Climate Change and...

Annotated Bibliography

Effects of Climate Change


Catovsky, S., Bradford, M. A., Hector, A. (2002). Biodiversity and ecosystem productivity: implications for carbon storage. Oikos 97 (3): 443-448

ABSTRACT: Recent experiments have found that Net Primary Productivity (NPP) can often be a positive saturating function of plant species and functional diversity. These findings raised the possibility that more diverse ecosystems might store more carbon as a result of increased photosynthetic inputs. However, carbon inputs will not only remain in plant biomass, but will be translocated to the soil via root exudation, fine root turnover, and litter fall. Thus, we must consider not just plant productivity (NPP), but also net productivity of the whole ecosystem (NEP), which itself measures net carbon storage. We currently know little about how plant diversity could influence soil processes that return carbon back to the atmosphere, such as heterotrophic respiration and decomposition of organic matter. Nevertheless, it is clear that any effects on such processes could make NPP a poor predictor of whole-ecosystem productivity, and potentially the ability of the ecosystem to store carbon. We examine the range of mechanisms by which plant diversity could influence net ecosystem productivity, incorporating processes involved with carbon uptake (productivity), loss (autotrophic and heterotrophic respiration), and residence time within the system (decomposition rate). Understanding the relationship between plant diversity and ecosystem carbon dynamics must be made a research priority if we wish to provide information relevant to global carbon policy decisions. This goal is entirely feasible if we utilize some basic methods for measuring the major fluxes of carbon into and out of the ecosystem.

Foley, J. A., Asner, G. P., Costa, M. H., Coe, M. T., Defries, R., Gibbs, H. K., Howard, E. A., Olson, S., Patz, J., Ramankutty, N., Snyder, P. (2007). Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon basin. Frontiers in Ecology and the Environment 5 (1): 25-32

ABSTRACT; The Amazon Basin is one of the world's most important bioregions, harboring a rich array of plant and animal species and offering a wealth of goods and services to society. For years, ecological science has shown how large-scale forest clearings cause declines in biodiversity and the availability of forest products. Yet some important changes in the rainforests, and in the ecosystem services they provide, have been underappreciated until recently. Emerging research indicates that land use in the Amazon goes far beyond clearing large areas of forest; selective logging and other canopy damage is much more pervasive than once believed. Deforestation causes collateral damage to the surrounding forests – through enhanced drying of the forest floor, increased frequency of fires, and lowered productivity. The loss of healthy forests can degrade key ecosystem services, such as carbon storage in biomass and soils, the regulation of water balance and river flow, the modulation of regional climate patterns, and the amelioration of infectious diseases. We review these newly revealed changes in the Amazon rainforests and the ecosystem services that they provide.

CCSP, P. Backlund, A. Janetos, D. Schimel, J. Hatfield, K. Boote, P. Fay, L. Hahn, C. Izaurralde, B.A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, D. Wolfe, M. Ryan, S. Archer, R. Birdsey, C. Dahm, L. Heath, J. Hicke, D. Hollinger, T. Huxman, G. Okin, R. Oren, J. Randerson, W. Schlesinger, D. Lettenmaier, D. Major, L. Poff, S. Running, L. Hansen, D. Inouye, B.P. Kelly, L Meyerson, B. Peterson, R. Shaw (2008a). The effects of climate change on agriculture, land resources, water resources, and biodiversity. U.S. Environmental Protection Agency: 362 p.


- Climate change is already affecting U.S. water resources, agriculture, land resources, and biodiversity, and will continue to do so.

- Grain and oilseed crops will mature more rapidly, but increasing temperatures will increase the risk of crop failures, particularly if precipitation decreases or becomes more variable.

- Higher temperatures will negatively affect livestock. Warmer winters will reduce mortality but this will be more than offset by greater mortality in hotter summers. Hotter temperatures will also result in reduced productivity of livestock and dairy animals.

- Forests in the interior West, the Southwest, and Alaska are already being affected by climate change with increases in the size and frequency of forest fires, insect outbreaks and tree mortality. These changes are expected to continue.

- Much of the United States has experienced higher precipitation and streamflow, with decreased drought severity and duration, over the 20th century. The West and Southwest, however, are notable exceptions, and increased drought conditions have occurred in these regions.

- Weeds grow more rapidly under elevated atmospheric CO2 . Under projections reported in the assessment, weeds migrate northward and are less sensitive to herbicide applications.

- There is a trend toward reduced mountain snowpack and earlier spring snowmelt runoff in the Western United States.

- Horticultural crops (such as tomato, onion, and fruit) are more sensitive to climate change than grains and oilseed crops.

- Young forests on fertile soils will achieve higher productivity from elevated atmospheric CO2 concentrations. Nitrogen deposition and warmer temperatures will increase productivity in other types of forests where water is available.

- Invasion by exotic grass species into arid lands will result from climate change, causing an increase fire frequency. Rivers and riparian systems in arid lands will be negatively impacted.

- A continuation of the trend toward increased water use efficiency could help mitigate the impacts of climate change on water resources.

