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Abstract 

Size-biased distributions arise naturally in several contexts in forestry and ecology. Simple 
power relationships (e.g. basal area and diameter at breast height) between variables are one 
such area of interest arising from a modelling perspective. Another, probability proportional to 
size (PPS) sampling, is found in the most widely used methods for sampling standing or dead 
and fallen material in the forest. Often it is desirable or necessary to estimate a parametric 
probability density model based on size-biased data. Traditional equal probability methods 
may not be appropriate, or may be less efficient in such circumstances, and estimation is better 
conducted utilizing size-biased theory. This chapter surveys some of the possible uses of size- 
biased distribution theory in forestry and related fields. 

Introduction 

Size-biased distributions are a special case of the more general form known as 
weighted distributions. First introduced by Fisher (1934) to model ascertainment 
bias, weighted distributions were later formalized in a unifying theory by Rao 
(1965). Such distributions arise naturally in practice when observations from a sam- 
ple are recorded with unequal probability, such as from probability proportional to 
size (PPS) designs. Briefly, if the random variable X has distribution f(x;8), with 
unknown parameters 8, then the corresponding weighted distribution is of the form 

where w(x) is a non-negative weight function such that E[w(x)] exists. 
A special case of interest arises when the weight function is of the form w(x) = 

xa. Such distributions are known as size-biased distributions of order a and are 
written as (Patil and Ord, 1976; Patil, 1981; Mahfoud and Patil, 1982): 
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where & = Jxaf(x;6) dx is the ath raw moment of f(x;6). Denote X the original, or 
equal probability, random variable, and X i  -f;(x;6) the size-biased random variable. 
The most common cases of size-biased distributions occur when a=l or 2; in the 
context of sampling, these special cases may be termed length- and area-biased, 
respectively. 

Weighted distributions have numerous applications in forestry and ecology. 
Warren (1975) was the first to apply them in connection with sampling wood 
cells. Van Deusen (1986) arrived at size-biased distribution theory independently 
and applied it to fitting distributions of diameter at breast height (DBH) data aris- 
ing from horizontal point sampling (HPS) (Grosenbaugh, 1958) inventories. 
Subsequently, Lappi and Bailey (1987) used weighted distributions to analyse 
HPS diameter increment data. More recently, weighted distributions were used 
by Magnussen et al. (1999) to recover the distribution of canopy heights from air- 
borne laser scanner measurements. In ecology, Dennis and Patil (1984) use sto- 
chastic differential equations to arrive at a weighted gamma distribution as the 
stationary probability density function (PDF) for a stochastic population model 
with predation effects. In fisheries, Taillie et al. (1995) modelled populations of 
fish stocks using weighted distributions. In these last two examples, weighted 
distributions were not directly tied to the underlying sample selection method, 
but were simply convenient models for the observed data. Recognizing the fact 
that weighted distributions may be applied as convenient PDF models, Gove and 
Patil (1998) developed a compatible theory, unifying the DBH-frequency and 
basal area-DBH distributions based on the quadratic relationship between diam- 
eter and basal area. Lastly, Gove (2000) extended the work of Van Deusen (1986) 
by providing simulation experiments and guidelines for fitting size-biased distri- 
butions to data. 

The purpose of this chapter is to review some of the more recent results on size- 
biased distributions pertaining to parameter estimation in forestry, with special 
emphasis on the Weibull family. In addition, some new results and avenues for pos- 
sible future research will be presented. Finally, a new computer program with 
graphical user interface (GUI) developed by the author for fitting size-biased 
Weibull distributions will be briefly discussed. 

