Index of Species Information

SPECIES:  Geranium maculatum

Introductory

SPECIES: Geranium maculatum
AUTHORSHIP AND CITATION : Sullivan, Janet. 1992. Geranium maculatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [].
ABBREVIATION : GERMAC SYNONYMS : NO-ENTRY SCS PLANT CODE : GEMA COMMON NAMES : wild geranium spotted cranesbill wild cranesbill cranesbill TAXONOMY : The accepted scientific name for wild geranium is Geranium maculatum L. Named varieties listed by Jones and Jones [22] are: Geranium maculatum var. album Lauman, Geranium maculatum var. plenum Lauman, and Geranium maculatum var. maculatum. A white-flowered form is listed as Geranium maculatum forma albiflorum House [15,22]. LIFE FORM : Forb FEDERAL LEGAL STATUS : No special status OTHER STATUS : NO-ENTRY


DISTRIBUTION AND OCCURRENCE

SPECIES: Geranium maculatum
GENERAL DISTRIBUTION : Wild geranium is found throughout eastern North America from southern Ontario south to Georgia and west to eastern Oklahoma and eastern North and South Dakota [15,19,27]. ECOSYSTEMS : FRES10 White - red - jack pine FRES12 Longleaf - slash pine FRES13 Loblolly - shortleaf pine FRES14 Oak - pine FRES15 Oak - hickory FRES17 Elm - ash - cottonwood FRES18 Maple - beech - birch STATES : AL AR CT DE GA IL IN IA KS KY LA ME MD MA MI MN MS MO NE NH NJ NY NC ND OH OK PA RI SC SD TN VT VA WA WI ON PQ BLM PHYSIOGRAPHIC REGIONS : NO-ENTRY KUCHLER PLANT ASSOCIATIONS : K081 Oak savanna K082 Mosaic of K074 and K100 K095 Great Lakes pine forest K099 Maple - basswood forest K100 Oak - hickory forest K101 Elm - ash forest K102 Beech - maple forest K103 Mixed mesophytic forest K104 Appalachian oak forest K106 Northern hardwoods K108 Northern hardwoods - spruce forest K109 Transition between K104 and K106 K110 Northeastern oak - pine forest K111 Oak - hickory - pine forest K112 Southern mixed forest SAF COVER TYPES : 20 White pine - northern red oak - red maple 21 Eastern white pine 25 Sugar maple - beech - yellow birch 26 Sugar maple - basswood 27 Sugar maple 28 Black cherry - maple 39 Black ash - American elm - red maple 42 Bur oak 51 White pine - chestnut oak 52 White oak - black oak - northern red oak 53 White oak 55 Northern red oak 57 Yellow-poplar 59 Yellow-poplar - white oak - northern red oak 60 Beech - sugar maple 75 Shortleaf pine 78 Virginia pine - oak 82 Loblolly pine - hardwood 83 Longleaf pine - slash pine 108 Red maple SRM (RANGELAND) COVER TYPES : NO-ENTRY HABITAT TYPES AND PLANT COMMUNITIES : Jones [20,21] reported wild geranium as a dominant understory species in a submesic northern red oak (Quercus rubra)/white oak (Q. alba)/wild geranium community type in the hilly coastal plain province of South Carolina. The overstory dominance is shared among northern red oak, white oak, pignut hickory (Carya glabra), and yellow-poplar (Liriodendron tulipifera). The shrub layer dominants are sweet-shrub (Calycanthus floridus) and redbud (Cercis canadensis), with white ash (Fraxinus americanus) in canopy gaps. The ground layer herbaceous dominants include wild geranium, Christmas fern (Polystichum acrostichoides), bloodroot (Sanguinaria canadensis), lovage (Ligusticum canadense), and cohosh (Cimicifuga racemosa).


