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Many of the most popular sampling schemes used in forestry are probability proportional to size 
methods. These methods are also referred to as size-biased because sampling is actually from a 
weighted form of the underlying population distribution. Length- and area-biased sampling are 
special cases of size-biased sampling where the probability weighting comes from a lineal or areal 
function of the random variable of interest, respectively. Often, interest is in estimating a parametric 
probability density of the data. In forestry, the Weibull function has been used extensively for such 
purposes. Estimating equations for method of moments and maximum likelihood for two- and three- 
parameter Weibull distributions are presented. Fitting is illustrated with an example from an area- 
biased angle-gauge sample of standing trees in a woodlot. Finally, some specific points concerning 
the form of the size-biased densities are reported. 

Keywords: horizontal point sampling, point relascope sampling, probability proportional to size, 
size-biased distributions, weighted distributions 
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1 . Introduction 

Size-biased distributions arise naturally from many probability sampling designs used in 
forestry and related fields. The most useful of these designs can be conveniently 
categorized as length- and area-biased sampling designs. For length-biased methods, 
sampling is with probability proportional to some lineal measure; e.g., piece length or 
diameter. With area-biased designs, individuals are selected into the sample with 
probability proportional to some areal attribute, the most widely known example is tree 
basal area. For example, length-biased samples arise from the line intersect (LIS) (Kaiser, 
1983) and transect relascope (TRS) (Stihl, 1998) methods for sampling down coarse 
woody debris (CWD), and from horizontal line samples (HLS) of standing trees 
(Grosenbaugh, 1958). In LIS and TRS, piece length is the operative random variable, 
whereas in HLS it is tree diameter. Similarly, area-biased samples arise from horizontal 
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point sampling (HPS) (Grosenbaugh, 1958) where trees are selected with probability 
proportional to their basal areas, and point relascope sampling (PRS) (Gove et al., 1999) 
which selects down pieces of CWD with probability proportional to their squared length. 
In all methods except LIS, individuals are selected with the aid of an angle gauge, which 
effectively serves to distribute the attributes of interest over a larger area, thus increasing 
the chances of being selected by a randomly chosen point (Valentine et al., 2001). In LIS, 
the line itself serves the same function as the angle gauge by creating a larger inclusion 
area for a downed log than the log itself. 

It is often the case that one desires to fit a known probability distribution to sample data. 
Under equal probability sampling this is straightforward and moment or maximum 
likelihood estimators have been published for a wide variety of distributions. Let X be the 
random variable of interest such that X -  f (x; 8), then in the equal probability case, one 
would desire estimates of the unknown parameters 8. However, under size-biased 
schemes, the probability of sampling an individual is proportional to XCI, a = 1,2  for 
length- and area-biased sampling, respectively. Therefore, the correct density is of the 
form (Patil and Ord, 1976; Patil, 198 1) 

where the denominator-the ath raw moment off (x; 8)-serves as a normalizing constant 
for the size-biased density and we write XG -f,*(x; 8). Clearly the equal probability 
moment and likelihood equations do not apply in samples arising from length- or area- 
biased data because of the unequal weighting. In forestry, Van Deusen (1986) was the first 
to recognize this with regard to HPS. Later, Lappi and Bailey (1 987) showed how the same 
principles applied to diameter increment arising from HP samples. Gove and Patil(1998) 
applied size-biased distributions in a pure modeling scenario to the basal area-diameter 
distribution while Gove (2000, 2003a) showed the consequences of using equal 
probability methods when size-biased estimation techniques were clearly called for. 

Introduced nearly three decades ago to forestry (Bailey and Dell, 1973) the Weibull 
probability density has become widely used as a diameter distribution model. For example, 
the Weibull played a major role in the development of parameter prediction and parameter 
recovery methods (Hyink and Moser, 1983) used in the modeling of forest growth. Other 
forestry-related uses of the Weibull include applications as varied as precipitation models 
(Duan et al., 1998) and fire recurrence (Polakow and Dunne, 1999) modeling. In this study, 
both moment and maximum likelihood (ML) equations are presented for parameter 
estimation of Weibull distributions arising from length- and area-biased samples. 