Size-biased Weibull Distributions 

Weibull distributions have found widespread use in forestry for modelling since 
they were first introduced by Bailey and Dell (1973). The two- and three-parameter 
Weibull PDFs are given as 

with 6 = (y,P)' and 8 = (z/3,Q1, respectively. The unknown parameters y> 0, P > 0 and 
5 > 0 are the shape, scale and location parameters to be estimated for a given sample 
of data. 
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These PDFs can be easily converted to their size-biased counterparts using 
Equation 1, namely 

for the two- and three-parameter versions, respectively, with the same restrictions 
on the parameters as for the equal probability PDFs. Gove and Patil (1998) have 
also shown that the size-biased two-parameter Weibull can be transformed, 
through change-of-variables techniques, to the standard gamma distribution. Such 
a transformation may be advantageous for simulation studies. For example, Gove 
(2000) used the standard gamma to draw probability-weighted samples to simulate 
the HPS tally distribution. 

Because of their popularity in modelling the traditional DBH-frequency distri- 
bution, both the two- and three-parameter size-biased Weibull PDFs are appropriate 
as candidate probability models in all of the applications presented in this chapter. 

Size-biased Weibulls: Moment Estimation 

Size-biased two-parameter Weibull moment estimators 

The development of moment estimators for the size-biased two-parameter Weibull 
distribution is given in Gove (2003a). There, a modified moment estimation scheme 
along the lines of Cohen (1965), using the coefficient of variation, is presented. Let 7 
and p represent the moment estimates for the shape and scale parameters, respec- 
tively; then the moment equations are 

cv = r a r z l / R  (2) 

where f and CV are the sample mean and coefficient of variation, respectively, with 
ra = r(a/ y+ l), Fa=r(a/ j + 1) and r(k)=J," xk-'e-'dx, k > 0, the gamma function. 
Equation 2 is solved iteratively for the shape parameter, then the scale parameter 
can be found directly by substitution into Equation 3. 

Size-biased three-parameter Weibull moment estimators 

Unfortunately, the moment equations for the size-biased three-parameter Weibull 
are not easily couched in a modified scheme like that for the two-parameter where 
the coefficient of variation can be used. Thus, the moment equations for the first 
three raw moments are used; these moments can be built up from the moments of 
the equal probability three-parameter Weibull (Gove 2003a). Let pi,i = Jdcf;(x,e)dx 
denote the Cth raw moment of the size-biased three-parameter Weibull distribution 

of order a. Then, it is straightforward to show that p:,< = G. Now, since a = 1 or 
& 
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2 for the most common forestry applications, and 5 = 1, ..., 3 for the first three raw 
moments, it is easy to see from the numerator of pi , i  that the first five raw moments 
of the three-parameter Weibull distribution are required for the estimating equa- 
tions. The moments for the three-parameter Weibull are of the form 

where the coefficients (y), i = 1, ...,a follow Pascal's triangle. Thus, for example, the 
second raw moment from a length-biased three-parameter Weibull, is 

It should be clear that the moment equations for the length- and area-biased ver- 
sions differ. For comparison, the second raw moment from an area-biased three- 
parameter Weibull is given as &>, and is therefore more complicated: 

The first three moment equations are set equal to _the first three sample 
moments and solved simultaneously for the estimates % P, 5. Further details are 
given in Gove (2003~1,~). 

Size-biased Weibulls: Maximum Likelihood Estimation 

The maximum likelihood estimators (MLEs) for size-biased Weibulls can be found 
by building up from the equal probability likelihood, just as in the case of the three- 
parameter moment estimators in the previous section. The equal probability three- 
parameter Weibull log-likelihood is 

and the two-parameter log-likelihood follows directly by setting 5 = 0. 
The size-biased form was first given by Van Deusen (1986), where he noted that 

it was composed of the equal probability log-likelihood plus a constant and a correc- 
tion term. He also noted that the purpose of the correction was to account for the 
fact that the observations are drawn with unequal probability. The general form of 
the size-biased log-likelihood is given as 

where the second term is constant, depending only on the data, and thus may be 
dropped if desired. 

