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Highlights 

• The "greenness" of tundra vegetation has increased during the period of satellite 
observations (1982-2010) in Eurasia and North America. 

• Increasing "greenness" is positively and significantly correlated with more abundant ice-
free coastal waters and higher land temperatures over most of the Arctic region. 

• A circum-Arctic dip in "greenness" in 2009 was a response to elevated atmospheric 
aerosols, including volcanic dust, and generally cooler summer temperatures across the 
Arctic. A circumpolar recovery occurred in 2010, and the mean NDVI for North America 
and the Northern Hemisphere overall was the greatest on record. 

• In Eurasia, green-up is more rapid than in North America, and peak "greenness" in 
Eurasia occurred about 2 weeks earlier during 2000-2009 than in the 1980s.  

 
 
Introduction 
 
Circumpolar changes to tundra vegetation are currently being monitored from space using the 
Normalized Difference Vegetation Index (NDVI), an index of vegetation greenness. Maximum 
NDVI (MaxNDVI) was obtained each year from a 29-year (1982-2010) record of NDVI in a new 
NDVI dataset derived from the AVHRR sensors on NOAA weather satellites (Bhatt et al. 2010, 
Raynolds et al. 2012). In tundra regions the annual MaxNDVI usually occurs in early August and 
is correlated with above-ground biomass, gross ecosystem production, CO2 fluxes and 
numerous other biophysical properties of tundra vegetation (Tucker et al. 1986; Stow et al. 
2004). This essay describes MaxNDVI through to the end of 2010, the last complete year for 
which data are available. 
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Long-term circumpolar change in NDVI 
 
MaxNDVI has increased during the period of satellite observations (1982-2010) in Eurasia and 
North America (Fig. TE1a), supporting model predictions that primary production of arctic tundra 
ecosystems will respond positively to increased summer warmth (Bhatt et al. 2008; Lawrence et 
al. 2008). Despite considerable spatial variation in the magnitude of change in each of the three 
variables (MaxNDVI, open water, summer warmth) examined, annual MaxNDVI patterns were 
also positively and significantly correlated with more abundant ice-free coastal waters (Fig. 
TE1a in this essay and Fig. SIO3 in the essay on Sea Ice) and higher tundra land temperatures 
(Fig. TE1b) over most of the Arctic region (Bhatt et al. 2010). However, some areas are showing 
negative trends in NDVI. The negative trends in NDVI in northern North America (e.g., northern 
Greenland and the Queen Elizabeth Islands of Canada) correspond to the areas with persistent 
summer-long coastal sea ice, while the areas of northern Russia with negative NDVI trends 
generally have decreasing land temperatures (Fig. TE1b). 
 

 

Fig. TE1. Trends for (a, right) summer (May-August) open water and annual MaxNDVI and (b, 
left) summer (May-August) open water and land-surface summer warmth index (SWI, the annual 
sum of the monthly mean temperatures >0 °C) derived from AVHRR thermal channels 3 (3.5-3.9 
µm), 4 (10.3-11.3 µm) and 5 (11.5-12.5 µm). Trends were calculated using a least squares fit 
(regression) at each pixel. The total trend magnitude (regression times 29 years) over the 1982-
2010 period is displayed. 

 
Long-term, regional change in NDVI 
 
Temporal changes in MaxNDVI for Arctic areas in Eurasia and North America show positive and 
nearly parallel increases amounting to a MaxNDVI increase of 0.02 NDVI units per decade (Fig. 
TE2a). However, there is considerable variability in the rate of increase in different regions of 
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the Arctic. For example, the MaxNDVI increase adjacent to the Beaufort Sea (+26%) is the most 
rapid in the Arctic and corresponds to large changes in open water (+31%) and summer warmth 
index (17%). On the other hand, the MaxNDVI change in the western Kara Sea is among the 
smallest (+4.4%). corresponding to smaller changes in sea ice (+20%) and land temperatures (-
6%) (Fig. TE2b). The sea-ice changes occurring in the eastern Kara Sea far exceed those 
elsewhere, but have not caused warming over adjacent lands or a major increase in MaxNDVI, 
as would have been expected. Instead, the adjacent land areas have cooled slightly and there is 
only a modest increase in NDVI. The causes are unknown, but might include greater summer 
cloudiness. 
 

 

Fig. TE2. Time series of MaxNDVI during 1982-2010 for coastal tundra in (a) the Northern 
Hemisphere (NH) as a whole, Eurasia and North America, and (b) the western Kara Sea and 
Beaufort Sea. 

 
In 2009 there was a circum-Arctic dip in NDVI (Fig. TE2) that corresponded to elevated 
atmospheric aerosols over the Arctic in the same year (Stone et al. 2010). This coincided with 
generally lower temperatures across the Arctic in 2009 and 2010. The elevated aerosols were 
attributed to an accumulation of pollutants from Eurasian industrial centers in the upper 
troposphere in combination with volcanic plumes from the eruption of Mt. Redoubt in Alaska. 
The enhanced Arctic haze in 2009 was estimated to reduce net shortwave irradiance by about 
2-5 W m-2 (Stone et al., 2010). 
 