L. Hannah, G. F. Midgley, T. Lovejoy, W. J. Bond, M. Bush, J. C. Lovett, D. Scott, F. I. Woodward (2002). Conservation of biodiversity in a changing climate. Conservation Biology 16 (1): 264-268

INTRODUCTION: The notion of conserving communities and ecosystems as they presently exist may soon be obsolete. Projections of human-induced climate changes and evidence of past rapid climate shifts indicate that patterns of biodiversity may change over landscape scales over time frames as short as decades. New, dynamic conservation strategies are needed to accommodate the natural and human-induced changes in climate that present evidence suggests are inevitable. At the same time, future climate change must be constrained. If it is not, even expanded, dynamic conservation efforts will ultimately be overwhelmed.

The stakes are high. The political barometer of average global temperature increase in 2100 masks the magnitude of possible effects on biodiversity in both time and space. Changes in temperature over continental areas will be higher, possibly more than double the global average in some areas, because sea surface temperatures are lower and change less. The end-of-the-century global average misleads in time because, under present greenhouse-gas emissions trends and most reduction scenarios, warming will continue well beyond 2100. Biodiversity will have to cope with the ultimate temperature change, not just the end-of-the-century political yardstick. Of course, climate change is much more than just temperature change, so biodiversity also will be confronted with changing rainfall patterns, declining water balances, increased extreme climate events, and changes in oscillations such as El Niño.

A two-pronged response is required. First, those concerned about biodiversity need to become an important voice in the global warming debate. Biodiversity scientists have strong reason to become an active constituency and to advocate that global greenhouse-gas emissions be reduced in real terms. Second, we must use our skills to develop conservation strategies to help biodiversity survive the climate changes that will result from greenhouse-gas emissions, both those already in the atmosphere and those that are apparently unavoidable under present abatement agreements.

O. E. Sala, Chapin, F.S., III, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R.B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker, D. H. Wall (2000). Global biodiversity scenarios for the year 2100. Science 286 (5459): 1770-1774

ABSTRACT: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

M. B. Araújo, R. J. Whittaker, R. J. Ladle, M. Erhard (2005). Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography 14 (6): 529-538

ABSTRACT:Concern over the implications of climate change for biodiversity has led to the use of species–climate 'envelope' models to forecast risks of species extinctions under climate change scenarios. Recent studies have demonstrated significant variability in model projections and there remains a need to test the accuracy of models and to reduce uncertainties. Testing of models has been limited by a lack of data against which projections of future ranges can be tested. Here we provide a first test of the predictive accuracy of such models using observed species' range shifts and climate change in two periods of the recent past.Britain.Observed range shifts for 116 breeding bird species in Britain between 1967 and 1972 (t1) and 1987–91 (t2) are used. We project range shifts between t1 and t2 for each species based on observed climate using 16 alternative models (4 methods × 2 data parameterizations × 2 rules to transform probabilities of occurrence into presence and absence records).Modelling results were extremely variable, with projected range shifts varying both in magnitude and in direction from observed changes and from each other. However, using approaches that explore the central tendency (consensus) of model projections, we were able to improve agreement between projected and observed shifts significantly.Our results provide the first empirical evidence of the value of species–climate 'envelope' models under climate change and demonstrate reduction in uncertainty and improvement in accuracy through selection of the most consensual projections.

M. B. Araújo, R. G. Pearson, W. Thuiller, M. Erhard (2005). Validation of species–climate impact models under climate change. Global Change Biology 11 (9): 1504-1513

ABSTRACT: Increasing concern over the implications of climate change for biodiversity has led to the use of species–climate envelope models to project species extinction risk under climate-change scenarios. However, recent studies have demonstrated significant variability in model predictions and there remains a pressing need to validate models and to reduce uncertainties. Model validation is problematic as predictions are made for events that have not yet occurred. Resubstituition and data partitioning of present-day data sets are, therefore, commonly used to test the predictive performance of models. However, these approaches suffer from the problems of spatial and temporal autocorrelation in the calibration and validation sets. Using observed distribution shifts among 116 British breeding-bird species over the past ∼20 years, we are able to provide a first independent validation of four envelope modelling techniques under climate change. Results showed good to fair predictive performance on independent validation, although rules used to assess model performance are difficult to interpret in a decision-planning context. We also showed that measures of performance on nonindependent data provided optimistic estimates of models' predictive ability on independent data. Artificial neural networks and generalized additive models provided generally more accurate predictions of species range shifts than generalized linear models or classification tree analysis. Data for independent model validation and replication of this study are rare and we argue that perfect validation may not in fact be conceptually possible. We also note that usefulness of models is contingent on both the questions being asked and the techniques used. Implementations of species–climate envelope models for testing hypotheses and predicting future events may prove wrong, while being potentially useful if put into appropriate context.

U. Molau, J. M. Alatalo (1998). Responses of subarctic-alpine plant communities to simulated environmental change: biodiversity of bryophytes, lichens, and vascular plants. Ambio 27 (4): 322-329

ABSTRACT: The predicted changes in climate over the next 50 years are expected to be most pronounced in arctic and subarctic regions. In the present study, we examine the responses of a subarctic-alpine rich meadow and poor heath community to factorial manipulations of temperature and nutrient treatments. Specifically, we address response to the treatments in terms of biodiversity and relative cover of the bryophyte, lichen and vascular plant communities. We point out that the responses differ among mosses, lichens, vascular plants, and communities, and this will probably cause shifts in the dominance of both bottom layer and canopy layer species. It is important to note that the decrease in cover and species number of the bottom layer mainly occurred due to a decline in mosses; in contrast, lichen cover increased in all treatments in both communities. Climate change may thus cause a shift in the bottom layer from being dominated by mosses, to become dominated by lichens.