MANAGEMENT CONSIDERATIONS

SPECIES: Geranium maculatum
IMPORTANCE TO LIVESTOCK AND WILDLIFE : White-tailed deer eat the flowers of wild geranium. Birds eat the maturing fruits, and Lepidopteran larvae have been observed feeding on the flowers and fruits [1]. PALATABILITY : NO-ENTRY NUTRITIONAL VALUE : NO-ENTRY COVER VALUE : NO-ENTRY VALUE FOR REHABILITATION OF DISTURBED SITES : NO-ENTRY OTHER USES AND VALUES : Extracts of wild geranium have been used medicinally by Native Americans to treat diarrhea and various mouth ailments. Powdered preparations were used to treat open sores or wounds. The rhizome contains tannic and gallic acids, which contribute to its astringent quality. Clinical trials have shown that tannins promote blood clotting, supporting its use for bleeding sores or wounds [5]. Wild geranium can be cultivated as an ornamental by transplanting rhizomes or by starting from stratified seed [13,27]. OTHER MANAGEMENT CONSIDERATIONS : Wild geranium appears to be dependent on the continued existence of undisturbed stands of mesic, open forests. It is not usually found on disturbed sites [4] and is not noted for rapid colonization [27]. It appears to be sensitive to acidification of soils, and thus areas that are experiencing acid rain are likely to become less hospitable to wild geranium [18]. Wild geranium is easily cultivated. DeVault [13] transplanted rhizomes of plants growing under closed forest to a fertile, full sun garden. The plants, which had been growing poorly, responded with vigorous growth under garden conditions.


BOTANICAL AND ECOLOGICAL CHARACTERISTICS

SPECIES: Geranium maculatum
GENERAL BOTANICAL CHARACTERISTICS : Wild geranium is perennial herb 8 to 24 inches (20-60 cm) tall [29]. It grows from a stout, branched, underground rhizome that spreads horizontally up to 6 inches (15 cm). The rhizome bears 10 to 30 sparsely branched roots from the sides and undersurface. Vesicular-arbuscular mycorrhizal structures are present, increasing with decreasing fertility of the soil [7,27,29,32]. A small proportion (4 percent) of populations are male-sterile; these female plants produce an average of 60 percent more seed than hermaphroditic plants [1]. RAUNKIAER LIFE FORM : Hemicryptophyte Geophyte REGENERATION PROCESSES : Wild geranium perennates from a stout rhizome with blunt white tips that hold the following year's bud [27,32]. Fragmentation of the rhizome results in new individuals [28]. Natural stands are mosaics of clones that appear to have enlarged from old, individual plants and persist by vegetative means only [27]. Wild geranium is long-lived and has a low mortality rate [1]. When crowded, the roots may rise above the soil surface, exposing the buds to freezing [32]. Martin [27] noted that the rhizomes are found at the soil surface (A1 horizon) under closed canopies but in open communities are as deep as 3 to 4 inches (7-9 cm) below the surface. Young plants usually bloom for the first time in their second or third year but will flower the first year following germination in the greenhouse [27,32]. Production of flower buds, which will expand the following year, takes place when sufficient nutrients are stored [12,27]. Under closed canopies, only 18.8 percent of the plants flower, as opposed to 97 percent in full sunlight [27]. Wild geranium is self-compatible but depends on pollinators for seed set. The most common pollinators are bees (honeybees, bumblebees) and syrphid flies. Other visitors to the flowers include beetles and ants [1,27,28,37]. Seeds are produced in a dehiscent fruit and are scattered by explosive dispersal an average of 10 feet (3 m) and a maximum of 30 feet (9 m). There is no obvious secondary dispersal vector (i.e. not carried by rainwash or animals) [27,32,33]. Schiffman [31] reported wild geranium seeds in the seed bank of a chestnut oak (Quercus prinus)/scarlet oak (Q. coccinea) forest. The seed coat is only slightly permeable, and the seed requires stratification before germination will take place. The longer the cold treatment, the higher the germination rate [27]. The seeds can have a dormancy period in excess of 400 days. In a study of savanna restoration, Bronny [8] reported that wild geranium reappeared when cattle grazing was prevented on an oak savanna site, indicating either its presence in the seed bank or the persistence of rhizomes in the soil. SITE CHARACTERISTICS : Wild geranium is found in woods, coves, thickets, and meadows [15,29]. It appears to prefer more mesic sites such as those found on mid to lower slopes with northern and eastern aspects; preferred soils are clay loam to sandy clay loams and sandy loams [9,20,21,23,27], of average to above-average fertility, and from slightly alkaline or neutral to slightly acidic [7,27,32]. In a study of plant distribution and soil acidity, Wherry [36] found wild geranium in abundance on a rich bottomland site on Long Island with soil pH of 6.5. Fifty years later, on the same site, Greller and others [18] found that the soil pH had declined to 4.08, and wild geranium had become a very minor component of the community. Wild geranium is abundant in dense patches in natural openings throughout mesic woodlands [27,37]. It is found on sites protected from strong winds, in open shade on hillsides, and on shaded roadsides [32]. Cull [11], working on a project to establish native plants on old highway verges in Illinois, found it already present on the site. In a study relating understory herb distribution to overstory trees, Crozier and others [10] reported that the highest positive association of wild geranium is with white oak when compared with its other common associates: beech (Fagus grandifolia), yellow-poplar, red maple (Acer rubrum), sweet birch (Betula lenta), black cherry (Prunus serotina), and northern red oak. This association may be a result of higher calcium in the soils under white oaks, due to runoff down the trunk of the tree. Tree associates in addition to the above named include shagbark hickory (Carya ovata), white ash (Fraxinus americana), eastern hophornbeam (Ostrya virginiana), sugar maple (Acer saccharum), and American elm (Ulmus americana) [4,9,19,20,24]. Common understory associates include Solomon's seal (Polygonatum pubescens), false Solomon's seal (Smilacina racemosa), snow trillium (Trillium grandiflorum), Anemonella thalictroides, common mayapple (Podophyllum peltatus), sedge (Carex spp.), and bellwort (Uvularia grandiflora) [9,10,12,34]. SUCCESSIONAL STATUS : Facultative Seral Species Wild geranium is moderately shade tolerant. It is found on disturbed sites, but populations of wild geranium are best established in open, undisturbed forest [27]. In a study of secondary succession on the New Jersey Piedmont, Bard [4] found populations of wild geranium on undisturbed sites and did not find it in abandoned fields at any stage of succession. This may indicate that its presence in seed banks is short-lived and/or that wild geranium is not an effective colonizer. SEASONAL DEVELOPMENT : The basal leaves of wild geranium emerge in early spring (around the period of vernal canopy closure) over a period of 4 to 6 weeks, attaining 50 percent of total growth between late April and the first week of May [7]. The stems elongate in April, and blooms appear from April to June, setting fruit 3 to 5 weeks later [27,29,32]. Flower buds are formed in the year previous to flowering and are enclosed in the winter bud. Cauline leaves senesce around October, turning red and yellow, and are lost shortly therafter. The basal leaves die down in October and November in the midwestern states, later in the southern states [27].