In addition, the gradient vector and Hessian matrix of first- and second-order 
partial derivatives are also of the same form (Gove 2003a). For example, the gradient 
equations for the size-biased three-parameter Weibull follow the form 
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Notice that the correction term (ripe, (a)) depends on the size-biased order a. Thus, 
there are unique corrections associated with length- and area-biased log- 
likelihoods. The Hessian matrix follows the same pattern, being composed of the 
equal probability and correction components. Detailed equations for the three-para- 
meter gradient and Hessian are presented in Gove (2003a). In the two-parameter 
size-biased Weibull, the equations are much simpler, due to the simpler nature of 
the raw moment pk in that distribution. The gradient equations for the two-parame- 
ter case are given in Gove (2000). 

The Basal Area-size Distribution 

As mentioned earlier, the basal area-size distribution (BASD) is the size-biased dis- 
tribution of order a = 2 of the traditional DBH-frequency distribution (Gove and 
Patil, 1998). The relationship can easily be shown algebraically and arises, not from 
sampling theory, but purely from the quadratic relationship between DBH and basal 
area. If the random variable X is tree diameter, then X -f(x;8) is the DBH-frequency 
distribution. From it, we normally calculate the number of trees in the ith diameter 
class (N,), once the parameters 8 have been estimated from sample data 

N, = ~ l ~ "  f (x ;e)dx  
! 

(5) 

where xli and xUi are the lower and upper diameter class limits, respectively, and N is 
the total number of trees per hectare. 

The BASD comes about by redistributing the probability mass in terms of 
basal area, rather than tree frequency. The random variable in both cases is still 
DBH. The BASD can then be used to calculate the basal area (B,) in the ith DBH 
class as 

B, = BI'" f i ( x ; ~ ) d x  
X I ,  

where B is the stand basal area per hectare. Thus, X;-f;(x;O). 
Gove and Patil (1998) presented several examples of stands fitted with a para- 

meter recovery model, all with the same basal area and number of trees, but span- 
ning a wide range of the two-parameter Weibull parameter space. As an example, 
the stand in their Figure Id has been re-fitted with a three-parameter Weibull model 
and is presented in Fig. 18.1. This figure shows the empirical histogram for the 
DBH-frequency distribution along with the Weibull curve fitted by ML. Also shown 
is the corresponding BASD curve, which shares the same estimated parameter vec- 
tor 6 from ML. 

Estimation of Weibull Parameters under Size-biased Sampling 

Arguably, the two most useful forms of size-biased distributions arising in forestry 
are the length- and area-biased models. Length-biased data arise from line intersect 
samples (LIS) (Kaiser, 1983), horizontal and vertical line samples (HLS, VLS) 
(Grosenbaugh, 1958) and transect relascope sampling (TRS) (St6h1, 1998). Area- 
biased data arise naturally from HPS and vertical point sampling (VPS) 
(Grosenbaugh, 1958), and from point relascope sampling (PRS) (Gove et al., 1999) for 
coarse woody debris. In this section these links are explored in more detail, with 
special emphasis on the distribution of HPS tally tree diameters. 
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Fig. 18.1. Example diameter distribution (shaded) from Gove and Patil (1998) with B = 45.9 and N = 741 
showing the estimated DBH-frequency distribution (solid) and associated BASD (dashed) for a three- 
parameter Weibull with MLEs: ? = 11.23, /3 = 23.44, f = 5.57. 

Because of the intrinsic link between basal area and HPS, it is not surpris- 
ing that the distribution of tally diameters from a HPS turns out once again to 
be the size-biased distribution of order cx = 2 (Van Deusen, 1986; Gove, 2000). 
Thus, if the underlying population diameter distribution for a given stand is 
f (x;O), then the corresponding HPS tally distribution is given by f ;(x;O), where 
0 is a shared parameter set. Having sampled from f ;(x;O) using a prism or suit- 
able angle gauge with HPS, we next must estimate 0, usually by ML. In the fol- 
lowing sections some strategies for estimation are discussed with regard to this 
problem. 