O. Hoegh-Guldberg (1999). Climate change, coral bleaching and the future of the world's coral reefs. Marine and Freshwater Research 50 (8): 839-866

ABSTRACT: Sea temperatures in many tropical regions have increased by almost 1°C over the past 100 years, and are currently increasing at ~1–2°C per century. Coral bleaching occurs when the thermal tolerance of corals and their photosynthetic symbionts (zooxanthellae) is exceeded. Mass coral bleaching has occurred in association with episodes of elevated sea temperatures over the past 20 years and involves the loss of the zooxanthellae following chronic photoinhibition. Mass bleaching has resulted in significant losses of live coral in many parts of the world. This paper considers the biochemical, physiological and ecological perspectives of coral bleaching. It also uses the outputs of four runs from three models of global climate change which simulate changes in sea temperature and hence how the frequency and intensity of bleaching events will change over the next 100 years. The results suggest that the thermal tolerances of reef-building corals are likely to be exceeded every year within the next few decades. Events as severe as the 1998 event, the worst on record, are likely to become commonplace within 20 years. Most information suggests that the capacity for acclimation by corals has already been exceeded, and that adaptation will be too slow to avert a decline in the quality of the world’s reefs. The rapidity of the changes that are predicted indicates a major problem for tropical marine ecosystems and suggests that unrestrained warming cannot occur without the loss and degradation of coral reefs on a global scale.

L. Miles, A. Grainger, O. Phillips (2004). The impact of global climate change on tropical forest biodiversity in Amazonia. Global Ecology and Biogeography 13 (6): 553-565

ABSTRACT:To model long-term trends in plant species distributions in response to predicted changes in global climate.Amazonia.The impacts of expected global climate change on the potential and realized distributions of a representative sample of 69 individual Angiosperm species in Amazonia were simulated from 1990 to 2095. The climate trend followed the HADCM2GSa1 scenario, which assumes an annual 1% increase of atmospheric CO2 content with effects mitigated by sulphate forcing. Potential distributions of species in one-degree grid cells were modelled using a suitability index and rectilinear envelope based on bioclimate variables. Realized distributions were additionally limited by spatial contiguity with, and proximity to, known record sites. A size-structured population model was simulated for each cell in the realized distributions to allow for lags in response to climate change, but dispersal was not included.In the resulting simulations, 43% of all species became non-viable by 2095 because their potential distributions had changed drastically, but there was little change in the realized distributions of most species, owing to delays in population responses. Widely distributed species with high tolerance to environmental variation exhibited the least response to climate change, and species with narrow ranges and short generation times the greatest. Climate changed most in north-east Amazonia while the best remaining conditions for lowland moist forest species were in western Amazonia.To maintain the greatest resilience of Amazonian biodiversity to climate change as modelled by HADCM2GSa1, highest priority should be given to strengthening and extending protected areas in western Amazonia that encompass lowland and montane forests

R.J. Wilson, D. Gutiérrez, J. Gutiérrez, D. Martínez, R. Agudo, V. J. Monserrat (2005). Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters 8 (11): 1138-1146

ABSTRACT: The first expected symptoms of a climate change-generated biodiversity crisis are range contractions and extinctions at lower elevational and latitudinal limits to species distributions. However, whilst range expansions at high elevations and latitudes have been widely documented, there has been surprisingly little evidence for contractions at warm margins. We show that lower elevational limits for 16 butterfly species in central Spain have risen on average by 212 m (± SE 60) in 30 years, accompanying a 1.3 °C rise (equivalent to c. 225 m) in mean annual temperature. These elevational shifts signify an average reduction in habitable area by one-third, with losses of 50–80% projected for the coming century, given maintenance of the species thermal associations. The results suggest that many species have already suffered climate-mediated habitat losses that may threaten their long-term chances of survival.

P. Opdam, D. Wascher (2004). Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biological Conservation 117 (3): 285-297

ABSTRACT: Climate change and habitat fragmentation are considered key pressures on biodiversity. In this paper we explore the potential synergetic effects between these factors. We argue that processes at two levels of spatial scale interact: the metapopulation level and the species range level. Current concepts of spatially dynamic metapopulations and species ranges are consistent, and integration improves our understanding of the interaction of landscape level and geographical range level processes. In landscape zones in which the degree of habitat fragmentation allows persistence, the shifting of ranges is inhibited, but not blocked. In areas where the spatial cohesion of the habitat is below the critical level of metapopulation persistence, the expansion of ranges will be blocked. An increased frequency of large-scale disturbances caused by extreme weather events will cause increasing gaps and an overall contraction of the distribution range, particularly in areas with relatively low levels of spatial cohesion. Taking into account the effects of climate change on metapopulations, habitat distribution and land use changes, future biodiversity research and conservation strategies are facing the challenge to re-orient their focus and scope by integrating spatially and conceptually more dynamic aspects at the landscape level.

