Climate Change and...

Annotated Bibliography

Effects of Climate Change

The Hydrologic Cycle

Xiaohua Wei, Ge Sun, James M. Vose, Kyoichi Otsuki, Zhiqiang Zhang, Keith Smetterml 2011. Forest Ecohydrological Processes in a Changing Environment. Ecohydrology. 4(2): 143–145

ABSTRACT: The papers in this issue are a selection of the presentations made at the second International Conference on Forests and Water in a Changing Environment. This special issue ‘Forest Ecohydrological Processes in a Changing Environment’ covers the topics regarding the effects of forest, land use and climate changes on ecohydrological processes across forest stand, watershed and regional spatial scales.

Huntington et al. 2009. Climate and hydrological changes in the northeastern United States: recent trends and implications for forested and aquatic ecosystems. Can. J. For. Res. 39(2): 199–212

ABSTRACT: We review twentieth century and projected twenty-first century changes in climatic and hydrologic conditions in the northeastern United States and the implications of these changes for forest ecosystems. Climate warming and increases in precipitation and associated changes in snow and hydrologic regimes have been observed over the last century, with the most pronounced changes occurring since 1970. Trends in specific climatic and hydrologic variables differ in their responses spatially (e.g., coastal vs. inland) and temporally (e.g., spring vs. summer). Trends can differ depending on the period of record analyzed, hinting at the role of decadal-scale climatic variation that is superimposed over the longer-term trend. Model predictions indicate that continued increases in temperature and precipitation across the northeastern United States can be expected over the next century. Ongoing increases in growing season length (earlier spring and later autumn) will most likely increase evapotranspiration and frequency of drought. In turn, an increase in the frequency of drought will likely increase the risk of fire and negatively impact forest productivity, maple syrup production, and the intensity of autumn foliage coloration. Climate and hydrologic changes could have profound effects on forest structure, composition, and ecological functioning in response to the changes discussed here and as described in related articles in this issue of the Journal.

R. B. Jackson, E. G. Jobbágy, R. Avissar, S. B. Roy, D. J. Barrett, C. W. Cook, K. A. Farley, D. C. le Maitre, B. A. McCarl, B. C. Murray (2005). Trading water for carbon with biological carbon sequestration. Science 310 (5756): 1944-1947

ABSTRACT: Carbon sequestration strategies highlight tree plantations without considering their full environmental consequences. We combined field research, synthesis of more than 600 observations, and climate and economic modeling to document substantial losses in stream flow, and increased soil salinization and acidification, with afforestation. Plantations decreased stream flow by 227 millimeters per year globally (52%), with 13% of streams drying completely for at least 1 year. Regional modeling of U.S. plantation scenarios suggests that climate feedbacks are unlikely to offset such water losses and could exacerbate them. Plantations can help control groundwater recharge and upwelling but reduce stream flow and salinize and acidify some soils.

Kuchment, L.S., Demidov, V.N., Startseva, Z.P. (2006). Coupled modeling of the hydrological and carbon cycles in the soil-vegetation-atmosphere system. Journal of Hydrology 323 (1-4): 4-21

ABSTRACT: A coupled model of the hydrological and carbon cycles in the soil–vegetation–atmosphere system is suggested. The model describes the interception and evaporation of precipitation by canopy, transpiration, vertical transfer of soil moisture, photosynthesis, the interaction between transpiration and photosynthesis, and plant and soil respiration. The validation of this model was carried out using the FIFE measurements from a grassland site in Kansas, the BOREAS measurements from a jack pine forest site in Saskatchewan, and the observations conducted within a deciduous forest in the southeastern United States. The model results show a good agreement with experimental data. The model was shown to adequately describe the influence of soil moisture and atmospheric CO2 concentration on transpiration and net ecosystem CO2 exchange.

