Index of Species Information

SPECIES:  Salix gooddingii

Introductory

SPECIES: Salix gooddingii
AUTHORSHIP AND CITATION : Reed, William R. 1993. Salix gooddingii In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [].
ABBREVIATION : SALGOO SYNONYMS : Salix gooddingii var. gooddingii Salix gooddingii var. variabilis Ball Salix nigra Marsh. var. vallicola Dudley SCS PLANT CODE : SAGO COMMON NAMES : Goodding's black willow black willow Dudley willow Gooding's willow valley willow western black willow TAXONOMY : The currently accepted scientific name of Goodding's black willow is Salix gooddingii Ball. [16,19,30]. LIFE FORM : Tree, Shrub FEDERAL LEGAL STATUS : No special status OTHER STATUS : NO-ENTRY


DISTRIBUTION AND OCCURRENCE

SPECIES: Salix gooddingii
GENERAL DISTRIBUTION : Goodding's black willow is distributed from northern California to southern Utah, southeast through New Mexico to the Texas panhandle, and west to Arizona and southern California. It is also found in river valleys of northern Mexico [16,18,19,31]. ECOSYSTEMS : FRES28 Western hardwoods FRES30 Desert shrub FRES33 Southwestern shrubsteppe FRES34 Chaparral - mountain shrub FRES35 Pinyon - juniper STATES : AZ CA NV NM TX UT MEXICO BLM PHYSIOGRAPHIC REGIONS : 3 Southern Pacific Border 6 Upper Basin and Range 7 Lower Basin and Range 12 Colorado Plateau 13 Rocky Mountain Piedmont KUCHLER PLANT ASSOCIATIONS : K023 Juniper - pinyon woodland K030 California oakwoods K035 Coastal sagebrush K041 Creosotebush K042 Creosotebush - bursage K044 Creosotebush - tarbush K058 Grama - tobosa shrubsteppe K059 Trans-Pecos shrub savanna SAF COVER TYPES : 235 Cottonwood - willow 239 Pinyon - juniper 240 Arizona cypress 246 California black oak 249 Canyon live oak 250 Blue oak - Digger pine 255 California coast live oak SRM (RANGELAND) COVER TYPES : NO-ENTRY HABITAT TYPES AND PLANT COMMUNITIES : Goodding's black willow is dominant in many riparian communities of the West, where it frequently codominates with Fremont cottonwood (Populus fremontii) [24,27,28]. It is listed as a dominant plant species in the following published classifications: Classification of riparian habitat in the Southwest [21] Southwestern riparian plant communities: site characteristics, tree species distributions, and size-class structures [28] Terrestrial natural communities of California [11] Common plant associates of Goodding's black willow are Arizona sycamore (Platanus wrightii), mesquite (Prosopis spp.), desertwillow (Chilopsis linearis), and southwestern condalia (Condalia lyciodes) [7,9].

MANAGEMENT CONSIDERATIONS

SPECIES: Salix gooddingii
IMPORTANCE TO LIVESTOCK AND WILDLIFE : Willows (Salix spp.) provide excellent browse and cover for wildlife and domestic animals. They are a preferred food of beaver and are often used as building material for beaver dens. Mature willows provide valuable shade in rangelands of southern Arizona [1,16]. PALATABILITY : NO-ENTRY NUTRITIONAL VALUE : NO-ENTRY COVER VALUE : NO-ENTRY VALUE FOR REHABILITATION OF DISTURBED SITES : Goodding's black willow is used for streambank stabilization and erosion control. It has both abundant small surface roots and deeper main root branches. Zimmerman [33] has noted root depths of up to 7 feet (2.1 m) in Arizona. Goodding's black willow also provides shade for fish and other wildlife [5,15]. It tolerates flooding and long, hot growing seasons, making it ideal for rehabilitating riparian zones of the Southwest. Cutting or topping trees in order to encourage sprouting is commonly practiced in Arizona and New Mexico in order to reestablish Goodding willow stands [13,22]. OTHER USES AND VALUES : Willow shoots and bark were used by early Americans to make baskets and fish traps, and for fence posts, shelters, and firewood [15,20]. All willows produce salacin, a chemical related to aspirin. A decoction of Goodding's black willow leaves is used in Mexico for treating fevers [30]. OTHER MANAGEMENT CONSIDERATIONS : Willows are usually planted using stem cuttings. Establishment of Goodding's black willow in riparian zones can be aided by deep tillage of the soil, preferably to the water table, before transplanting. This is especially effective where soils are compacted or salinized [2]. If Goodding's black willow seeds are sown, they must be collected and dispersed as soon as fruits ripen. Seeds remain viable for only a few days. Commercial seed is not available. Seeds may be stored for up to 1 month if moistened and refrigerated in a sealed container [5].

