Index of Species Information

SPECIES:  Hordeum jubatum


SPECIES: Hordeum jubatum
AUTHORSHIP AND CITATION : Tesky, Julie L. 1992. Hordeum jubatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: [].

ABBREVIATION : HORJUB SYNONYMS : Critesion jubatum L. Nevski [3] SCS PLANT CODE : HOJU HOJUC COMMON NAMES : foxtail barley foxtail squirreltail barley squirreltail grass foxtail grass wild barley skunktail TAXONOMY : The currently accepted scientific name for foxtail barley is Hordeum jubatum L. [4,17,19]. Hordeum jubatum L. hybridizes with H. brachyantherum in interior and coastal British Columbia, where the two species share the same habitat [4]. Recognized subspecies and varieties of H. jubatum are as follows [4,17,19]: H. j. ssp. jubatum H. j. ssp. intermedium Bowden H. j. ssp. breviarestatum Bowden H. j. var. boreale Scribn. & Smith (Boivin) H. j. var. caespitasum (Sribn.) Hitchc. LIFE FORM : Graminoid FEDERAL LEGAL STATUS : No special status OTHER STATUS : NO-ENTRY


SPECIES: Hordeum jubatum
GENERAL DISTRIBUTION : Foxtail barley is indigenous to the western United States [35].  It has become naturalized in the East and now occurs throughout the United States with the exception of the South Atlantic and Gulf Coast states [2,17].  It occurs throughout most of Canada and some areas of Mexico [35,45]. ECOSYSTEMS :    FRES10  White - red - jack pine    FRES11  Spruce - fir    FRES20  Douglas-fir    FRES21  Ponderosa pine    FRES23  Fir - spruce    FRES24  Hemlock - Sitka spruce    FRES29  Sagebrush    FRES30  Desert shrub    FRES34  Chaparral - mountain shrub    FRES35  Pinyon - juniper    FRES36  Mountain grasslands    FRES37  Mountain meadows    FRES38  Plains grasslands    FRES39  Prairie    FRES40  Desert grasslands    FRES41  Wet grasslands    FRES42  Annual grasslands    FRES44  Alpine STATES :      AL  AK  AZ  AR  CA  CO  CT  DE  ID  IL      IN  IA  KS  KY  ME  MD  MA  MI  MN  MS      MO  MT  NE  NV  NH  NJ  NM  NY  ND  OH      OK  OR  PA  RI  SD  TN  TX  UT  VT  WA      WV  WI  WY  AB  BC  LB  MB  NB  NF  NT      NS  ON  PQ  SK  YT  MEXICO BLM PHYSIOGRAPHIC REGIONS :     1  Northern Pacific Border     2  Cascade Mountains     3  Southern Pacific Border     4  Sierra Mountains     5  Columbia Plateau     6  Upper Basin and Range     7  Lower Basin and Range     8  Northern Rocky Mountains     9  Middle Rocky Mountains    10  Wyoming Basin    11  Southern Rocky Mountains    12  Colorado Plateau    13  Rocky Mountain Piedmont    14  Great Plains    15  Black Hills Uplift    16  Upper Missouri Basin and Broken Lands KUCHLER PLANT ASSOCIATIONS :    K001  Spruce - cedar - hemlock forest    K010  Ponderosa shrub forest    K011  Western ponderosa forest    K012  Douglas-fir forest    K015  Western spruce - fir forest    K016  Eastern ponderosa forest    K017  Black Hills pine forest    K018  Pine - Douglas-fir forest    K019  Arizona pine forest    K021  Southwestern spruce - fir forest    K023  Juniper - pinyon woodland    K024  Juniper steppe woodland    K027  Mesquite bosque    K033  Chaparral    K034  Montane chaparral    K037  Mountain-mahogany - oak scrub    K038  Great Basin sagebrush    K039  Blackbrush    K040  Saltbush - greasewood    K041  Creosotebush    K048  California steppe    K049  Tule marshes    K050  Fescue - wheatgrass    K051  Wheatgrass - bluegrass    K053  Grama - galleta steppe    K055  Sagebrush steppe    K056  Wheatgrass - needlegrass shrubsteppe    K057  Galleta - three-awn shrubsteppe    K060  Mesquite savanna    K063  Foothills prairie    K064  Grama - needlegrass - wheatgrass    K065  Grama - buffalograss    K066  Wheatgrass - needlegrass    K067  Wheatgrass - bluestem - needlegrass    K068  Wheatgrass - grama - buffalograss    K069  Bluestem - grama prairie    K070  Sandsage - bluestem prairie    K074  Bluestem prairie    K081  Oak savanna    K093  Great Lakes spruce - fir forest    K094  Conifer bog    K095  Great Lakes pine forest    K098  