FIRE ECOLOGY

SPECIES: Geranium maculatum
FIRE ECOLOGY OR ADAPTATIONS : NO-ENTRY POSTFIRE REGENERATION STRATEGY : Rhizomatous herb, rhizome in soil Ground residual colonizer (on-site, initial community) Secondary colonizer - off-site seed


FIRE EFFECTS

SPECIES: Geranium maculatum
IMMEDIATE FIRE EFFECT ON PLANT : No direct documentation of the direct effect of fire on wild geranium is available. However, in light of the fact that the rhizome is found at the soil surface under closed canopies and 3 to 4 inches (7-9 cm) deep under open canopies [27], it is reasonable to suggest that the plant is more easily killed by fire where the rhizome is closer to the soil surface. DISCUSSION AND QUALIFICATION OF FIRE EFFECT : NO-ENTRY PLANT RESPONSE TO FIRE : Wild geranium increases in abundance immediately after fire [2]. On a site invaded by black cherry and multiflora rose (Rosa multiflora), wild geranium reappeared following a prescribed fire that top-killed the invading cherry saplings [8]. The Research Paper by Bowles and others 2007 provides information on postfire responses of several plant species, including wild geranium, that was not available when this species review was originally written. DISCUSSION AND QUALIFICATION OF PLANT RESPONSE : NO-ENTRY FIRE MANAGEMENT CONSIDERATIONS : NO-ENTRY