BOTANICAL AND ECOLOGICAL CHARACTERISTICS

SPECIES: Salix gooddingii
GENERAL BOTANICAL CHARACTERISTICS : Goodding's black willow is a fast-growing, deciduous, dioecious, native shrub or tree. It attains a height of 20 to 60 feet (6-18 m) and has an average d.b.h. of 30 inches (76.2 cm). Leaves are 2 to 4 inches (5-10 cm) long; female catkins are 1.5 to 3.2 inches (4-8 cm) long. Fruits are capsular. The bark of Goodding's black willow is thick, rough, and deeply furrowed [5,18,19,31]. RAUNKIAER LIFE FORM : Phanerophyte REGENERATION PROCESSES : Sexual reproduction: Goodding's black willow begins producing seed at 2 to 10 years of age. Optimum seed-bearing age of willows is 25 to 75 years, and large seed crops are produced annually. The minute, hairy seed is dispersed by wind and water and does not exhibit dormancy. Seed remains viable for only a few days. Germination is epigeal and usually occurs within 12 to 24 hours. Seedling establishment is best on moist, bare soils. Both fire and flood create favorable seedbed conditions [5,6,20]. Vegetative reproduction: Goodding's black willow sprouts from the root crown [6,22]. SITE CHARACTERISTICS : Goodding's black willow occurs in riparian zones. Sites are typically seasonally inundated by water and have shallow water tables and fine-grained alluvial soils. Goodding's black willow grows well in the pH range of 6 to 7 and tolerates alkaline desert soils [13,20,25]. SUCCESSIONAL STATUS : Goodding's black willow is an initial to early seral species. It has very low shade tolerance but high flood tolerance [14,20]. It does not sprout beneath its own canopy. Gooding willow seedlings compete poorly with grasses [27]. SEASONAL DEVELOPMENT : Catkins of Goodding's black willow appear in early March. Seeds ripen and are dispersed in early spring [5,18,27].

FIRE ECOLOGY

SPECIES: Salix gooddingii
FIRE ECOLOGY OR ADAPTATIONS : Information concerning effects of fire on Goodding's black willow is lacking. It probably sprouts vigorously after a fire, as do most members of the willow genus. Fires are uncommon in the riparian zones in which Goodding's black willow occurs. Wind-dispersed Gooding willow seed are probably important in the colonization of recently burned sites [5]. Severe fires expose mineral soil, creating ideal conditions for seedling establishment. POSTFIRE REGENERATION STRATEGY : Tree with adventitious-bud root crown/soboliferous species root sucker Tall shrub, adventitious-bud root crown Initial-offsite colonizer (off-site, initial community)

FIRE EFFECTS

SPECIES: Salix gooddingii
IMMEDIATE FIRE EFFECT ON PLANT : Low- to moderate-severity fires probably top-kill young Gooding willow stems. Mature trees probably survive such fires. Severe fires sometimes kill willows by completely removing soil organic layers and charring the roots [32]. DISCUSSION AND QUALIFICATION OF FIRE EFFECT : NO-ENTRY PLANT RESPONSE TO FIRE : Goodding's black willow probably sprouts vigorously from the root crown following fire [3,10]. DISCUSSION AND QUALIFICATION OF PLANT RESPONSE : NO-ENTRY FIRE MANAGEMENT CONSIDERATIONS : NO-ENTRY