Fitting single horizontal point samples 

Van Deusen (1986) first discussed fitting Weibull distributions to diameter data aris- 
ing from single horizontal point samples. The most common reason for doing this 
would be the subsequent fitting of parameter prediction models (Hyink and Moser, 
1983). Later, Gove (2000) used simulations to address in more detail the possible 
problems with parameter estimation, using two-parameter Weibulls for illustration. 
The main results of the latter study are discussed in this section. 

Briefly, it is possible to estimate 0 either by fitting a Weibull to the estimated 
stand table (number of trees per hectare by DBH) diameters from a single H E ,  or 
by fitting the area-biased Weibull directly to the tally diameters. However, in theory, 
0 is supposed to be a shared parameter set between f(x;O) and f; (x;O). A problem 
arises because one can fit both distributions to their respective data for any given 
H E  and, in so doing, two different estimates of 0 normally result in the process. 
Then the question becomes, which estimate is the best? This question does not arise 
when fitting distributions to diameters sampled on fixed area plots, because in 
either instance we are estimating f(x;O) (Gove, 2000). 

The simulations presented were extensive and will not be discussed in detail 
here. However, they were designed to assess the effects of both expected sample 
size (in terms of number of trees tallied) per point, and the shape of the population 
distribution f(x;O) on estimation. The key findings were as follows. First, as the 
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sample size per point increases, both parameter estimates tend to converge to the 
population values. However, the rate at which they do so depends in large part on 
the shape of the underlying population of diameters. In the case of fairly symmetri- 
cal population distributions, both parameter estimates converged at the same rate 
and had very similar root mean squared errors (RMSEs). However, as the popula- 
tion diameter distribution tended more towards a reverse J-shape, associated with 
typical uneven-aged stands, the parameter estimates from the size-biased distribu- 
tion fit both converged more quickly and had lower RMSEs, often by more than 
half. 

The reasons for the results are twofold. First, because the size-biased form is 
theoretically linked to the underlying sampling mechanism, its shape more nearly 
parallels that of the population distribution of HPS diameters and is therefore esti- 
mated more efficiently. This is particularly true, as illustrated in Figure 4a of Gove 
(2000), when the population diameter distribution is reverse J-shaped. As the popu- 
lation distribution of diameters becomes more symmetrical, the shapes off (x;8) and 
f; (x;8) tend to be more alike and estimation is therefore essentially equivalent for 
either density. Second, in the reverse J-shaped population, sampling with probabil- 
ity proportional to basal area is akin to sampling for rare events in terms of fre- 
quency. The vast majority of probability density for the associated tally distribution 
is confined to diameters of essentially merchantable size. Therefore, it is very diffi- 
cult to realize a large enough sample of smaller diameter trees on any one point, to 
actually shift the estimated stand table from unimodel to reverse J-shaped. For 
example, the result of m = 1000 simulations from a reverse J-shaped distribution 
with population shape parameter y = 1.0 was an estimated stand table shape para- 
meter of 7 = 1.54 with N* = 40 trees per point sampled. In contrast, the estimate for 
the size-biased shape parameter from the tally data for the same simulations was 
1.07, with RMSE equal to one-quarter that of the stand table estimate for the shape 
parameter. 

The most important conclusion that should be kept in mind from this study, is 
that concerning the overall purpose of the inventory. Horizontal point sample 
inventories are a rich reservoir of data for estimating forest characteristics. However, 
the normal recommendation of choosing an angle that selects 5-12 trees per point on 
average for estimating stand data (Avery and Burkhart, 1994: 218), generally will not 
suffice for parameter estimation of assumed diameter distributions. Therefore, the 
goals of parameter estimation and inventory may conflict and it is possible that, 
depending on the shape of the population diameter distribution, alternative inven- 
tory protocols may be required. 