REFERENCES

SPECIES: Geranium maculatum
REFERENCES : 1. Agren, Jon; Willson, Mary F. 1991. Gender variation and sexual differences in reproductive characters and seed production in Gynodioecious geranium maculatum. American Journal of Botany. 78(4): 470-480. [17562] 2. Apfelbaum, Steven I.; Haney, Alan W. 1990. Management of degraded oak savanna remnants in the upper Midwest: preliminary results from three years of study. In: Hughes, H. Glenn; Bonnicksen, Thomas M., eds. Restoration `89: the new management challenge: Proceedings, 1st annual meeting of the Society for Ecological Restoration; 1989 January 16-20; Oakland, CA. Madison, WI: The University of Wisconsin Arboretum, Society for Ecological Restoration: 280-291. [14705] 3. Barbour, Michael G.; Billings, William Dwight, eds. 1988. North American terrestrial vegetation. Cambridge; New York: Cambridge University Press. 434 p. [13876] 4. Bard, Gily E. 1952. Secondary succession on the Piedmont of New Jersey. Ecological Monographs. 22(3): 195-215. [4777] 5. Bare, Janet E. 1979. Wildflowers and weeds of Kansas. Lawrence, KS: The Regents Press of Kansas. 509 p. [3801] 6. Bierzychudek, Paulette. 1982. Life histories and demography of shade-tolerant temperate forest herbs: a review. New Phytologist. 90: 757-776. [19197] 7. Boerner, Ralph E. J. 1986. Seasonal nutrient dynamics, nutrient resorption, and mycorrhizal infection intensity of two perennial forest herbs. American Journal of Botany. 73(9): 1249-1257. [19191] 8. Bronny, Christopher. 1989. One-two punch: grazing history and the recovery potential of oak savannas. Restoration and Management. 7(2): 73-76. [11412] 9. Cahayla-Wynne, Richard; Glenn-Lewin, David C. 1978. The forest vegetation of the Driftless Area, northeast Iowa. American Midland Naturalist. 100(2): 307-319. [10385] 10. Crozier, Carl R.; Boerner, Ralph E. J. 1984. Correlations of understory herb distribution patterns with microhabitats under different tree species in a mixed mesophytic forest. Oecologia. 62: 337-343. [19193] 11. Cull, Margaret Irene. 1978. Establishing prairie vegetation along highways in the Peoria area. In: Glenn-Lewin, David C.; Landers, Roger Q., Jr., eds. Proceedings, 5th Midwest prairie conference; 1976 August 22-24; Ames, IA. Ames, IA: Iowa State University: 172-177. [3378] 12. Dahlem, Theresa Schutte; Boerner, Ralph E. J. 1987. Effects of canopy light gap and early emergence on the growth and reproduction of Geranium maculatum. Canadian Journal of Botany. 65: 242-245. [19194] 13. De Vault, Dorothea. 1977. Four uncommon groundcovers. American Rock Garden Society Bulletin. 35(1): 36-40. [9508] 14. Eyre, F. H., ed. 1980. Forest cover types of the United States and Canada. Washington, DC: Society of American Foresters. 148 p. [905] 15. Fernald, Merritt Lyndon. 1950. Gray's manual of botany. [Corrections supplied by R. C. Rollins]. Portland, OR: Dioscorides Press. 1632 p. (Dudley, Theodore R., gen. ed.; Biosystematics, Floristic & Phylogeny Series; vol. 2). [14935] 16. Garrison, George A.; Bjugstad, Ardell J.; Duncan, Don A.; [and others]. 1977. Vegetation and environmental features of forest and range ecosystems. Agric. Handb. 475. Washington, DC: U.S. Department of Agriculture, Forest Service. 68 p. [998] 17. Great Plains Flora Association. 1986. Flora of the Great Plains. Lawrence, KS: University Press of Kansas. 1392 p. [1603] 18. Greller, Andrew M.; Locke, David C.; Kilanowski, Victoria; Lotowycz, G. Elizabeth. 1990. Changes in vegetation composition and soil acidity between 1922 and 1985 at a site on the north shore of Long Island, New York. Bulletin of the Torrey Botanical Club. 117(4): 450-458. [19192] 19. Johnson, W. Carter. 