NDVI and phenology 
 
Bi-weekly NDVI data are used to show the yearly progression of the magnitude and timing of 
the photosynthetically-active period for the vegetation (Fig. TE3). Clear differences in 
phenological patterns occur in Eurasia and North America. Both areas show a ~0.06 unit 
MaxNDVI increase during the 29-yr record. In North America the curves show the increase in 
the MaxNDVI but no significant shift in timing of peak greenness. In Eurasia there is a 
somewhat more rapid green-up, and peak NDVI was reached about 2 weeks earlier during 
2000-2009 than in the 1980s. This is consistent with Eurasian snow cover duration, which was 
stable during the 1980s and 1990s, but has declined rapidly since the early 2000s (see Fig. 
HTC3 in the essay on Snow). Neither North America nor Eurasia show a significant trend 
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toward a longer growing season. However, whole-continent data appear to mask changes along 
latitudinal gradients and in different regions. For example, during 1982-2003, MaxNDVI along 
the Canadian Arctic climate gradient showed a ~1-week shift in the initiation of green-up and a 
somewhat higher NDVI late in the growing season in the Low Arctic (Jia et al. 2009). The High 
Arctic in Canada did not show earlier initiation of greenness, but did show a ~1-2 week shift 
toward earlier MaxNDVI. 
 

 

Fig. TE3. Decadal changes in NDVI-derived phenology in (a) Eurasia and (b) North America. 
 
Field observations 
 
The increased Arctic greening observed in the satellite data is also observed in long-term in situ 
vegetation measurements. For example, the International Tundra Experiment (ITEX), 
established in 1990, has made annual measurements of plant growth and phenology for up to 
20 years using standardized protocols (Henry and Molau 1997). A recent synthesis of the long-
term ITEX warming experiments has shown that effects on plant phenology differ by trait, 
community, and functional types (Elmendorf and Henry 2010). Some of these results indicate 
there have been increases in productivity consistent with warming (e.g. Hill and Henry 2011). In 
others, the links between local climate warming and vegetation change found in the NDVI data 
were not supported at the plot scale. There is a need for more careful evaluation of the causes 
of the observed changes, which may be driven by local, long-term, non-equilibrium factors other 
than climate warming, such as recovery from glaciation or changes in snow cover or 
precipitation (Troxler et al. 2010; Mercado and Gould 2010). 
 
The Back to the Future (BTF) International Polar Year project, which revisited numerous Arctic 
research sites that were established between 15 to 60 years ago, is revealing decadal-scale 
changes. These include vegetation change and increases in plant cover at Barrow, Alaska, on 
Baffin Island and at multiple sites throughout Beringia (Tweedie et al. 2010). Advanced 
phenological development and species shifts associated with drying occurred on Disko Island, 
Greenland. Warming of permafrost was documented in sub-Arctic Sweden, and dramatic 
changes in pond water column nutrients, macrophyte cover and chironomid assemblages have 
been noted near Barrow. NDVI, gross ecosystem production, and methane efflux from wet 
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vegetation types have increased at sites near Barrow, on Baffin Island and at the Stordalen mire 
in sub-Arctic Sweden. In most cases, air and ground warming appear to be the primary causes 
of change, but disturbances of various types are causing change at some sites. For example, at 
herbivore exclosures established at Barrow in the 1950s and 1970s it has been found that 
lemmings and other herbivores outside the exclosures had reduced the relative cover of lichens 
and graminoids and increased the relative cover of deciduous shrubs. Consequently, a wide 
variety of ecosystem properties, including thaw depth, soil moisture, albedo, NDVI, net 
ecosystem exchange and methane efflux were affected (Johnson et al. 2010). A warming Arctic 
will cause changes in species distributions and biodiversity in the Arctic. In response to these 
expected changes, the Circumpolar Biodiversity Monitoring Program is launching an integrated 
biodiversity monitoring plan for Arctic land, marine, coastal and freshwater ecosystems (Gill et 
al. 2008). 
 
Other Arctic vegetation changes that are indirectly related to climate include those associated 
with landslides, thermokarst and fires, which are increasing in frequency in several regions of 
the Arctic (e.g., Goosef et al. 2009; Lantz et al. 2010a,b; Mack et al. 2011 in revision; Rocha 
and Shaver 2011). Higher soil temperatures, thawing permafrost, more abundant water and 
increased nutrients due to such disturbances result in pronounced greening often associated 
with more abundant shrub growth. Increasing air and ground temperatures are predicted to 
increase shrub growth in much of the Arctic, with major consequences for ecosystems (Lantz et 
al. 2010b). Several studies have observed increased shrub growth due to artificial warming, 
although the increases are small and frequently not statistically significant (e.g., Bret-Harte et al. 
2003). On the other hand, there is growing evidence for increased shrub abundance at 
climatically- and anthropogenically-disturbed sites (Lantz et al. 2010a, b; Walker et al. 2011). In 
the Russian Arctic, erect deciduous shrub growth is closely associated with both the recent 
summer warming of ~2°C over more than half a century and a trend of increasing NDVI since 
1981 (Forbes et al. 2010). 
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