Manabe, S., Wetherald, R.T. (1985). Reduction in summer soil wetness induced by an increase in atmospheric carbon dioxide. Science 232 (4750): 626-628

ABSTRACT: The geographical distribution of the change in soil wetness in response to an increase in atmospheric carbon dioxide was investigated by using a mathematical model of climate. Responding to the increase in carbon dioxide, soil moisture in the model would be reduced in summer over extensive regions of the middle and high latitudes, such as the North American Great Plains, western Europe, northern Canada, and Siberia. These results were obtained from the model with predicted cloud cover and are qualitatively similar to the results from several numerical experiments conducted earlier with prescribed cloud cover.

J. L. Bell, L. C. Sloan (2006). CO2 sensitivity of extreme climate events in the western United States. Earth Interactions 10 (15): 1-17

ABSTRACT: Based upon trends in observed climate, extreme events are thought to be increasing in frequency and/or magnitude. This change in extreme events is attributed to enhancement of the hydrologic cycle caused by increased greenhouse gas concentrations. Results are presented of relatively long (50 yr) regional climate model simulations of the western United States examining the sensitivity of climate and extreme events to a doubling of preindustrial atmospheric CO2 concentrations. These results indicate a shift in the temperature distribution, resulting in fewer cold days and more hot days; the largest changes occur at high elevations. The rainfall distribution is also affected; total rain increases as a result of increases in rainfall during the spring season and at higher elevations. The risk of flooding is generally increased, as is the severity of droughts and heat waves. These results, combined with results of decreased snowpack and increased evaporation, could further stress the water supply of the western United States.

P. Ya. Groisman, R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, J. H. Lawrimore (2004). Contemporary changes of the hydrological cycle over the contiguous United States: trends derived from in situ observations. Journal of Hydrometeorology 5 (1): 64-85

ABSTRACT: Over the contiguous United States, precipitation, temperature, streamflow, and heavy and very heavy precipitation have increased during the twentieth century. In the east, high streamflow has increased as well. Soil wetness (as described by the Keetch–Byram Drought index) has increased over the northern and eastern regions of the United States, but in the southwestern quadrant of the country soil dryness has increased, making the region more susceptible to forest fires. In addition to these changes during the past 50 yr, increases in evaporation, near-surface humidity, total cloud cover, and low stratiform and cumulonimbus clouds have been observed. Snow cover has diminished earlier in the year in the west, and a decrease in near-surface wind speed has also occurred in many areas. Much of the increase in heavy and very heavy precipitation has occurred during the past three decades.

G. J. McCabe, D. M. Wolock (2002). Trends and temperature sensitivity of moisture conditions in the conterminous United States. Climate Research 20 (1): 19-29

ABSTRACT: Observed (1895–1999) trends in climatic moisture conditions in the conterminous United States (US) characterized by (1) annual precipitation minus annual potential evapotranspiration (PMPE), (2) annual surplus (water that eventually becomes streamflow), and (3) annual deficit (the amount of water that must be supplied by irrigation to grow vegetation at an optimum rate) are examined. The sensitivity of moisture conditions across the conterminous US to increases in temperature also are examined. Results indicate that there have been statistically significant trends in PMPE, annual surplus, and annual deficit for some parts of the conterminous US. Most of the significant trends in PMPE have been increasing trends primarily in the eastern US. Annual surplus also has increased over the eastern US, whereas the magnitudes of annual deficit have decreased. For the conterminous US as a whole, there has been a statistically significant increase in PMPE and annual surplus; however, there is no significant trend in annual deficit. Results also indicate that PMPE and annual deficit in the warmest regions of the conterminous US are most sensitive to increases in temperature. The high sensitivity of PMPE and annual deficit in these regions to increases in temperature is related to the relation between temperature and the saturation vapor pressure of air. The increases in potential evapotranspiration for a given change in temperature are larger for high temperatures than for low temperatures. The regions with the highest sensitivity of annual surplus to increases in temperature are the humid regions of the country. In these regions, annual surplus is large and increased potential evapotranspiration, resulting from increased temperature, has a significant effect on reducing annual surplus. In the dry regions of the country, annual surplus is so low that increases in potential evapotranspiration only result in small decreases in annual surplus.