1970. Trillium cernuum L. and Geranium maculatum L.: new for South Dakota. Rhodora. 72(792): 554. [19190] 20. Jones, Steven M. 1988. Old-growth forests within the Piedmont of South Carolina. Natural Areas Journal. 8(1): 31-37. [11008] 21. Jones, Steven M. 1991. Landscape ecosystem classification for South Carolina. In: Mengel, Dennis L.; Tew, D. Thompson, eds. Ecological land classification: applications to identify the productive potential of southern forests: Proc. of a symp; 1991 January 7-9; Charlotte, NC. Gen. Tech. Rep. SE-68. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: 59-68. [15709] 22. Jones, G. Neville; Jones, Florence Freeman. 1943. A revision of the perennial species of Geranium of the United States and Canada. Rhodora. 45: 5-26, 32-52. [19198] 23. Kron, Kathleen A. 1989. The vegetation of Indian Bowl wet prairie and its adjacent plant communities. I. Description of the vegetation. Michigan Botanist. 28(4): 179-200. [17358] 24. Kucera, Clair L. 1952. An ecological study of a hardwood forest area in central Iowa. Ecological Monographs. 22(4): 283-299. [254] 25. Kuchler, A. W. 1964. Manual to accompany the map of potential vegetation of the conterminous United States. Special Publication No. 36. New York: American Geographical Society. 77 p. [1384] 26. Lyon, L. Jack; Stickney, Peter F. 1976. Early vegetal succession following large northern Rocky Mountain wildfires. In: Proceedings, Tall Timbers fire ecology conference and Intermountain Fire Research Council fire and land management symposium; 1974 October 8-10; Missoula, MT. No. 14. Tallahassee, FL: Tall Timbers Research Station: 355-373. [1496] 27. Martin, M. Celine. 1965. An ecological life history of Geranium maculatum. American Midland Naturalist. 73(1): 111-149. [19196] 28. McCall, C.; Primack, R. B. 1987. Resources limit the fecundity of three woodland herbs. Oecologia. 71(3): 431-435. [19188] 29. Radford, Albert E.; Ahles, Harry E.; Bell, C. Ritchie. 1968. Manual of the vascular flora of the Carolinas. Chapel Hill, NC: The University of North Carolina Press. 1183 p. [7606] 30. Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press. 632 p. [2843] 31. Schiffman, Paula M.; Johnson, W. Carter. 1992. Sparse buried seed bank in a southern Appalachian oak forest: implications for succession. American Midland Naturalist. 127(2): 258-267. [18191] 32. Sperka, Marie. 1973. Growing wildflowers: A gardener's guide. New York: Harper & Row. 277 p. [10578] 33. Stamp, Nancy E.; Lucas, Jeffrey R. 1983. Ecological correlates of explosive seed dispersal. Oecologia. 59: 272-278. [11089] 34. Szeicz, J. M.; MacDonald, G. M. 1991. Postglacial vegetation history of oak savanna in southern Ontario. Canadian Journal of Botany. 69: 1507-1519. [16607] 35. U.S. Department of Agriculture, Soil Conservation Service. 1982. National list of scientific plant names. Vol. 1. List of plant names. SCS-TP-159. Washington, DC. 416 p. [11573] 36. Wherry, Edgar T. 1923. A soil acidity map of a Long Island wild garden. Ecology. 4(4): 395-401. [19195] 37. Willson, Mary F.; Miller, Linda J.; Rathcke, Beverly J. 1979. Floral display in Phlox and Geranium: adaptive aspects. Evolution. 33(1): 52-63. [19189] 38. Yahner, R. H.; Storm, G. L.; Melton, R. E.; [and others]. 1991. Floral inventory and vegetative cover type mapping of Gettysburg National Military Park and Eisenhower National Historic Site. Tech. Rep. NPS/MAR/NRTR - 91/050. Philadelphia, PA: U.S. Department of the Interior, National Park Service, Mid-Atlantic Region. 149 p. [17987]


FEIS Home Page