D. Scott, J. R. Malcolm, C. Lemieux (2002). Climate change and modelled biome representation in Canada's national park system: implications for system planning and park mandates. Global Ecology and Biogeography 11 (6): 475-484

ABSTRACT:The study examined the potential for change in biome representation within Canada's national park system under multiple climate change scenarios and subsequent potential vulnerabilities in Parks Canada policy and planning frameworks.The study was conducted for Canada's 39 national parks.The vegetation change scenarios were based on modelling results from the BIOME3 and MAPSS equilibrium process-based global vegetation models (GVM), run with multiple doubled-CO2 climate change scenarios. The six vegetation distribution scenarios were calculated at 0.5° latitude–longitude resolution and the boundaries of 39 national parks superimposed in a geographic information system (GIS). Park management plans and other planning documents were also reviewed as part of the analysis.The proportional distribution of biomes in Canada's national park system was very similar (within 3% of area for each biome) using BIOME3 and MAPSS under the current climate. Regardless of the GVM and climate change scenario used, the modelling results suggest the potential for substantial change in the biome representation in Canada's national park system. In five of six vegetation scenarios, a novel biome type appeared in more than half of the national parks and greater than 50% of all vegetation grid boxes changed biome type. The proportional representation of tundra and taiga/tundra in the national park system declined in each of the vegetation scenarios, while more southerly biomes (temperate forests and savanna/woodland) increased (in some scenarios doubling to quadrupling). Results for boreal forest varied among the climate change scenarios. A range of potential vulnerabilities in existing policy and planning frameworks were identified, including the national park system plan, individual park objectives, and fire and exotic species management plans.Climate change represents an unprecedented challenge to Parks Canada and its ability to achieve its conservation mandate as presently legislated. Research is needed not only on ecosystem responses to climate change, but also on the capacity of conservation systems and agencies to adapt to climate change.

R. G. Pearson (2006). Climate change and the migration capacity of species. Trends in Ecology & Evolution 21 (3): 111-113

ABSTRACT: In a recent paper, McLachlan et al. presented evidence that migration rates of two tree species at the end of the last glacial (c. 10–20 thousand years ago) were much slower than was previously thought. These results provide an important insight for climate-change impacts studies and suggest that the ability of species to track future climate change is limited. However, the detection of late-glacial refugia close to modern range limits also implies that some of our most catastrophic projections might be overstated.

B.M. Bolker, S. W. Pacala, F.A. Bazzaz, C.D. Canham, S.A. Levin (1995). Species diversity and ecosystem response to carbon dioxide fertilization: conclusions from a temperate forest model. Global Change Biology 1 (5): 373-381

ABSTRACT: This paper explores how the response of a temperate forest ecosystem to climate change might depend on species diversity and community change. In particular, we look at the dynamics of a model of temperate forest growth under doubled CO2 . We combine a detailed, field-calibrated model of forest dynamics (Pacala et al 1993) with greenhouse data on the range of seedling biomass growth response to doubled CO2 concentrations (Bazzaz et al. 1990; Bazzaz & Miao 1993). Because total ecosystem response to climate change depends delicately on many environmental variables other than CO2 , we isolate the effects of community change by comparing runs of the regular model, allowing dynamic community change, with runs of a reduced model that holds species composition static by using a single tree species with average parameters. Simulations that allowed community change instead of holding species composition constant showed a roughly 30% additional increase in total basal area over time scales of 50-150 years. Although the model omits many possible feedbacks and mechanisms associated with climate change, it suggests the large potential effects that species differences and feedbacks can have in ecosystem models and reinforces the possible importance of diversity to ecosystem function (Naeem et ai 1994; Tilman & Downing 1994) over time scales within the planning horizon for global change policy.

A. S. L. Rodrigues, S. J. Andelman, M. I. Bakarr, L. Boitani, T. M. Brooks, R. M. Cowling, L. D. C. Fishpool, G. A. B. da Fonseca, K. J. Gaston, M. Hoffmann, J. S. Long, P. A. Marquet, J. D. Pilgrim, R. L. Pressey, J. Schipper, W. Sechrest, S. N. Stuart, L. G. Underhill, R. W. Waller, M. E. J. Watts, X. Yan (2004). Effectiveness of the global protected area network in representing species diversity. Nature 428 (8 April): 640-643

ABSTRACT: The Fifth World Parks Congress in Durban, South Africa, announced in September 2003 that the global network of protected areas now covers 11.5% of the planet's land surface1 . This surpasses the 10% target proposed a decade earlier, at the Caracas Congress2 , for 9 out of 14 major terrestrial biomes1 . Such uniform targets based on percentage of area have become deeply embedded into national and international conservation planning3 . Although politically expedient, the scientific basis and conservation value of these targets have been questioned4, 5 . In practice, however, little is known of how to set appropriate targets, or of the extent to which the current global protected area network fulfils its goal of protecting biodiversity. Here, we combine five global data sets on the distribution of species and protected areas to provide the first global gap analysis assessing the effectiveness of protected areas in representing species diversity. We show that the global network is far from complete, and demonstrate the inadequacy of uniform—that is, 'one size fits all'—conservation targets.

J. F. McLaughlin, J. J. Hellmann, C. L. Boggs, P. R. Ehrlich (2002). Climate change hastens population extinctions. Proceedings of the National Academy of Sciences 99 (9): 6070-6074

ABSTRACT: Climate change is expected to alter the distribution and abundance of many species. Predictions of climate-induced population extinctions are supported by geographic range shifts that correspond to climatic warming, but few extinctions have been linked mechanistically to climate change. Here we show that extinctions of two populations of a checkerspot butterfly were hastened by increasing variability in precipitation, a phenomenon predicted by global climate models. We model checkerspot populations to show that changes in precipitation amplified population fluctuations, leading to rapid extinctions. As populations of checkerspots and other species become further isolated by habitat loss, climate change is likely to cause more extinctions, threatening both species diversity and critical ecosystem services.