2. Weibull distributions 

The two- and three-parameter Weibull distributions differ only in the inclusion of a 
location parameter for the three-parameter version. The pdfs for the two- and three- 
parameter case are given as 
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with 6 = (y, fi)' and 6 = (y, fi, r)', respectively. The unknown parameters y > 0, fi > 0 
and > 0 are the shape, scale and location parameters to be estimated for a given sample 
of data. 

Let the ath raw moment for f (x; 6) be defined as p& = SSxqf (x; 6) dx. In the two- 
parameter case, the moments are always given by the simple relation p& = Buru,  where 
r, = T(a/y + 1) and T(k) = J: f - 'e-'dx, k > 0, the gamma function. However, the 
form of the raw moments for the three parameter case varies somewhat according to the 
integer value of a. For the sake of exposition, let X be two-parameter Weibull with 
E[Xu] = pa ru ,  then Y = X + is three-parameter Weibull and the successive raw 
moments can be found from p& = E [Yu] = E [(X + r)a]. Applying the binomial theorem to 
expand the argument of the expectation yields 

Now, allowing p', to represent the raw moments for the two- and three-parameter 
Weibull as appropriate, it follows directly from (1) and the above results that the size- 
biased versions of the two- and three-parameter Weibulls are 

respectively, with the same restrictions on the parameters as for the equal probability pdfs. 

3. Moment estimation 

The moment equations under size-biased sampling require the raw moments of the size- 
biased distribution. These moments are simple ratios of the moments of the equal 
probability forms; define p$ as the 5th raw moment of the size-biased distribution of order 
a. Then 

For the two-parameter Weibull, it follows that the raw moments of the size-biased 
distribution are of the form 
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For estimation purposes, the first two raw moments of the size-biased two-parameter 
Weibull can be set equal to the sample moments, the solution of which requires solving a 
set of two equations simultaneously. Alternatively, a modified method of moments may be 
preferred. It is a simple matter to calculate the mean and variance of the sample data. From 
these, the coefficient of variation CV may also be found directly. Modified moment 
equations can be developed using the first moment and the coefficient of variation; this 
scheme may be preferable because there is only one equation to solve for one unknown, 
simplifying estimation as in the equal probability case (Cohen, 1965). The variance of a 
size-biased random variable of order a is given as usual 

which, for the two-parameter Weibull becomes 

The coefficient of variation is defined as the square-root of the variance divided by the 
mean. In general, the coefficient of variation for the size-biased distribution of order a is 

Therefore, after substitution of terms for the two-parameter Weibull, we have 

It follows that the modified moment equations for the two-parameter size-biased Weibull 
distribution of order a are 

where the first Equation (3) is solved iteratively for the shape parameter estimate y, which 
is then substituted into the Equation (4) providing the scale parameter estimate j. Equation 
(4) derives from equating the sample mean (2) to the first raw moment p$. 

The moment estimators for the size-biased three-parameter Weibull rely on the 
relationship developed in (2). The addition of the location parameter adds a level of 
complexity to the three-parameter form that was not found in the previous development 
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because it requires having separate equations for each size-biased order a. In addition, the 
formula for the variance is straightforward, but, especially for a = 2, the formula for the 
coefficient of variation becomes overly complex. Alternatively, it would be tempting to 
follow a modified moment estimation scheme as in Cohen et al. (1984) using the mean, 
variance and first order statistic moments. However, the distribution of order statistics for 
the size-biased form is intractable. Thus, a simple scheme based solely on the first three 
moments of the size-biased distribution has been adopted here. In this scheme, we again 
make use of the relationship for pi:i;  viz., 

Since a = 1 or 2 and 5 = 1, . . . , 3  in (5), the first five non-central moments p i ,  p i ,  . . . ,pk 
of the three-parameter Weibull are required for the p',k in the size-biased equations. 
Substituting in for p& and p&+ ( from (2) with the appropriate value of a and 5 completes 
the equations. For example, for area-biased samples, the first size-biased moment ~ 1 2 : ~  is 

The solution is found by setting each of the three raw moments equal to the corresponding 
sample moments and solving the system simultaneously for the three unknown parameter 
values. 