REFERENCES

SPECIES: Salix gooddingii
REFERENCES : 1. Allen, Arthur W. 1983. Habitat suitability index models: beaver. FWS/OBS-82/10.30 (Revised). Washington, DC: U.S. Department of the Interior, Fish and Wildlife Service. 20 p. [11716] 2. Anderson, Bertin. 1988. Deep tillage aids tree establishment in riparian revegetation projects in arid Southwest. Restoration & Management Notes. 6(2): 84-87. [6138] 3. Argus, George W. 1973. The genus Salix in Alaska and the Yukon. Publications in Botany, No. 2. Ottawa, ON: National Museums of Canada, National Museum of Natural Sciences. 279 p. [6167] 4. Bernard, Stephen R.; Brown, Kenneth F. 1977. Distribution of mammals, reptiles, and amphibians by BLM physiographic regions and A.W. Kuchler's associations for the eleven western states. Tech. Note 301. Denver, CO: U.S. Department of the Interior, Bureau of Land Management. 169 p. [434] 5. Brinkman, Kenneth A. 1974. Salix L. willow. In: Schopmeyer, C. S., technical coordinator. Seeds of woody plants in the United States. Agric. Handb. 450. Washington, DC: U.S. Department of Agriculture, Forest Service: 746-750. [5412] 6. Burns, Russell M.; Honkala, Barbara H., tech. coords. 1990. Silvics of North America. Vol 2. Hardwoods. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service. 877 p. [13955] 7. Eyre, F. H., ed. 1980. Forest cover types of the United States and Canada. Washington, DC: Society of American Foresters. 148 p. [905] 8. Garrison, George A.; Bjugstad, Ardell J.; Duncan, Don A.; [and others]. 1977. Vegetation and environmental features of forest and range ecosystems. Agric. Handb. 475. Washington, DC: U.S. Department of Agriculture, Forest Service. 68 p. [998] 9. Gavin, Thomas A.; Sowls, Lyle K. 1975. Avian fauna of a San Pedro Valley mesquite forest. Journal of the Arizona Academy of Science. 10: 33-41. [10861] 10. Haeussler, S.; Coates, D.; Mather, J. 1990. Autecology of common plants in British Columbia: A literature review. Economic and Regional Development Agreement FRDA Rep. 158. Victoria, BC: Forestry Canada, Pacific Forestry Centre; British Columbia Ministry of Forests, Research Branch. 272 p. [18033] 11. Holland, Robert F. 1986. Preliminary descriptions of the terrestrial natural communities of California. Sacramento, CA: California Department of Fish and Game. 156 p. [12756] 12. Holland, Robert F.; Roye, Cynthia L. 1989. Great Valley riparian habitats and the National Registry of Natural Landmarks. In: Abell, Dana L., technical coordinator. Proceedings of the California riparian systems conference: Protection, management, and restoration for the 1990's; 1988 September 22-24; Davis, CA. Gen. Tech. Rep. PSW-110. Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: 69-73. [13511] 13. Holstein, Glen. 1984. California riparian forests: deciduous islands in an evergreen sea. In: Warner, Richard E.; Hendrix, Kathleen M., eds. California riparian systems: Ecology, conservation, and productive management: Proceedings of a conference; 1981 September 17-19; Davis, CA. Berkeley, CA: University of California Press: 2-22. [5830] 14. Howe, William H.; Knoff, Fritz L. 1991. On the imminent decline of Rio Grande cottonwoods in central New Mexico. Southwestern Naturalist. 36(2): 218-224. [15697] 15. Johnson, Carl M. 1970. Common native trees of Utah. Special Report 22. Logan, UT: Utah State University, College of Natural Resources, Agricultural Experiment Station. 109 p. [9785] 16. Kearney, Thomas H.; Peebles, Robert H.; Howell, John Thomas; McClintock, Elizabeth. 