L. R. Iverson, A. M. Prasad (2001). Potential changes in tree species richness and forest community types following climate change. Ecosystems 4 (3): 186-199

ABSTRACT: Potential changes in tree species richness and forest community types were evaluated for the eastern United States according to five scenarios of future climate change resulting from a doubling of atmospheric carbon dioxide (CO2 ). DISTRIB, an empirical model that uses a regression tree analysis approach, was used to generate suitable habitat, or potential future distributions, of 80 common tree species for each scenario. The model assumes that the vegetation and climate are in equilibrium with no barriers to species migration. Combinations of the individual species model outcomes allowed estimates of species richness (from among the 80 species) and forest type (from simple rules) for each of 2100 counties in the eastern United States. Average species richness across all counties may increase slightly with climatic change. This increase tends to be larger as the average temperature of the climate change scenario increases. Dramatic changes in the distribution of potential forest types were modeled. All five scenarios project the extirpation of the spruce–fir forest types from New England. Outputs from only the two least severe scenarios retain aspen–birch, and they are largely reduced. Maple–beech–birch also shows a large reduction in area under all scenarios. By contrast, oak–hickory and oak–pine types were modeled to increase by 34% and 290%, respectively, averaged over the five scenarios. Although many assumptions are made, these modeled outcomes substantially agree with a limited number of predictions from researchers using paleoecological data or other models.

L. Hanna, G. F. Midgley, D. Millar (2002). Climate change-integrated conservation strategies. Global Ecology and Biogeography 11 (6): 485-495

ABSTRACT:Conservation strategies currently include little consideration of climate change. Insights about the biotic impacts of climate change from biogeography and palaeoecology, therefore, have the potential to provide significant improvements in the effectiveness of conservation planning. We suggest a collaboration involving biogeography, ecology and applied conservation. The resulting Climate Change-integrated Conservation Strategies (CCS) apply available tools to respond to the conservation challenges posed by climate change.The focus of this analysis is global, with special reference to high biodiversity areas vulnerable to climate change, particularly tropical montane settings.Current tools from climatology, biogeography and ecology applicable to conservation planning in response to climate change are reviewed. Conservation challenges posed by climate change are summarized. CCS elements are elaborated that use available tools to respond to these challenges.Five elements of CCS are described: regional modelling; expanding protected areas; management of the matrix; regional coordination; and transfer of resources. Regional modelling uses regional climate models, biotic response models and sensitivity analysis to identify climate change impacts on biodiversity at a regional scale appropriate for conservation planning. Expansion of protected areas management and systems within the planning region are based on modelling results. Management of the matrix between protected areas provides continuity for processes and species range shifts outside of parks. Regional coordination of park and off-park efforts allows harmonization of conservation goals across provincial and national boundaries. Finally, implementation of these CCS elements in the most biodiverse regions of the world will require technical and financial transfer of resources on a global scale.Collaboration across disciplines is necessary to plan conservation responses to climate change adequately. Biogeography and ecology provide insights into the effects of climate change on biodiversity that have not yet been fully integrated into conservation biology and applied conservation management. CCS provide a framework in which biogeographers, ecologists and conservation managers can collaborate to address this need. These planning exercises take place on a regional level, driven by regional climate models as well as general circulation models (GCMs), to ensure that regional climate drivers such as land use change and mesoscale topography are adequately represented. Sensitivity analysis can help address the substantial uncertainty inherent in projecting future climates and biodiversity response.

A. Clarke, J. A. Crame, J.-O. Stromberg, P. F. Barker (1992). The Southern Ocean benthic fauna and climate change: A historical perspective [and Discussion]. Philosophical Transactions: Biological Sciences 338 (1285): 299-309

ABSTRACT: Environmental change is the norm and it is likely that, particularly on the geological timescale, the temperature regime experienced by marine organisms has never been stable. These temperature changes vary in timescale from daily, through seasonal variations, to long-term environmental change over tens of millions of years. Whereas physiological work can give information on how individual organisms may react phenotypically to short-term change, the way benthic communities react to long-term change can only be studied from the fossil record. The present benthic marine fauna of the Southern Ocean is rich and diverse, consisting of a mixture of taxa with differing evolutionary histories and biogeographical affinities, suggesting that at no time in the Cenozoic did continental ice sheets extend sufficiently to eradicate all shallow-water faunas around Antarctica at the same time. Nevertheless, certain features do suggest the operation of vicariant processes, and climatic cycles affecting distributional ranges and ice-sheet extension may both have enhanced speciation processes. The overall cooling of southern high-latitude seas since the mid-Eocene has been neither smooth nor steady. Intermittent periods of global warming and the influence of Milankovitch cyclicity is likely to have led to regular pulses of migration in and out of Antarctica. The resultant diversity pump may explain in part the high species richness of some marine taxa in the Southern Ocean. It is difficult to suggest how the existing fauna will react to present global warming. Although it is certain the fauna will change, as all faunas have done throughout evolutionary time, we cannot predict with confidence how it will do so.