4. Maximum likelihood estimation 

Maximum likelihood estimation for size-biased distributions of the form considered here 
also follows directly from the equal probability case. In general, the log likelihood for the 
size-biased pdf of the form (1) is 

As pointed out by Van Deusen (1986), the first term is a constant and may be dropped if 
desired, the second term is the usual (equal probability) log-likelihood, In 9 ,  and the third 
term is a "correction" term accounting for the fact the observations were not drawn with 
equal probability. 

Rather than numerically maximizing In Y* directly, it is often more useful to have first- 
and second-order derivative information for Newton-type algorithms and for variance 
estimation via the Hessian. The reader is referred to Gove (2000) for the first-order partial 
derivative equations for the size-biased two-parameter Weibull. Similar equations can be 
derived for the size-biased three-parameter Weibull. However, as in the case of the 
moment estimators, the form of the derivative equations again depends on the size-biased 
order a. The gradient equations are 
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where 

and $, = $(a/y + 1) is the digamma function ($) (Abramowitz and Stegun, 1964, p. 258) 
indexed to the size-biased order a. These equations can be combined with second order 
information (Appendix) and solved for the unknown parameter values by Newton- 
Raphson iteration using the moment estimates as starting values. 

5. Example: horizontal point sampling 

Recently, the methods discussed herein for size-biased Weibull estimation have been 
incorporated into a graphical user interface-based program for fitting diameter 
distributions to forestry data (Gove, 2003b). A two-stage estimation scheme that seems 
to work well in many cases is to estimate parameters in the first stage using the moment 
equations, yielding estimates 6. In the second stage, the moment estimates are used as 
starting values for maximum likelihood yielding estimates 8. This scheme has been 
suggested in equal probability estimation of Weibull parameters (Cohen, 1965) and is 
employed in the following example. 

The data used in this example are from a forest inventory on a 72 acre parcel of the Mont 
Vernon New Hampshire town forest tract. The forest is composed of mixed hardwoods and 
eastern white pine (Pinus strobus L.) and has an average basal area of approximately 
150ft2 per acre. In the course of the field phase of the inventory, 46 prism points were 
sampled with a 20 basal area factor prism. Data from the tally on the 46 points were 
lumped yielding a total of 359 sample trees for area-biased Weibull parameter estimation. 

Two- and three-parameter area-biased Weibull distributions were fitted to the Mont 
Vernon data using the methods described above. In both cases, moment estimates were 
computed first as starting values for MLE. The results are presented in Table 1 along with 
the Akaike Information Criterion (AIC). In all cases, both moment and ML, the estimates 
converged quickly to reliable solutions. The remarkable correspondence between the 
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Table 1. Parameter estimates for Mont Vernon inventory. 

Parameter Estimates 

Estimation Method Y f i  c AIC 

Moments 1.492 7.676 - 
1.391 6.701 1.704 

Maximum Likelihood 1 SO6 7.753 - 2233.67 
1.388 6.664 1.773 2233.77 

* 
AIC = - 2 In 2 + 2K, where K is the number of Weibull parameters. 

moment and ML estimates should confirm the soundness of the estimating equations. 
Corresponding graphical results of the ML fits are shown in Fig. 1. This figure presents 
both the two- and three-parameter fits (dashed). In addition, it presents the equal 
probability Weibull densities using the size-biased parameter estimates. The equal 
probability densities estimate the underlying population distribution from which the 
sample was drawn. Note that the underlying sample of 359 trees forms a relatively nice, 
unimodal distribution in this example as shown by the histogram. 

6. Discussion and conclusions 

While the results from the example in the preceding section with regard to parameter 
estimation are encouraging, there are a few points worth mentioning with regard to the 
size-biased Weibull distributions discussed here. First, size-biased three-parameter 
Weibull distributions can take on a range of shapes, some of which are not found in the 
associated equal probability Weibull. Fig. 2 presents a set of graphs for the area-biased 
three parameter Weibull for illustration. Each row in Fig. 2 corresponds to a different value 
of the shape parameter, ranging from 0.7-2.0, while the columns show the effect of 
increasing the scale parameter by a factor of two. The value of the location parameter 
ranges from 0-6 in steps of two to facilitate illustration of the following points. 