Northern floodplain forest    K101  Elm - ash forest SAF COVER TYPES :       1  Jack pine       5  Balsam fir      12  Black spruce      13  Black spruce - tamarack      22  White pine - hemlock      23  Eastern hemlock      38  Tamarack      32  Red spruce      33  Red spruce - balsam fir      34  Red spruce - Fraser fir      31  Red spruce - sugar maple - beech      35  Paper birch - red spruce - balsam fir     206  Engelmann spruce - subalpine fir     210  Interior Douglas-fir     224  Western hemlock     225  Western hemlock - Sitka spruce     229  Pacific Douglas-fir     230  Douglas-fir - western hemlock     237  Interior ponderosa pine     239  Pinyon - juniper     244  Pacific ponderosa pine - Douglas-fir     245  Pacific ponderosa pine SRM (RANGELAND) COVER TYPES : NO-ENTRY HABITAT TYPES AND PLANT COMMUNITIES : Foxtail barley is a common riparian dominance type at low to mid-elevations throughout Montana.  It occurs in disturbed areas, meadows, basins, and drawdown areas, where soils are saline or alkaline [15].


SPECIES: Hordeum jubatum
IMPORTANCE TO LIVESTOCK AND WILDLIFE : Many waterfowl species eat the seeds and occasionally the leaves of foxtail barley [20].  Before flowering, foxtail barley is palatable to livestock and big game.  Up to the time when seedheads develop, it is fair to good forage for cattle and horses and fair for sheep [35]. Foxtail barley seedheads, when dry, are very harmful to all kinds of grazing animals, particularly deer, elk, and pronghorn [35].  The sharp-pointed joints of the spike, each with several long and slender awns, stick in the nose and mouth of grazing animals, often penetrating the flesh [24,35].  Infection caused by awns stuck in tissue can cause necrotic sores and necrotic stomatitis, which in turn finally attacks the bones and causes an abnormal enlargement as well as lumpy jaw and pus-forming abscesses.  These infections may result in death of the animal [35]. PALATABILITY : The palatability of foxtail barley to livestock and wildlife species in several western states is rated as follows [8]:                          CO      MT      ND      UT      WY Cattle                  Fair    Poor    Fair    Fair    Poor Sheep                   Fair    Fair    Fair    Poor    Fair Horses                  Fair    ----    ----    Fair    Fair Pronghorn               ----    Poor    Poor    Fair    Poor Elk                     ----    Poor    ----    Good    Poor Mule deer               ----    Poor    Poor    Fair    Poor White-tailed deer       ----    Poor    Poor    ----    Poor Small mammals           ----    ----    ----    Fair    Fair Small nongame birds     ----    Fair    ----    Fair    ---- Upland game birds       ----    Poor    ----    Fair    Fair Waterfowl               Good    Fair    ----    Fair    Fair NUTRITIONAL VALUE : NO-ENTRY COVER VALUE : The degree to which foxtail barley provides environmental protection during one or more seasons for wildlife species is rated as follows [8]:                          CO      MT      ND      UT      WY Pronghorn               ----    ----    Poor    Poor    Poor Elk                     ----    Poor    ----    Poor    Poor Mule deer               ----    Poor    Poor    Poor    Poor White-tailed deer       Poor    Fair    ----    Poor    ---- Small mammals           ----    Poor    ----    Fair    Good Small nongame birds     ----    Poor    ----    Fair    Good Upland game birds       Poor    Poor    ----    Fair    Fair Waterfowl               ----    Good    Good    Fair    Fair VALUE FOR REHABILITATION OF DISTURBED SITES : Foxtail barley has potential for revegetation of saline mine spoils where forage value is of secondary importance.  Its extensive root system and aggressive habit make it a good species for erosion control. Foxtail barley seeds are not commercially available [45]. OTHER USES AND VALUES : Foxtail barley, cut before the awns have expanded, is sometimes used as an ornamental in dry bouquets [24]. OTHER MANAGEMENT CONSIDERATIONS : Because of the damage foxtail barley can cause to livestock and other animals, it is often considered a pasture weed [21,24,35].  