Currie, D.J. (2001). Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States. Ecosystems 4 (3): 216-225

ABSTRACT: General circulation models (GCM) predict that increasing levels of atmospheric carbon dioxide (CO2 ) and other greenhouse gases will lead to dramatic changes in climate. It is known that the spatial variability of species richness over continental spatial scales is strongly correlated with contemporary climate. Assuming that this relationship between species richness and climate persists under conditions of increased CO2 , what changes could we expect to occur in terms of species richness? To address this question, I used observed relationships between contemporary richness and climate, coupled with climate projections from five GCM, to project these future changes. These models predict that the richness of vertebrate ectotherms will increase over most of the conterminous United States. Mammal and bird richness are predicted to decrease in much of the southern US and to increase in cool, mountainous areas. Woody plant richness is likely to increase throughout the North and West and to decrease in the southwestern deserts. These projections represent changes that are likely to occur over long time scales (millennia); short-term changes are expected to be mainly negative.

J. H. Brown, T. G. Whitham, S. K. M. Ernest, C. A. Gehring (2001). Complex species interactions and the dynamics of ecological systems: long-term experiments. Science 293 (5530): 643-650

ABSTRACT: Studies that combine experimental manipulations with long-term data collection reveal elaborate interactions among species that affect the structure and dynamics of ecosystems. Research programs in U.S. desert shrubland and pinyon-juniper woodland have shown that (i) complex dynamics of species populations reflect interactions with other organisms and fluctuating climate; (ii) genotype x environment interactions affect responses of species to environmental change; (iii) herbivore-resistance traits of dominant plant species and impacts of "keystone" animal species cascade through the system to affect many organisms and ecosystem processes; and (iv) some environmental perturbations can cause wholesale reorganization of ecosystems because they exceed the ecological tolerances of dominant or keystone species, whereas other changes may be buffered because of the compensatory dynamics of complementary species.

Brown, J.H., S.K. Morgan Ernest, J.M. Parody, J.P. Haskell (2001). Regulation of diversity: maintenance of species richness in changing environments. Oecologia 126 (3): 321-332

ABSTRACT: In order to assess how diversity changes over time at sites undergoing environmental change, we examined three data sets on long-term trends in taxonomic richness and composition: (1) 22 years of rodent censuses from a site in the Chihuahuan Desert of Arizona; (2) 50 years of bird surveys from a three-county region of northern Michigan; and (3) approximately 10,000 years of pollen records from two sites in Europe. In all three cases, richness has remained remarkably constant despite large changes in composition. The results suggest that while species composition may be highly variable and change substantially in response to environmental change, species diversity is an emergent property of ecosystems that is often maintained within narrow limits. Such regulation of diversity requires maintenance of relatively constant levels of productivity and resource availability and an open system with opportunity for compensatory colonizations and extinctions. In addition to studying the effects of diversity on biogeochemical processes, it will often be useful to think of species richness as an emergent consequence of ecosystem processes.

Bazzaz, F.A. (1998). Tropical forests in a future climate: changes in biological diversity and impact on the global carbon cycle. Climatic Change 39 (2-3): 317-336

ABSTRACT: Tropical forest ecosystems are large stores of carbon which supply millions of people with life support requirements. Currently tropical forests are undergoing massive deforestation. Here, I address the possible impact of global change conditions, including elevated CO2 , temperature rise, and nitrogen deposition on forest structure and dynamics. Tropical forests may be particularly susceptible to climate change for the following reasons: (1) Phenological events (such as flowering and fruiting) are highly tuned to climatic conditions. Thus a small change in climate can have a major impact on the forest, its biological diversity and its role in the carbon cycle. (2) There are strong coevolutionary interactions, such as pollination seed dispersal, with a high degree of specialization, i.e., only certain animals can effect these activities for certain species. Global change can decouple these tight coevolutionary interactions. (3) Because of high species diversity per unit area, species of the tropical rain forest must have narrow niches. Thus changes in global climate can eliminate species and therefore reduce biological diversity. (4) Deforestation and other forms of disturbance may have significant feedback on hydrology both regionally and globally. The predicted decline in the rainfall in the Amazon Basin and the intensification of the Indian monsoon can have a large effect on water availability and floods which are already devastating low-lying areas. It is concluded that tropical forests may be very sensitive to climate change. Under climatic change conditions their structure and function may greatly change, their integrity may be violated and their services to people may be greatly modified. Because they are large stores of great biological diversity, they require immediate study before it is too late. The study requires the collaboration of scientists with a wide range of backgrounds and experiences including biologists, climate modellers, atmospheric scientists, economists, human demographers and sociologists in order to carry out holistic and urgently needed work. Global climatic change brings a great challenge to science and to policy makers.

K. J. Willis, S. A. Bhagwat (2009). Biodiversity and climate change. Science 326 (5954): 806-807

SUMMARY: Over the past decade, several models have been developed to predict the impact of climate change on biodiversity. Results from these models have suggested some alarming consequences of climate change for biodiversity, predicting, for example, that in the next century many plants and animals will go extinct (1) and there could be a large-scale dieback of tropical rainforests (2). However, caution may be required in interpreting results from these models, not least because their coarse spatial scales fail to capture topography or "microclimatic buffering" and they often do not consider the full acclimation capacity of plants and animals (3). Several recent studies indicate that taking these factors into consideration can seriously alter the model predictions (4–7).