For shape parameters less than y = 1, several different shapes are possible ranging from 
"L-" to ' h-" to almost "n- "shaped, in all cases with large positive skewness. The pdfs in 
Fig. 2a, with y = 0.7 and 5 > 0 illustrate intermediate shapes within this range. This 
contrasts with the equal probability Weibull, which is reverse ' ' J- " shaped for y 5 1. For 
the sake of clarity in Fig. 2a, the pdfs are plotted beginning at 5 + 0.01 rather than at to 
more clearly illustrate the shape without the straight vertical intercept line that would 
appear otherwise. 

Similarly, the case where the shape parameter equals 1 in Fig. 2b presents another 
anomaly that might not be evident from the formula: alone: the pdfs with non-zero location 
appear to resemble truncated densities. In panel b, the densities have been plotted starting 
at 5 this time and the vertical line shows clearly the beginning point of each density. Panel 
c also shows this, but as the shape parameter increases, this phenomenon is less 
pronounced. Indeed, it disappears completely in panel d for P = 3. 

Comparison of the panels in Fig. 2 shows the interplay between the different parameters. 
As the shape parameter increases (rows), the "truncation effect" is lessened. The same 
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Figure 1. Maximum likelihood fits of area-biased pdfs (dashed) for the Mount Vernon tally 
(histograms) with underlying population Weibull estimate (solid): (a) two-parameter Weibull, 
(b) three-parameter Weibull (see Table 1 for coefficients). 

can be said for the scale (columns) parameter. For a given set of shape and scale 
parameters, however, the truncation effect increases as the location parameter increases. 
This makes intuitive sense: Since the density must integrate to one, the curve must shift 
upwards to accommodate the extra area. 

Table 2 provides more detail into the truncation effect phenomenon. These data 
correspond to the pdfs in the first column of Fig. 2b with y = 1, P = 3 .  Here, the 
components of the area-biased density have been evaluated separately at x = < + 0.01, 
just after the intercept, assuring positive probability density. Columns two and three of 
Table 2 give the numerator components of f,*(x; O ) ,  while the last column gives the 
denominator, p;. The ratio of the two numerator components is given in column four and 
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Table 2. Size-biased pdf (a = 2) components for y = 1, P = 3. 

"x = 5 + 0.01, a small amount is added to { to make the density non-zero. 

corresponds to a relative weighting of the two to facilitate comparison. Note from the 
definition of the three-parameter Weibull density, that f ( x ;  8 )  is always evaluated at x - 5 
rather than x when 5 > 0. However, the xu component is never shifted, since its role is one 
of generating a moment in the size-biased paradigm. Thus, in any comparison of the two 
close to 5 ,  the x" term will dominate, producing the truncation effect. Perusal of the fourth 
column in Table 2 verifies that this is indeed the case, and that this trend increases with 
increasing values of 5. The fact that this is most readily apparent for small shape and scale 
parameters implies that as y and P increase, they in turn weight f (x; 8)  more heavily than xu 
and the densities begin at zero, showing no truncation effect. While it may be possible to 
iteratively solve for the unknown parameters at the point where the pdf equals zero in such 
cases, it is probably more beneficial to have an intuitive understanding of the phenomenon 
described above and when to expect it, than trying to find any explicit case where the 
truncation effect disappears. 

Extensive simulations have previously been presented for the ML estimators in the two- 
parameter case (Gove, 2000). The remaining estimators presented in this paper have been 
tested on numerous empirical distributions arising from forest sampling work. In the 
majority of cases, both the moment and ML estimates converged. For the size-biased two- 
parameter Weibulls, this was always the case. However, the moment equations for the 
size-biased three-parameter Weibull tended not to converge in some cases. This normally 
occurred when there was some hint of bimodality in the data, or in the case of small sample 
size coupled with positively skewed shape parameter less than two. The problem in all 
cases was evidently that the location parameter is poorly estimated. The ML equations 
appear to be more robust and normally converge if reasonably good starting values are 
provided in the three-parameter case. This would suggest that if a more robust form for the 
three-parameter moment equations could be found, possibly along the lines of the 
modified method of moments, it might provide more stable equations across the range of 
legal parameter values. 

Appendix 

The following equations define the Hessian matrix of second-order information for the 
size-biased three-parameter Weibull. 
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where 
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and 

with $& = $'(a/y + 1) the trigamma function (Abramowitz and Stegun, 1964, p. 260) 
indexed to the size-biased order a. 
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