Hay containing foxtail barley is nearly valueless [24].  Additionally, seedheads of this species can downgrade the value of wool or pelts, causing further economic loss to ranchers [24].  Once established, foxtail barley is hard to eradicate.  It increases under excessive grazing pressure.  Dense stands are usually associated with some type of disturbance, such as overgrazing, close mowing, or repeated burning [14,29,45]. Seeding disturbed meadows and pastures with desirable, fast-growing forage grasses is effective in reducing the amount of foxtail barley that invades the site.  Additionally, conservative grazing can facilitate the establishment of native, palatable grasses and reduce foxtail barley [15,35]. Control with herbicides:  Forty-eight pounds of dalapon (2,2-dichloropropionic acid) per acre (7.2 kg/ha) in water at 50 gallons per acre (76 liters/ha) has been shown to give complete kill of foxtail barley.  Lower rates of 16 and 32 pounds of dalapon per acre (2.4 kg/ha-4.8 kg/ha) allows some survival.  A combination of 30 pounds (4.5 kg/ha) of dalapon and 4 pounds (0.6 kg/ha) of amino triazole per acre will also effectively control foxtail barley [36].  The herbicide mefluidide is most effective in controlling foxtail barley when applied near initiation of flowering [39].  In a meadow brome (Bromus spp.) stand, the herbicide kerb at the rate of 0.5 pounds per acre ( 0.7 kg/ha) gave excellent control of foxtail barley without apparent reduction of the meadow brome [18].


SPECIES: Hordeum jubatum
GENERAL BOTANICAL CHARACTERISTICS : Foxtail barley is a short-lived, native, perennial, cool-season grass [1,14,26,32].  It has erect, slender stems, 1 to 2 feet (0.3-0.6 m) tall, growing in thick bunches or tufts [23,26,38].  The roots are fibrous [35]. RAUNKIAER LIFE FORM :    Chamaephyte    Hemicryptophyte REGENERATION PROCESSES : Sexual reproduction:  Foxtail barley is a prolific seeder.  Ripe seedheads break up and are dispersed by wind or transported in the hair of grazing animals [35]. Seed germination:  Foxtail barley produces two germination cohorts:  one in the spring and one in the fall.  These two cohorts are important in maintaining populations of foxtail barley [2].  On a saline marsh at Rittman, Ohio, foxtail barley seed production per inflorescence was greater with an increase in soil salinity [1].  Seed germination is inhibited by warm summer temperatures, but seeds readily germinate when exposed to cooler fall temperatures.  After cold stratification the temperature range favorable for germination broadens.  Freezing temperatures result in high seed mortality [1].  Seeds are capable of germinating in 1.0 percent total salts or less. Germination decrease when salinity increases past 1.0 percent [34].  Germination is independent of light conditions [1]. Seedlings:  Foxtail barley seedlings can survive for several months at salinities unfavorable for growth and reproduction.  In a marsh at Rittman, Ohio, highest survival of fall and spring seedlings occurred in the most saline lower marsh [2]. Vegetative reproduction:  Foxtail barley reproduces vegetatively by tillering [33]. SITE CHARACTERISTICS : Foxtail barley grows chiefly on grassland types on the plains and lower foothills but also extends upward to subalpine elevations in the spruce belt.  It is very common throughout the West, especially along roadsides and other waste places, and in grain and hay fields [17,23,31,35].  It reaches its greatest abundance on the edges of sloughs and salt marshes, grassy slopes, and flatlands in the western prairies [4].  It is also abundant in overgrazed sagebrush margins and irrigated meadows [14].  