Fitting with multiple points 

Fitting diameter distributions to a single HPS for use with parameter prediction 
model construction is undoubtedly a rather infrequent use of such data. It is proba- 
bly more likely that one would be interested in fitting diameter distributions to sam- 
ple data arising from more than one HPS point, say, for example, to a stand 
diameter distribution taken over n sample points. In this case, the questions posed 
in the previous study are still valid. However, the support for parameter estimation 
naturally increases with the increased sample size and one would expect that the 
ML estimates would continue to converge in both the stand and tally estimates to 
the respective population values. The problem can be viewed from two different 
perspectives based on the degree of homogeneity of the target population diameter 
distribution. 
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Homogeneous stands 

In this case, one would envisage that the diameter distribution from one point to the 
next in an HPS inventory is relatively homogeneous within the population of interest. 
Thus, for parameter estimation purposes, the stand table can be computed directly 
from the sample of n points to estimate f (x;8). Similarly, the tally from all n points 
can simply be pooled to estimate f; (x;8). Furthermore, let 0 = (f,B ) and 6 = ( j ' ,P ) 
be the MLEs for f (x;8) and f; (x;8), respectively. 

Two sets of simulations were conducted to extend the previous study to the 
multiple point case. The two populations chosen were those that showed the 
poorest convergence in the single HPS estimates: the reverse J-shaped and mild 
positively skewed populations. The expected number of trees sampled per point 
was fixed at N* = 10, and the sample sizes ranged from n = 5 to 40 points for the 
simulations. 

The results of the simulations are presented in Table 18.1. These results clearly 
show that in both cases, as the sample size increases, the parameter estimates con- 
verge to the population values more rapidly for the tally distribution. Not only is 
the overall bias less, but the RMSE is also significantly reduced. This is particularly 
true for the reverse J-shaped population, but also still holds rather convincingly for 
the mildly skewed population. 

Because the reverse J-shaped case is closely linked to uneven-aged manage- 
ment, which seems to be gaining in popularity in the USA, it is of interest to look at 
this problematic case a little more closely. The results of the simulations are pre- 
sented graphically in Fig. 18.2. In both cases, the population line is shown as solid, 
and the average density (dashed) lines generally approach it as the number of 
points increases. It is quite apparent from these graphs that the estimated densities 
for the stand table data are never quite able to estimate the true reverse J-shape. On 
the other hand, it takes in the neighbourhood of 25-30 HPS points to arrive at the 
correct estimates when using the tally data and f; (x;8) in such stands. 

These simulations mirror the trends in the single HPS case exactly but, because 
of the increased sample size, show that convergence is better in the multiple-point 
scenario. The conclusions to be drawn, then, also parallel the single-point case: 
when sampling from stand conditions that approach that of the classic reverse J- 
shaped distribution, or show some degree of positive skewness, parameter estima- 
tion should be undertaken using the size-biased likelihood approach. 

Table 18.1. Simulation results for 250 replications of N* =10 trees per point on n multiple HPS points 
drawn from a two-parameter Weibull population of tree diameters with 8 = (y,P). 

- - 

Average '10 RMSE 
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Fig. 18.2. Simulated average distribution results for the homogeneous reverse I-shaped population with the 
tally densities (top) and stand table densities (bottom); the mean densities (dashed) converge to the 
population curve (solid) with increasing sample size (see Table 18.1 for details). 
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Consider a stand (or larger area) where the diameter distribution varies, possibly 
considerably, throughout, but where it is still desired to estimate f(x;8). In such 
cases it may or may not be feasible to stratify. 

Stating that the diameter distribution varies is another way of saying that 8 is 
not constant throughout. For example, consider an HPS with n points in which 8 
varies from point to point according to some stochastic process. Thus 8 may be con- 
sidered a random variable and may exhibit a spatial covariance structure between 
points. Such a scenario might possibly be modelled using continuous mixtures. 

