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Abstract: This note seeks to extend the utility of size-biased distribution theory as applied to forestry through two 
relationships regarding the quadratic mean stand diameter. First, the quadratic mean stand diameter's relationship to the 
harmonic mean basal area for horizontal point sampling, which has been known algebraically from early on, is proved 
under size-biased distribution theory. Second, a new result, which may prove most valuable in viewing the graphical 
representation of assumed distributions, is also derived. The results are also shown to apply to the basal area - size 
distribution, providing a unique duality between the two means. 

RbumB: Cette note vise B dargir la port6e de la thkorie de la distribution diam6trale biaisQ telle qu'elle est appliqu6e en 
foresterie par le biais de dew propri6tts du diamttre moyen quadratique du peuplement. D'abord, la thtorie est utilis6e 
pour dkmontrer la relation qui existe entre le diam8tre moyen quadratique du peuplement et la surface terribre moyenne 
harmonique dam le cas de 1'6chantillonnage horizontal par point ; une relation dont la d6monstration algkbrique est connue 
depuis longtemps. Deuxi8mement, un nouveau rksultat qui peut s'avtrer trks utile pour repdsenter graphiquernent des 
distributions pr6sum6es est 6galement d6rivt de la thkorie. Ces dsultats sont aussi applicables B la distribution de la 
surface temtre par rapport au diamttre 6tablissant ainsi une dualit6 unique entre le diambtre moyen et la surface terri5re 
moyenne. 

[Traduit par la RUaction] 

Introduction two common contexts in forest mensurational work, First, the 
relationship between diameter and basal area yields the basal 

Foresters rely heavily on distributions, either empirical or in area - size distribution as a reapponioment of the usual 
assumed parametric form, in much of their data analysis work diameter-frequency probability density (Gove and Patil1998). 
when quantities based on tree diameter are reported. A number Second, when sampling with probability propoRional to size 
of mean values, some specific to forestry, can be calculated from under horizonfal point sampling (HPS), the distribution of the these distributions. The intenelationships of three means in par- sampled &ee is related to the underlying per-unit 
ticular under size-biased distribution theory were discussed by 

aM diameter distribution through fhis theory (Gave 20M); Van 
and Patil Of the pool the quadratic mean Deusen 1986). In both instances, the size-biased density is of stand diameter seems to be the most commonly used. This is order = 2. *fiefly, if a random variable such as me 

perhaps because Of iu dual identity as the diameter Of tree ter (D)  at breast height (DBH) has probability density f (d; *), 
of mean basal area; since basal area is among the most useful then the size-biased probability density is dven as variables in forest management. silviculture. and modeling. its -- 
utility is not su rp r i s i ng . -~~~  interesting properties associated 

f,*(d; 8 )  = 
d f f f  (d; 8 )  

with the quadratic mean stand diameter are described herein 
with respect to assumed size-biased distributions. LL& 

Size-biased probability distributions arise as a special case where I& = df f  f  (d; 0) ad,' and 8 is the parameter vector. A 
of weighted distribution theory (Patil and Rao 1977) in at least graphical example of this relationship is shown in Fig. 1, where 
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Fig. 1. DBH-frequency distribution f (d; 8) (solid line) and size-biased form f,*(d; 8) (broken line) for a stand with basal area and 
number of trees per hectare B = 45.91 m2.ha-' and N = 741.3. Here, f (d; 8 )  is assumed to be a two-parameter Weibull (0 = (y, B ) )  
with shape and scale parameters y = 4.1709 and #? = 29.8384, respectively. The quadratic mean stand diameter is 6, = 28.08 cm. 

a = 2. In this example a two-parameter Weibull has been used 
for illustration with 

and (Gove and Patil 1998) 

where hrboth demitksd, y a n d 4 2  0 ,  with - scale - - and - shape 
parameters B = ( y , p )  = (4.1709,29.8384), respective@, and 
I? (.) is the gamma function. Because of the intrinsic relationship 
between the basal area - size distribution and the distribution 
of diameters from a HPS tally, f2*(d; 0) could, in general, rep- 
resent either density in this figure. Note that the Weibull is used 
simply for illustration; in what follows no parametric family of 
distributions is assumed. 