A. Porporato, E. Daly, I. Rodriguez-Iturbe (2004). Soil water balance and ecosystem response to climate change. The American Naturalist 164 (5): 625-632

ABSTRACT: Some essential features of the terrestrial hydrologic cycle and ecosystem response are singled out by confronting empirical observations of the soil water balance of different ecosystems with the results of a stochastic model of soil moisture dynamics. The simplified framework analytically describes how hydroclimatic variability (especially the frequency and amount of rainfall events) concurs with soil and plant characteristics in producing the soil moisture dynamics that in turn impact vegetation conditions. The results of the model extend and help interpret the classical curve of Budyko, which relates evapotranspiration losses to a dryness index, describing the partitioning of precipitation into evapotranspiration, runoff, and deep infiltration. They also provide a general classification of soil water balance of the world ecosystems based on two governing dimensionless groups summarizing the climate, soil, and vegetation conditions. The subsequent analysis of the links among soil moisture dynamics, plant water stress, and carbon assimilation offers an interpretation of recent manipulative field experiments on ecosystem response to shifts in the rainfall regime, showing that plant carbon assimilation crucially depends not only on the total rainfall during the growing season but also on the intermittency and magnitude of the rainfall events.

W. S. Gordon, J.S. Famiglietti (2004). Response of the water balance to climate change in the United States over the 20th and 21st centuries: Results from the VEMAP Phase 2 model intercomparisons. Global Biogeochemical Cycles 18 (GB1030): doi:10.1029/2003GB002098

ABSTRACT: Using the VEMAP Phase 2 data set, we tested the hypothesis that changes in climate would result in changes in the water balance as projected by four terrestrial ecosystem models: BIOME-BGC, Century, LPJ, and MC1. We examined trends in runoff and actual evapotranspiration (AET), changes in runoff in relation to changes in precipitation, and differences in runoff ratios as produced by these models for 13 United States watersheds. Observed climate data were used as inputs for simulations covering 1895–1993. From 1994 to 2100, the Canadian Centre for Climate Modeling and Analysis (CGCM1) and the Hadley Centre for Climate Prediction and Research (HADCM2) general circulation models provided climate forcing. Runoff and AET trends were significantly positive in the majority of 13 watersheds examined. Percentage changes in runoff exceeded the underlying changes in precipitation and this amplification increased over time. Calculated runoff ratios showed model variability and differences based on the two GCM scenarios.

C. G. Pilling, J. A. A. Jones (2002). The impact of future climate change on seasonal discharge, hydrological processes and extreme flows in the Upper Wye experimental catchment, Mid-Wales. Hydrological Processes 16 (6): 1201-1213

ABSTRACT: Analysing the impact of future climate change on hydrological regimes is hampered by the disparity of scales between general circulation model (GCM) output and the spatial resolution required by catchment-scale hydrological simulation models. In order to overcome this, statistical relationships were established between three indices of atmospheric circulation (vorticity and the strength and direction of geostrophic windflow) and daily catchment precipitation and potential evapotranspiration (PET) to downscale from the HadCM2 GCM to the Upper Wye experimental catchment in mid-Wales. The atmospheric circulation indices were calculated from daily grid point sea-level pressure data for: (a) the Climatic Research Unit observed data set (1975-90); (b) the HadCM2SUL simulation representing the present climate (1980-99); and (c) the HadCM2SUL simulation representing future climate conditions (2080-99). The performance of the downscaling approach was evaluated by comparing diagnostic statistics from the three downscaled precipitation and PET scenarios with those recorded from the Upper Wye catchment. The most significant changes between the downscaled HadCM2SUL 1980-99 and 2080-99 scenarios are decreases in precipitation occurrence and amount in summer and autumn combined with a shortening of mean wet spell length, which is most pronounced in autumn. A hydrological simulation model (HYSIM) was calibrated on recorded flow data for the Upper Wye catchment and forced with the three downscaled precipitation and PET scenarios to model changes in river flow and hillslope hydrological processes. Results indicate increased seasonality of flows, with markedly drier summers. Analysis of extreme events suggests significant increases in the frequency of both high- and low-flow events.

