Sampling designs which use fixed-area rectangular quadrats are commonplace in ecological 
investigations. The orientation of these quadrats is customarily fixed in advance of 
sampling. We are unaware of any estimator of ecological characteristics that is 
unconditional in the sense that it accounts for all possible orientations of the quadrats. 
This well-established practice, therefore, provides an implicit argument for conditional 
estimation in LIS, as presented here. The force of this analogy ought not be exaggerated, 
however: the unconditional estimator may be more practical and suitable in many situations. 

The areas within d which determine the selection probabilities of particles when using 
ell-shaped transects differ in size and shape from what they are when using straight-line 
transects. Thus, to preserve design-unbiasedness, either conditionally or unconditionally 
on transect orientation, a modification to Kaiser's estimators is required. This apparently 
has not been recognized heretofore, as the applications using ell-shaped transects that we 
have read appear to regard the ell-shaped transect simply as two straight-line transects. 
Awaiting further investigation is the modification needed when using triangular transects, 
as in Delisle et al. (1988) and Y-shaped transects used in the Forest Inventory and Analysis 
program of the U.S. Forest Service. 

Finally, it strikes us that the statistical advantage of using segmented (ell-shaped or 
triangular) rather than straight-line transects is more apocryphal than objectively 
established. If this observation is correct, then another area for field research is suggested. 
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Appendix A 

Let aim signify the joint event that the segment of the ell-shaped transect in the 8, direction 
intersects Pi and the segment of the ell-shaped transect in the 8; direction does not. Similarly, 
let signify that the segment of the ell-shaped transect in the 8; direction intersects Pi and 
the segment of the ell-shaped transect in the 8 ,  direction does not. For the situation where 
only one segment of an ell-shaped transect intersects Pi ,  one gets the result that 
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Therefore, 

Appendix B 

Symbol table 

ai the cover of Pi projected onto the region d 
A the area of d 

bi the length of the boundary of Pi projected onto d 

ci the circumference of the convex hull enclosing Pi 
Zi(6,) the length of intersection with Pi of the line in d containing the line transect 
li the length of a needle-shaped particle 
L transect length; in the case of an ell-shaped transect, each segment has length L/2  
M the number of transects in the sample 
N the number of particles in the population 
Pi the i-th particle in the population 9 
9 the population of particles for which an estimate of 1 or p is sought 
qi(O,) the auxiliary variate measured on Pi, whose value may depend on the orientation 

of the transect 
ti, a variate indicating whether Pi is intersected by the m-th transect, and for ell-shaped 

transects, an indicator of whether Pi is intersected by one or both segments 
6 the orientation angle of the m-th transect; for ell-shaped transects, 6, is the 

direction of that segment of the m-th transect that serves to establish its orientation 
6; the angle perpendicular to the orientation of the m-th transect 
wi(O,) the maximal width of Pi perpendicular to 6, 
wi(0;) the maximal width of Pi perpendicular to 6; 
z the population total amount of the attribute y 
A the density of y on d = z/A 
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the conditional (on line orientation) estimator of A from_the m-th transect 
the conditional estimator of II  computed as the average A; 
the conditional (on line orientation) estimator of II from_the m-th transect 
the conditional estimator of ;l computed as the average A:, 
the average value of y per population element = z/N 
the conditional (on line orientation) estimator of ,u from_the m-th transect 
the conditional estimator of p computed as the average A: 
the conditional (on line orientation) estimator of p from the m-th transect 
the conditional estimator of p computed as the average pm 
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