For illustration, assume that the conditional distribution of tallied diameters 
given 0 is a two-parameter Weibull; Xi I 8 - f ; ( x  1 8). It would then make sense to 
use a bivariate distribution to model the variation in 0 over the stand. One candi- 
date probability model for the joint distribution of O - f (8;p,X) is bivariate normal 
with mean and covariance matrix p and X, respectively. Other bivariate distribu- 
tions could also be considered. With the bivariate normal, particular care must be 
taken to ensure that, for all practical purposes, 8 > 0. Thus, extreme variability 
between HPS points coupled with small-scale or shape parameters might argue 
against its use. However, for the sake of illustration it is a useful model. 

With this modelling scheme, the bivariate normal is the mixing distribution, 
and the marginal stand tally distribution for Xi under HPS would be given by 
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Undoubtedly, the marginal distribution given in Equation 6 does not exist in 
closed form and the integration would require numerical methods. However, it does 
pose an interesting interpretation for the final density once yand P have been inte- 
grated out. The only two remaining parameters are p and Z. Thus, the following 
method might be used to fit such a distribution based on the techniques discussed 
earlier in this chapter. 

1. Fit a size-biased two-parameter Weibull PDF to each of individual HPS points in 
the stand using the methods in previous sections. 
2. Calculate the sample mean vector and respective sample covariance matrix S 
from the parameter estimates on the n individual HPS sample points, as estimates of 
and p and 2, respectively. 

The mixture density f ;(x;p,2) may now be estimated by f ;(x;k,S). However, it must 
be kept in mind that the above has in no way proved that and S have any of the 
desirable properties of say, MLEs, for p and X. It is simply a possible model for a 
heterogeneous stand parameter estimation scenario. 

Discussion 

The discussion on estimation and applications of size-biased distributions to this 
point demonstrates that they both have a solid theoretical underpinning and practi- 
cal use in forestry. Well-known relationships between basal area and horizontal 
point sampling, for example, are preserved under this theory, It should not be sur- 
prising then that other results will also hold for size-biased distributions. For exam- 
ple, Gove (2003b) has shown that the relationship between the quadratic mean stand 
diameter and the harmonic mean basal area from an HPS holds for area-biased dis- 
tributions; the result is shown to apply also to the BASD. 

In fact, size-biased distributions can also bring new insight to previously 
unknown relationships. For example, Gove and Patil (1998) showed that the third 
raw moment of the DBH-frequency distribution has an intuitive and consistent inter- 
pretation through the BASD - a result that had been missed prior to the application 
of this theory. Similarly, it can be shown analytically (Gove, 2003b) that f(x;O) and 
f; (x;O) will always cross at the quadratic mean stand diameter (Dq). To illustrate, 
refer back to Fig. 18.1, for this stand Dq = 28.08 cm, and this is exactly where the two 
PDFs cross. 

A new computer program (BALANCE) (Gove, 200313 has been developed to facili- 
tate the use of size-biased distributions in forestry. BALANCE was written in FOR- 
TRAN-90, and is fully integrated with a graphical user interface and runs under 
Microsoft Windows@ operating systems. Currently, BALANCE allows the user to fit 
two- and three-parameter equal probability Weibull distributions. In addition, both 
length- and area-biased versions of these PDFs can also be fitted. BALANCE computes 
the moment estimates and then uses these as starting values for ML. Results are pre- 
sented in three windows; a listing of the input data in a grid window, a summary 
report window with fit statistics, and a graphics window with various graphical dis- 
plays. The latter may be exported in encapsulated Postscript format, an example of 
which is shown in Fig. 18.1. Notice in this figure that, even though the equal proba- 
bility density was estimated for the DBH-frequency distribution, BALANCE also 
shows the related BASD. 
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Clearly, size-biased distributions provide a useful paradigm for sampling and 
modelling in forestry research. The availability of computer programs such as BALANCE 

to make fitting such distributions easier should serve to increase their application. 
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