S. Harrison, J. H. Viers, J. H. Thorne, J. B. Grace (2008). Favorable environments and the persistence of naturally rare species. Conservation Letters 1 (2): 65-74

ABSTRACT: In an era of rapid climate change, it is important to understand how naturally rare species—such as those with small geographic ranges, specialized habitat requirements, and low local abundances—have persisted in time and space. In the flora we studied, species with all three forms of rarity inhabited geographic regions with more benign climates (higher total and summer rainfall, less extreme seasonal temperatures) and larger areas of their specialized habitat within 10 km than did more common species in the same habitats. Similar differences were also seen in congener-only comparisons. We found no evidence for two nonexclusive alternatives, that naturally rare species had more extinction-resistant life history traits, or that they belonged to more rapidly speciating taxa than common species. Understanding the association of rare species with benign environments may help in the design of effective conservation strategies for geographic regions of high diversity and endemism under changing climates. In particular, our findings highlight the extra climatic sensitivities of rare species with edaphic or other specialization, and how the needs of these species may be met by either refugia or translocation strategies.

S. Díaz, A. Hector, D. A Wardle (2009). Biodiversity in forest carbon sequestration initiatives: not just a side benefit. Current Opinion in Environmental Sustainability 1 (1): 55-60

ABSTRACT: One way of mitigating global climate change is protecting and enhancing biosphere carbon stocks. The success of mitigation initiatives depends on the long-term net balance between carbon gains and losses. The biodiversity of ecological communities, including composition and variability of traits of plants and soil organisms, can alter this balance in several ways. This influence can be direct, through determining the magnitude, turnover rate, and longevity of carbon stocks in soil and vegetation. It can also be indirect through influencing the value and therefore the protection that societies give to ecosystems and their carbon stocks. Biodiversity of forested ecosystems has important consequences for long-term carbon storage, and thus warrants incorporation into the design, implementation, and regulatory framework of mitigation initiatives.

M. A. Huston, G. Marland (2003). Carbon management and biodiversity. Journal of Environmental Management 67 (1): 77-86

ABSTRACT: International efforts to mitigate human-caused changes in the Earth's climate are considering a system of incentives (debits and credits) that would encourage specific changes in land use that can help to reduce the atmospheric concentration of carbon dioxide. The two primary land-based activities that would help to minimize atmospheric carbon dioxide are carbon storage in the terrestrial biosphere and the efficient substitution of biomass fuels and bio-based products for fossil fuels and energy-intensive products. These two activities have very different land requirements and different implications for the preservation of biodiversity and the maintenance of other ecosystem services. Carbon sequestration in living forests can be pursued on lands with low productivity, i.e. on lands that are least suitable for agriculture or intensive forestry, and are compatible with the preservation of biodiversity over large areas. In contrast, intensive harvest-and-use systems for biomass fuels and products generally need more productive land to be economically viable. Intensive harvest-and-use systems may compete with agriculture or they may shift intensive land uses onto the less productive lands that currently harbor most of the Earth's biodiversity. Win–win solutions for carbon dioxide control and biodiversity are possible, but careful evaluation and planning are needed to avoid practices that reduce biodiversity with little net decrease in atmospheric carbon dioxide. Planning is more complex on a politically subdivided Earth where issues of local interest, national sovereignty, and equity come into play.

R. G. Pearson, T. P. Dawson (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global Ecology and Biogeography 12 (5): 361-371

ABSTRACT: Modelling strategies for predicting the potential impacts of climate change on the natural distribution of species have often focused on the characterization of a species’ bioclimate envelope. A number of recent critiques have questioned the validity of this approach by pointing to the many factors other than climate that play an important part in determining species distributions and the dynamics of distribution changes. Such factors include biotic interactions, evolutionary change and dispersal ability. This paper reviews and evaluates criticisms of bioclimate envelope models and discusses the implications of these criticisms for the different modelling strategies employed. It is proposed that, although the complexity of the natural system presents fundamental limits to predictive modelling, the bioclimate envelope approach can provide a useful first approximation as to the potentially dramatic impact of climate change on biodiversity. However, it is stressed that the spatial scale at which these models are applied is of fundamental importance, and that model results should not be interpreted without due consideration of the limitations involved. A hierarchical modelling framework is proposed through which some of these limitations can be addressed within a broader, scale-dependent context.

J. W. Coulston, K. H. Riitters (2005). Preserving biodiversity under current and future climates: a case study. Global Ecology and Biogeography 14 (1): 31-38

ABSTRACT:The conservation of biological and genetic diversity is a major goal of reserve systems at local, regional, and national levels. The International Union for the Conservation of Nature and Natural Resources suggests a 12% threshold (area basis) for adequate protection of biological and genetic diversity of a plant community. However, thresholds based on area may protect only a small portion of the total diversity if the locations are chosen without regard to the variation within the community. The objectives of this study were to demonstrate methods to apply a coarse-filter approach for identifying gaps in the current reserve system of the Psuedotsuga menziesii (Douglas-fir) forest type group based on current climatic conditions and a global climate change scenario.Western United States.We used an ecological envelope approach that was based on seven bioclimatic factors, two topographic factors, and two edaphic factors. Multivariate factor analysis was then used to reduce the envelope to two dimensions. The relative density of habitat and protected areas were identified in each part of the envelope based on the current climate and potential future climate. We used this information to identify gaps in the reserve system.Although the protected areas occurred in all parts of the envelope, most existed in colder and drier areas. This was true for both the current climate and potential future climate.To protect more of the ecological envelope, future conservation efforts would be most effective in western Oregon, north-western Washington, and north-western California.