In sagebrush, pinyon-juniper, salt-desert shrub, and plains grasslands communities, it generally occurs in areas where extra water has accumulated, such as sloughs and around stock-water developments [38]. Soils and salt-tolerance:  Foxtail barley grows well on a variety of soil textures ranging from sandy loam to clay, with clay content varying from 17 percent to 56 percent [34,45].  It requires fairly moist conditions and cannot sustain itself during long dry periods [8,34]. Foxtail barley commonly occurs on soils with moderate salinity but can also grow and reproduce under nonsaline conditions [34,45].  Foxtail barley has a broad tolerance to variations in pH.  It occurs in areas with a pH from 6.4 to 9.5, with a median value of 8.1 in the surface soils [34]. Elevational range:  The elevational range of foxtail barley in several western states is as follows [8]:         Utah:  2,500 to 8,800 feet (762-2,682 m)         Colorado:  3,400 to 10,400 feet (1,036-3,170 m)         Wyoming:  3,500 to 9,400 feet (1,067-2,865 m)         Montana:  2,100 to 3,900 feet (640-1,189 m) Plant associates:  Foxtail barley may occur in relatively pure stands in moderately saline communities or as a codominant with inland saltgrass (Distichlis stricta var. stricta) and spearleaf saltweed (Atriplex patula var.  hastata) [34].  Foxtail barley is also commonly associated with coastal saltgrass (Distichlis spicata), nutka alkaligrass (Puccinellia nutkaensis), Pursh seepweed (Suaeda depressa), heath aster (Aster ericoides), field sowthistle (Sonchus arvensis), curly dock (Rumex crispus), bluegrass (Poa spp.), and wheatgrass (Agropyron spp.) [6,13,15,34]. SUCCESSIONAL STATUS : Facultative Seral Species Foxtail barley is a pioneer or invader in disturbed areas and in areas with high salinity [10,15,20,43].  It is among the first grasses to establish after disturbance and may become dominant in early seral grassland communities.  It also occurs but is not dominant in some late seral to climax grassland communities [29].  It rapidly invades areas exposed by a receding water table.  If the water table becomes stabilized at a high level, foxtail barley will ultimately be replaced by saltgrass (Distichlis spp.) or common spikesedge (Eleocharis palustris) in saline areas [10,20,43]. SEASONAL DEVELOPMENT : Foxtail barley starts growth in April or May.  Flowering and seed set generally occur from May until late July [2,33,34].


SPECIES: Hordeum jubatum
FIRE ECOLOGY OR ADAPTATIONS : Foxtail barley will rapidly establish on disturbed sites through off-site seed sources [15,35]. POSTFIRE REGENERATION STRATEGY :    Initial-offsite colonizer (off-site, initial community)


SPECIES: Hordeum jubatum
IMMEDIATE FIRE EFFECT ON PLANT : Moderate fires with probably top-kill foxtail barley, and hot fires may kill the underground root system. DISCUSSION AND QUALIFICATION OF FIRE EFFECT : NO-ENTRY PLANT RESPONSE TO FIRE : Foxtail barley generally recovers after fire through off-site seeds [27].  Foxtail barley is most sensitive to spring fire that coincides with its active growing period [41,42].  After a North Dakota prairie fire in the spring of 1966, foxtail barley culm production was greatly reduced [12].  However, the opposite was found to be true following a 1972 spring fire on a northwestern Minnesota prairie.  Here flowering activity was stimulated [27].  Following a burn along the Missouri River Breaks of central Montana, foxtail barley was one of the first grass species to become established [44]. DISCUSSION AND QUALIFICATION OF PLANT RESPONSE : The Research Project Summary Vegetation response to restoration treatments in ponderosa pine-Douglas-fir forests of western Montana provides information on prescribed fire and postfire response of plant community species, including foxtail barley, that was not available when this species review was written. FIRE MANAGEMENT CONSIDERATIONS : As a general rule, undesirable cool-season grasses such as foxtail barley can be reduced with late spring burns [41].