Hanson, R.T., Newhouse, M.W., Dettinger, M.D. (2004). A methodology to assess relations between climatic variability and variations in hydrologic time series in the southwestern United States. Journal of Hydrology 287 (1-4): 252-269

ABSTRACT: A new method for frequency analysis of hydrologic time series was developed to facilitate the estimation and reconstruction of individual or groups of frequencies from hydrologic time-series and facilitate the comparison of these isolated time-series components across data types, between different hydrologic settings within a watershed, between watersheds, and across frequencies. While climate-related variations in inflow to and outflow from aquifers have often been neglected, the development and management of ground-water and surface-water resources has required the inclusion of the assessment of the effects of climatic variability on the supply and demand and sustainability of use. The regional assessment of climatic variability of surface-water and ground-water flow throughout the southwestern United States required this new systematic method of hydrologic time-series analysis.

To demonstrate the application of this new method, six hydrologic time-series from the Mojave River Basin, California were analyzed. The results indicate that climatic variability exists in all the data types and are partially coincident with known climate cycles such as the Pacific Decadal Oscillation and the El Nino–Southern Oscillation. The time-series also indicate lagged correlations between tree-ring indices, streamflow, stream base flow, and ground-water levels. These correlations and reconstructed time-series can be used to better understand the relation of hydrologic response to climatic forcings and to facilitate the simulation of streamflow and ground-water recharge for a more realistic approach to water-resource management.

A. F. Hamlet, P. W. Mote, M. P. Clark, D. P. Lettenmaier (2007). Twentieth-century trends in runoff, evapotranspiration, and soil moisture in the western United States. Journal of Climate 20 (8): 1468-1486

ABSTRACT: A physically based hydrology model is used to produce time series for the period 1916–2003 of evapotranspiration (ET), runoff, and soil moisture (SM) over the western United States from which long-term trends are evaluated. The results show that trends in ET in spring and summer are determined primarily by trends in precipitation and snowmelt that determine water availability. From April to June, ET trends are mostly positive due primarily to earlier snowmelt and earlier emergence of snow-free ground, and secondarily to increasing trends in spring precipitation. From July to September trends in ET are more strongly influenced by precipitation trends, with the exception of areas (most notably California) that receive little summer precipitation and have experienced large changes in snowmelt timing. Trends in the seasonal timing of ET are modest, but during the period 1947–2003 when temperature trends are large, they reflect a shift of ET from midsummer to early summer and late spring. As in other studies, it is found that runoff is occurring earlier in spring, a trend that is related primarily to increasing temperature, and is most apparent during 1947–2003. Trends in the annual runoff ratio, a variable critical to western water management, are determined primarily by trends in cool season precipitation, rather than changes in the timing of runoff or ET. It was found that the signature of temperature-related trends in runoff and SM is strongly keyed to mean midwinter [December–February (DJF)] temperatures. Areas with warmer winter temperatures show increasing trends in the runoff fraction as early as February, and colder areas as late as June. Trends toward earlier spring SM recharge are apparent and increasing trends in SM on 1 April are evident over much of the region. The 1 July SM trends are less affected by snowmelt changes and are controlled more by precipitation trends.