1960. Arizona flora. 2d ed. Berkeley, CA: University of California Press. 1085 p. [6563] 17. Kuchler, A. W. 1964. Manual to accompany the map of potential vegetation of the conterminous United States. Special Publication No. 36. New York: American Geographical Society. 77 p. [1384] 18. Little, Elbert L., Jr. 1950. Southwestern trees: A guide to the native species of New Mexico and Arizona. Agriculture Handbook No. 9. Washington, DC: U.S. Department of Agriculture, Forest Service. 109 p. [20330] 19. Munz, Philip A. 1974. A flora of southern California. Berkeley, CA: University of California Press. 1086 p. [4924] 20. Newsholme, Christopher. 1992. Willows: The genus Salix. Portland, OR: Timber Press, Inc. 224 p. [20106] 21. Pase, Charles P.; Layser, Earle F. 1977. Classification of riparian habitat in the Southwest. In: Johnson, Roy; Jones, Dale A., technical coordinators. Importance, preservation and management of riparian habitat: A symposium; 1977 July 9; Tucson, AZ. Gen. Tech. Rep. RM-43. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 5-9. Available from: NTIS, Springfield, VA 22151; PB-274 582. [5333] 22. Pope, Dennis P.; Brock, John H.; Backhaus, Ralph A. 1990. Vegetative propagation of key southwestern woody riparian species. Desert Plants. 10(2): 91-95. [11834] 23. Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press. 632 p. [2843] 24. Richter, Holly E. 1992. Development of a conceptual model for floodplain restoration in a desert riparian system. Arid Lands Newsletter. 32: 13-17. [18614] 25. Siegel, Richard S.; Brock, John H. 1990. Germination requirements of key Southwestern woody riparian species. Desert Plants. 10(1): 3-8, 34. [10554] 26. Stickney, Peter F. 1989. Seral origin of species originating in northern Rocky Mountain forests. Unpublished draft on file at: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Fire Sciences Laboratory, Missoula, MT; RWU 4403 files. 7 p. [20090] 27. Stolzenburg, William. 1993. A river floods through it. Nature Conservancy. 43(3): 22-27. [20585] 28. Szaro, Robert C. 1990. Southwestern riparian plant communities: site characteristics, tree species distributions, and size-class structures. Forest Ecology and Management. 33/34: 315-334. [10031] 29. U.S. Department of Agriculture, Soil Conservation Service. 1982. National list of scientific plant names. Vol. 1. List of plant names. SCS-TP-159. Washington, DC. 416 p. [11573] 30. Vines, Robert A. 1960. Trees, shrubs, and woody vines of the Southwest. Austin, TX: University of Texas Press. 1104 p. [7707] 31. Welsh, Stanley L.; Atwood, N. Duane; Goodrich, Sherel; Higgins, Larry C., eds. 1987. A Utah flora. Great Basin Naturalist Memoir No. 9. Provo, UT: Brigham Young University. 894 p. [2944] 32. Zasada, J. 1986. Natural regeneration of trees and tall shrubs on forest sites in interior Alaska. In: Van Cleve, K.; Chapin, F. S., III; Flanagan, P. W.; [and others], eds. Forest ecosystems in the Alaska taiga: A synthesis of structure and function. New York: Springer-Verlag: 44-73. [2291] 33. Zimmermann, Robert C. 1969. Plant ecology of an arid basin: Tres Alamos-Redington Area, southeastern Arizona. Geological Survey Professional Paper 485-D. Washington, DC: U.S. Department of the Interior, Geological Survey. 51 p. [4287] 34. Little, Elbert L., Jr. 1979. Checklist of United States trees (native and naturalized). Agric. Handb. 541. Washington, DC: U.S. Department of Agriculture, Forest Service. 375 p. [2952]


FEIS Home Page