SPECIES: Hordeum jubatum
REFERENCES :  1.  Badger, Kemuel S.; Ungar, Irwin A. 1989. The effects of salinity and        temperature on the germination of the inland halophyte Hordeum jubatum.        Canadian Journal of Botany. 67(5): 1420-1425.  [14650]  2.  Badger, Kemuel S.; Ungar, Irwin A. 1991. Life history and population        dynamics of Hordeum jubatum along a soil salinity gradient. Canadian        Journal of Botany. 69: 384-393.  [14539]  3.  Barkworth, Mary E.; Dewey, Douglas R. 1985. Genomically based genera in        the perennial Triticeae of North America: identification and membership.        American Journal of Botany. 72(5): 767-776.  [393]  4.  Baum, Bernard R.; Bailey, L. Grant. 1990. Key and synopsis of North        American Hordeum species. Canadian Journal of Botany. 68: 2433-2442.        [16150]  5.  Bernard, Stephen R.; Brown, Kenneth F. 1977. Distribution of mammals,        reptiles, and amphibians by BLM physiographic regions and A.W. Kuchler's        associations for the eleven western states. Tech. Note 301. Denver, CO:        U.S. Department of the Interior, Bureau of Land Management. 169 p.        [434]  6.  Clambey, Gary K.; Landers, Roger Q. 1978. A survey of wetland vegetation        in north-central Iowa. In: Glenn-Lewin, David C.; Landers, Roger Q.,        Jr., eds. Proceedings, 5th Midwest prairie conference; 1976 August        22-24; Ames, IA. Ames, IA: Iowa State University: 32-35.  [3304]  7.  Conn, Jeffery S. 1990. Seed viability and dormancy of 17 weed species        after burial for 4.7 years in Alaska. Weed Science. 38: 134-138.        [11815]  8.  Dittberner, Phillip L.; Olson, Michael R. 1983. The plant information        network (PIN) data base: Colorado, Montana, North Dakota, Utah, and        Wyoming. FWS/OBS-83/86. Washington, DC: U.S. Department of the Interior,        Fish and Wildlife Service. 786 p.  [806]  9.  Eyre, F. H., ed. 1980. Forest cover types of the United States and        Canada. Washington, DC: Society of American Foresters. 148 p.  [905] 10.  Frolik, A. L.; Shepherd, W. O. 1940. Vegetative composition and grazing        capacity of a typical area of Nebraska sandhills rangeland. University        of Nebraska Agricultural Experimental Station Research Bulletin. Number        117. 39 p.  [5417] 11.  Garrison, George A.; Bjugstad, Ardell J.; Duncan, Don A.; [and others].        1977. Vegetation and environmental features of forest and range        ecosystems. Agric. Handb. 475. Washington, DC: U.S. Department of        Agriculture, Forest Service. 68 p.  [998] 12.  Hadley, Elmer B. 1970. Net productivity and burning response of native        eastern North Dakota prairie communities. American Midland Naturalist.        84(1): 121-135.  [5434] 13.  Hadley, E. B.; Buccos, R. P. 1967. Plant community composition and net        primary production within a native eastern North Dakota prairie.        American Midland Naturalist. 77: 116-127.  [11422] 14.  Hallsten, Gregory P.; Skinner, Quentin D.; Beetle, Alan A. 1987. Grasses        of Wyoming. 3rd ed. Research Journal 202. Laramie, WY: University of        Wyoming, Agricultural Experiment Station. 432 p.  [2906] 15.  Hansen, Paul L.; Chadde, Steve W.; Pfister, Robert D. 1988. Riparian        dominance types of Montana. Misc. Publ. No. 49. Missoula, MT: University        of Montana, School of Forestry, Montana Forest and Conservation        Experiment Station. 