The compatibility between the size-biased distributional form 
( f2* (d; 0)) and the original diameter distribution ( f ( d ;  8 ) )  in 
either setting relies on the fact that 0 is a common shared param- 
eter set. Given that 0 is common to both distributional forms, 
compatibility can be shown in a variety of ways (Gove 2000; 
Gove and Patil 1998; Van Deusen 1986). In this note, the ar- 
gument for compatibility of the size-biased forms is further 
supported via a relationship involving the quadratic mean stand 
diameter and the harmonic mean. In addition, a new basic re- 
sult linking the quadratic mean stand diameter to the size-biased 
form is proven. Both results are shown to be independent of the 
distributional family assumed in parameterization. 

30 40 50 60 
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The harmonic mean - quadratic mean 
stand diameter relationship 

One place in forestry where the harmonic mean has been 
shown to be applicable is in horizontal point sampling (HPS). 
Buckingham (1969) and Bitterlich (1984, p. 40) review this 
application of the harmonic mean and describe a result that is 
attributable to Hirata (1956) and Bitterlich (1957), namely that 
the harmonic mean basal area (Bh) for the trees tallied on m 
HPS points is equivalent to the arithmetic mean basal area (Ba) 
for the trees in the sampled population. If B and N are the 
usual HPS estimates of the basal area and number of trees per 
hectare, respectively, for a given area taken from m points, then 
the arithmetic mean basal area is 

where K is th_e conversion from square centimetres to square 
metres, and Dq is the quadratic mean stand diameter - both 
quantities are considered estimates due to sampling. Now, if N * 
trees were actually tallied on these same rn HPS points, then 
the harmonic mean basal area for the tree tally is given as 

where bi is the basal area for the ith tree sampled. The result 
that B, = & follows by simple algebra; worked examples are 
given in Buckingham (1969), Husch et al. (1982, p. 263), and 
Bitterlich (1984, p. 191). 

Inasmuch as size-biased distribution theory is applicable to 
HPS, this result should also be able to be proved using the 
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respective probability densities. Indeed, if the distribution of 
HPS diameters is given as f;(d; 8), then the equivalence of 
the preceding formulas can be shown when written in terms of 
the diameter distribution for the HPS, or Bitterlich (as Hirata 
(1956) referred to it), population. In general, for a size-biased 
distribution of order a! = 1, the harmonic mean of the distri- 
bution is given as E [D*-']-' (Mahfoud and Patil 1982). By 
analogy, the harmonic mean basal area is therefore denoted as 
E [l /K D*~]-'. Hence, first note that 

1 
= - / f (d; 8)Sd 

w; 

Then, the harmonic mean basal area is given as 

1 
= K p ;  

[A] 
= x d2 f (d; 8) Sd 

- 2 = xDq 

with the respective basal area weights B and Bi . It is straight- 
forward to show that the denominator in [3] reduces to N. Thus, 
the harmonic mean of the basal area - size distribution is also 
equal to B ~ .  

A second relationship 

The result of the preceding section should not be overly sur- 
prising. Size-biased distribution theory has been shown to pro- 
vide a general theoretical framework for linking the underlying 
theoretical population diameter distribution with both the basal 
area - size distribution and the distribution of diameters from 
the Bitterlich population. Thus, relationships that are found to 
hold in the general empirical distribution should also hold under 
this more general theoretical framework. However, one further 
interesting result that evidently can not be arrived at without 
resorting to size-biased distribution theory is the following. 

Consider again the graph in Fig. 1 showing both f (d; 8)  and 
f; (d; 8). The point of intersection for the two densities is seen 
to be at Dq given the data that generated it. A relevant question 
then becomes, is this always the case, regardless of the shape 
of the underlying distribution? To answer this question, set the 
two densities equal and solve for the point of intersection in 
terms of the original random variable, namely 

The last step follows, since the second raw moment of the or 
population per-unit area diameter distributionl f (d; B), is the 
square of the quadratic mean stand diameter Dq, regardless of 
the parametric form (Ek et a1 1975 ; Burk and Newbeny 1984; 
Gove and Patil 1998), and the result has been shown. Thus, 
weighted distribution theory preserves the intrinsic relationship 
between HPS tally and population data and yields an alternative 
proof in terms of probability densities for this well-know result 
in forestry. This result is also consistent with existing statistical 
theory, since, in general, it is well known that the harmonic mean 
of the size-biased distribution of order a! = 1 is the mean of 
the original unweighted distribution (Mahfoud and Patil 1982; 
Jmes W90)~Tkis-resu~ Eowever, extendsthese findings t o a  
simple function of the size-biased distribution of order a = 2 
that is undoubtedly specific to forestry. 