Preston, K. L., Rotenberry, J. T., Redak, R. A., Allen, M. F. (2008). Habitat shifts of endangered species under altered climate conditions: importance of biotic interactions. Global Change Biology 14 (11): 2501-2515

ABSTRACT: Predicting changes in potential habitat for endangered species as a result of global warming requires considering more than future climate conditions; it is also necessary to evaluate biotic associations. Most distribution models predicting species responses to climate change include climate variables and occasionally topographic and edaphic parameters, rarely are biotic interactions included. Here, we incorporate biotic interactions into niche models to predict suitable habitat for species under altered climates. We constructed and evaluated niche models for an endangered butterfly and a threatened bird species, both are habitat specialists restricted to semiarid shrublands of southern California. To incorporate their dependency on shrubs, we first developed climate-based niche models for shrubland vegetation and individual shrub species. We also developed models for the butterfly's larval host plants. Outputs from these models were included in the environmental variable dataset used to create butterfly and bird niche models. For both animal species, abiotic–biotic models outperformed the climate-only model, with climate-only models over-predicting suitable habitat under current climate conditions. We used the climate-only and abiotic–biotic models to calculate amounts of suitable habitat under altered climates and to evaluate species' sensitivities to climate change. We varied temperature (+0.6, +1.7, and +2.8 °C) and precipitation (50%, 90%, 100%, 110%, and 150%) relative to current climate averages and within ranges predicted by global climate change models. Suitable habitat for each species was reduced at all levels of temperature increase. Both species were sensitive to precipitation changes, particularly increases. Under altered climates, including biotic variables reduced habitat by 68–100% relative to the climate-only model. To design reserve systems conserving sensitive species under global warming, it is important to consider biotic interactions, particularly for habitat specialists and species with strong dependencies on other species.

A.T. Peterson (2003). Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Global Change Biology 9 (5): 647-655

ABSTRACT: Climate change effects on biodiversity are already manifested, and yet no predictive knowledge characterizes the likely nature of these effects. Previous studies suggested an influence of topography on these effects, a possibility tested herein. Bird species with distributions restricted to montane (26 species) and Great Plains (19 species) regions of central and western North America were modeled, and climate change effects on their distributions compared: in general, plains species were more heavily influenced by climate change, with drastic area reductions (mode 35% of distributional area lost under assumption of no dispersal) and dramatic spatial movements (0–400 km shift of range centroid under assumption of no dispersal) of appropriate habitats. These results suggest an important generality regarding climate change effects on biodiversity, and provide useful guidelines for conservation planning.

Collins, J. P., Storfer, A. (2003). Global amphibian declines: sorting the hypotheses. Diversity & Distributions 9 (2): 89-98

ABSTRACT: Reports of malformed amphibians and global amphibian declines have led to public concern, particularly because amphibians are thought to be indicator species of overall environmental health. The topic also draws scientific attention because there is no obvious, simple answer to the question of what is causing amphibian declines? Complex interactions of several anthropogenic factors are probably at work, and understanding amphibian declines may thus serve as a model for understanding species declines in general. While we have fewer answers than we would like, there are six leading hypotheses that we sort into two classes. For class I hypotheses, alien species, over-exploitation and land use change, we have a good understanding of the ecological mechanisms underlying declines; these causes have affected amphibian populations negatively for more than a century. However, the question remains as to whether the magnitude of these negative effects increased in the 1980s, as scientists began to notice a global decline of amphibians. Further, remedies for these problems are not simple. For class II hypotheses, global change (including UV radiation and global climate change), contaminants and emerging infectious diseases we have a poor, but improving understanding of how each might cause declines. Class II factors involve complex and subtle mechanistic underpinnings, with probable interactions among multiple ecological and evolutionary variables. They may also interact with class I hypotheses. Suspected mechanisms associated with class II hypotheses are relatively recent, dating from at least the middle of the 20th century. Did these causes act independently or in concert with pre-existing negative forces of class I hypotheses to increase the rate of amphibian declines to a level that drew global attention? We need more studies that connect the suspected mechanisms underlying both classes of hypotheses with quantitative changes in amphibian population sizes and species numbers. An important step forward in this task is clarifying the hypotheses and conditions under which the various causes operate alone or together.

C. Parmesan (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637-669

ABSTRACT: Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research. Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change. Tropical coral reefs and amphibians have been most negatively affected. Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming. Evolutionary adaptations to warmer conditions have occurred in the interiors of species' ranges, and resource use and dispersal have evolved rapidly at expanding range margins. Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level.

Brook, B. W., Sodhi, N. S., Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution 23 (8): 453-460

ABSTRACT: If habitat destruction or overexploitation of populations is severe, species loss can occur directly and abruptly. Yet the final descent to extinction is often driven by synergistic processes (amplifying feedbacks) that can be disconnected from the original cause of decline. We review recent observational, experimental and meta-analytic work which together show that owing to interacting and self-reinforcing processes, estimates of extinction risk for most species are more severe than previously recognised. As such, conservation actions which only target single-threat drivers risk being inadequate because of the cascading effects caused by unmanaged synergies. Future work should focus on how climate change will interact with and accelerate ongoing threats to biodiversity, such as habitat degradation, overexploitation and invasive species.

Deustch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences 105 (18): 6668-6672

ABSTRACT: The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.

bottom right