411 p.  [5660] 16.  Hitchcock, C. Leo; Cronquist, Arthur. 1961. Vascular plants of the        Pacific Northwest. Part 3: Saxifragaceae to Ericaceae. Seattle, WA:        University of Washington Press. 614 p.  [1167] 17.  Hitchcock, C. Leo; Cronquist, Arthur. 1973. Flora of the Pacific        Northwest. Seattle, WA: University of Washington Press. 730 p.  [1168] 18.  Humberg, N. E.; Alley, H. P.; Vore, R. E. 1981. Rangeland and        meadowland: Section II. University of Wyoming Agricultural Experiment        Station Research Journal. 63: 29-51.  [4907] 19.  Kartesz, John T.; Kartesz, Rosemarie. 1980. A synonymized checklist of        the vascular flora of the United States, Canada, and Greenland. Volume        II: The biota of North America. Chapel Hill, NC: The University of North        Carolina Press; in confederation with Anne H. Lindsey and C. Richie        Bell, North Carolina Botanical Garden. 500 p.  [6954] 20.  Keith, Lloyd B. 1961. A study of waterfowl ecology on small impoundments        in southeastern Alberta. Wildlife Monographs. 6: 1-88.  [4501] 21.  Kingsbury, John M. 1964. Poisonous plants of the United States and        Canada. Englewood Cliffs, NJ: Prentice-Hall, Inc. 626 p.  [122] 22.  Kuchler, A. W. 1964. Manual to accompany the map of potential vegetation        of the conterminous United States. Special Publication No. 36. New York:        American Geographical Society. 77 p.  [1384] 23.  Lackschewitz, Klaus. 1991. Vascular plants of west-central        Montana--identification guidebook. Gen. Tech. Rep. INT-227. Ogden, UT:        U.S. Department of Agriculture, Forest Service, Intermountain Research        Station. 648 p.  [13798] 24.  Lamson-Scribner, F. 1900. Economic grasses. Bulletin No. 14. Washington,        DC: U.S. Department of Agriculture, Division of Agrostology. 85 p.        [4282] 25.  Lyon, L. Jack; Stickney, Peter F. 1976. Early vegetal succession        following large northern Rocky Mountain wildfires. In: Proceedings, Tall        Timbers fire ecology conference and Intermountain Fire Research Council        fire and land management symposium; 1974 October 8-10; Missoula, MT. No.        14. Tallahassee, FL: Tall Timbers Research Station: 355-373.  [1496] 26.  Morris, H. E.; Booth, W. E.; Payne, G. F.; Stitt, R. E. 1950. Important        grasses on Montana ranges. Bull. No. 470. Bozeman, MT: Montana        Agricultural Experiment Station. 52 p.  [5520] 27.  Pemble, R. H.; Van Amburg, G. L.; Mattson, Lyle. 1981. Intraspecific        variation in flowering activity following a spring burn on a        northwestern Minnesota prairie. In: Stuckey, Ronald L.; Reese, Karen J.,        eds. The prairie peninsula--in the "shadow" of Transeau: Proceedings,        6th North American prairie conference; 1978 August 12-17; Columbus, OH.        Ohio Biological Survey: Biological Notes No. 15. Columbus, OH: Ohio        State University, College of Biological Sciences: 235-240.  [3435] 28.  Ferguson, Dennis E.; Boyd, Raymond J. 1988. Bracken fern inhibition of        conifer regeneration in northern Idaho. Ogden, UT: U.S. Department of        Agriculture, Forest Service, Intermountain Research Station. 11 p.        [2834] 29.  Ross, Robert L.; Hunter, Harold E. 1976. Climax vegetation of Montana        based on soils and climate. Bozeman, MT: U.S. Department of Agriculture,        Soil Conservation Service. 