Because of the relationship between the HPS diameter dis- 
tribution and the basal area - size distribution, the proof above 
also applies to the latter. It is straightforward to verify this an- 
alytically by noting that the harmonic mean basal area can be 
recast in terms of the basal area - size distribution, namely 

where Bi is the basal area per-unit area in the i th diameter class, 
and bi = Kdi is the class midpoint basal area for i = 1, . . . , n. 
It is important to notice here that the probability density in the 
basal area - size distribution is in terms of basal area, not fre- 
quency; therefore, the tree frequencies in [I] must be replaced 

which implies that d2 = /L;. But we have already seen that the 
second raw moment of the original DBH-fequency distribution, 
p;, is the quadratic mean stand diameter squared. Thus, taking 
the square root of both sides, we have finally that the point of 
intersection is at d = D ~ .  Because no distributional family has 
been assumed in this result (s.g, WeibuU, beta, etc.), it holds 
regardless of the assumed form for f (d; 8) and thus f;(d; 8). 

The results have been presented here in terms of the respec- 
tive probability densities for generality sake. However, it is 
again straightforward to show that this result holds for both 
the HPS and basal area - size distributions when appropri- 
ate scale factors have been applied to expand the densities to 
the respective per-unit area quantities. Thus, the intersection 
of the size-biased distribution of order a! = 2 and the origi- 
nal DBH-frequency distribution always occurs at the quadratic 
mean stand diameter, 

As an aside, a related result can similarly be proven for the 
size-biased distribution of order a! = 1, namely f; (d; 8 )  will 
always cross f (d; 8 )  at the arithmetic mean diameter d = pi .  
This result corresponds to the results on the first-order harmonic 
mean cited earlier (Mahfoud and Patil 1982; Jones 1990). Un- 
doubtedly, analogous results for higher order size-biased dis- 
tributions (i.e., a > 2) also exist, although their usefulness in 
forestry is questionable. 
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Concluding remarks Bitterlich, W. 1984. The relascope idea: relative measurements in 
forestry. 1st ed. Commonwealth Agricultural Bureaux, Slough, U.K. 

The proofs in this note have shown that size-biased distri- Buckingham, EM. 1969. The mean in forest mensuration. 
bution theory provides results that are consistent with previ- For. Chron. 45: 104-106. 
Ous findings On the between and Burk, T.E., and Newbeny, J.D. 1984. A simple algorithm for moment- 
quadratic means- In addition, a new result has been identified, 

basedrecovery ofWeibull disVibution parameters. For. Sci. 30: 329- 
constraining the crossing point of f (d;  8 )  and its associated 223 

size-biased counterpart. 
An interesting consequence of these findings is that we can 

consider the theory developed in terms of a dualitygaradigm. 
Since the quadratic mean stand diameter (through B,) and the 
harmonic mean basal area have been shown to be equivalent 
under size-biased distributions of order a! = 2, we can think in 
terms of each of the two means "belonging" to the respective 
probability density. It is natural to consider the quadratic mean 
stand diameter as belonging to the usual diarneter-frequency 
distribution, since this is the distribution that it is normally cal- 
culated from. However, the definitions of the harmonic mean 
basal area are always given in terms of the size-biased probabil- 
ity density. Thus we can similarly consider the harmonic mean 
basal area as belonging to the respective size-biased form. The 
duality established, therefore, is that regardless of which den- 
sity one chooses to work with, either mean version will always 
provide the intersection of the two densities. 

Plotting the two appropriately scaled densities will always 
give a correct graphical representation of Dq (or Bh) as in Fig. 1. 
However, these results assume that the empirical distribution 
has not been truncated based on merchantability limits or the 
like. If a complete density is fitted to truncated data, the em- 
pirical truncated estimate of Dq will undoubtedly be different 
than that given by the intersection of the full densities. 

J Jh. 
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