64 p.  [2028] 30.  Russell, W. B. 1985. Vascular flora of abandoned coal-mined land, Rocky        Mountain Foothills, Alberta. Canadian Field-Naturalist. 99(4): 503-516.        [10461] 31.  Sampson, Arthur W.; Chase, Agnes; Hedrick, Donald W. 1951. California        grasslands and range forage grasses. Bull. 724. Berkeley, CA: University        of California College of Agriculture, California Agricultural Experiment        Station. 125 p.  [2052] 32.  Stubbendieck, J.; Nichols, James T.; Roberts, Kelly K. 1985. Nebraska        range and pasture grasses (including grass-like plants). E.C. 85-170.        Lincoln, NE: University of Nebraska, Department of Agriculture,        Cooperative Extension Service. 75 p.  [2269] 33.  Stubbendieck, J.; Hatch, Stephan L.; Hirsch, Kathie J. 1986. North        American range plants. 3rd ed. Lincoln, NE: University of Nebraska        Press. 465 p.  [2270] 34.  Ungar, Irwin A. 1974. Inland halophytes of the United States. In:        Reinold, Robert J.; Queen, William H., eds. Ecology of halophytes. New        York: Academic Press, Inc: 235-305.  [11429] 35.  U.S. Department of Agriculture, Forest Service. 1937. Range plant        handbook. Washington, DC. 532 p.  [2387] 36.  U.S. Department of Agriculture, U.S. Department of the Interior; Range        Seeding Equipment Committee. 1959. Handbook: Chemical control of range        weeds. Washington, DC: [Publisher unknown]. 93 p.  [12129] 37.  U.S. Department of Agriculture, Soil Conservation Service. 1982.        National list of scientific plant names. Vol. 1. List of plant names.        SCS-TP-159. Washington, DC. 416 p.  [11573] 38.  Vallentine, John F. 1961. Important Utah range grasses. Extension        Circular 281. Logan, UT: Utah State University. 48 p.  [2937] 39.  White, Larry M. 1989. Growth regulators' effect on crested wheatgrass        forage yield and quality. Journal of Range Management. 42(1): 46-50.        [4170] 40.  Whitman, W. C., Wali, M. K. 1975. Grasslands of North Dakota. In: Wali,        Mohan K., ed. Prairie: a multiple view. Grand Forks, ND: University of        North Dakota Press: 53-74.  [4430] 41.  Wright, Henry A.; Bailey, Arthur W. 1982. Fire ecology: United States        and southern Canada. New York: John Wiley & Sons. 501 p.  [2620] 42.  Young, Richard P. 1986. Fire ecology and management in plant communities        of Malheur National Wildlife Refuge. Portland, OR: Oregon State        University. 169 p. Thesis.  [3745] 43.  Millar, J. B. 1973. Vegetation changes in shallow marsh wetlands under        improving moisture regimes. Canadian Journal of Botany. 51: 1443-1457.        [14589] 44.  Eichhorn, Larry C.; Watts, C. Robert. 1984. Plant succession on burns in        the river breaks of central Montana. Proceedings, Montana Academy of        Science. 43: 21-34.  [15478] 45.  Hardy BBT Limited. 1989. Manual of plant species suitability for        reclamation in Alberta. 2d ed. Report No. RRTAC 89-4. Edmonton, AB:        Alberta Land Conservation and Reclamation Council. 436 p.  [15460] 46.  Stickney, Peter F. 1989. Seral origin of species originating in northern        Rocky Mountain forests. Unpublished draft on file at: U.S. Department of        Agriculture, Forest Service, Intermountain Research Station, Fire        Sciences Laboratory, Missoula, MT; RWU 4403 files. 7 p.  [20090]

FEIS Home Page