Adams, K.D. (2003). Age and paleoclimatic significance of late Holocene lakes in the Carson Sink, NV, USA. Quaternary Research 60 (3): 294-306

ABSTRACT: New dating in the Carson Sink at the termini of the Humboldt and Carson rivers in the Great Basin of the western United States indicates that lakes reached elevations of 1204 and 1198 m between 915 and 652 and between 1519 and 1308 cal yr B.P., respectively. These dates confirm Morrison's original interpretation (Lake Lahontan: Geology of the Southern Carson Desert, Professional Paper 40, U.S. Geol. Survey, 1964) that these shorelines are late Holocene features, rather than late Pleistocene as interpreted by later researchers. Paleohydrologic modeling suggests that discharge into the Carson Sink must have been increased by a factor of about four, and maintained for decades, to account for the 1204-m lake stand. The hydrologic effects of diversions of the Walker River to the Carson Sink were probably not sufficient, by themselves, to account for the late Holocene lake-level rises. The decadal-long period of increased runoff represented by the 1204-m lake is also reflected in other lake records and in tree ring records from the western United States.

Neilson, R. P., D. Marks (1994). A global perspective of regional vegetation and hydrologic sensitivities from climate change. Journal of Vegetation Science 5 (5): 715-730

ABSTRACT: A biogeographic model, MAPSS (Mapped Atmosphere-Plant-Soil System), predicts changes in vegetation leaf area index (LAI), site water balance and runoff, as well as changes in biome boundaries. Potential scenarios of global and regional equilibrium changes in LAI and terrestrial water balance under 2 x CO2 climate from five different general circulation models (GCMs) are presented. Regional patterns of vegetation change and annual runoff are surprisingly consistent among the five GCM scenarios, given the general lack of consistency in predicted changes in regional precipitation patterns. Two factors contribute to the consistency among the GCMs of the regional ecological impacts of climatic change: (1) regional, temperature-induced increases in potential evapotranspiration (PET) tend to more than offset regional increases in precipitation; and (2) the interplay between the general circulation and the continental margins and mountain ranges produces a fairly stable pattern of regionally specific sensitivity to climatic change. Two areas exhibiting among the greatest sensitivity to drought-induced forest decline are eastern North America and eastern Europe to western Russia. Regional runoff patterns exhibit much greater spatial variation in the sign of the response than do the LAI changes, even though they are deterministically linked in the model. Uncertainties with respect to PET or vegetation water use efficiency calculations can alter the simulated sign of regional responses, but the relative responses of adjacent regions appear to be largely a function of the background climate, rather than the vagaries of the GCMs, and are intrinsic to the landscape. Thus, spatial uncertainty maps can be drawn even under the current generation of GCMs.

A. D. Ziegler, J. Sheffield, E. P. Maurer, B. Nijssen, E. F. Wood, D. P. Lettenmaier (2003). Detection of intensification in global- and continental-scale hydrological cycles: temporal scale of evaluation. Journal of Climate 16 (3): 535-547

ABSTRACT: Diagnostic studies of offline, global-scale Variable Infiltration Capacity (VIC) model simulations of terrestrial water budgets and simulations of the climate of the twenty-first century using the parallel climate model (PCM) are used to estimate the time required to detect plausible changes in precipitation (P), evaporation (E), and discharge (Q) if the global water cycle intensifies in response to global warming. Given the annual variability in these continental hydrological cycle components, several decades to perhaps more than a century of observations are needed to detect water cycle changes on the order of magnitude predicted by many global climate model studies simulating global warming scenarios. Global increases in precipitation, evaporation, and runoff of 0.6, 0.4, and 0.2 mm yr-1 require approximately 30–45, 25–35, and 50–60 yr, respectively, to detect with high confidence. These conservative detection time estimates are based on statistical error criteria (a = 0.05, ß = 0.10) that are associated with high statistical confidence, 1 - a (accept hypothesis of intensification when true, i.e., intensification is occurring), and high statistical power, 1 - ß (reject hypothesis of intensification when false, i.e., intensification is not occurring). If one is willing to accept a higher degree of risk in making a statistical error, the detection time estimates can be reduced substantially. Owing in part to greater variability, detection time of changes in continental P, E, and Q are longer than those for the globe. Similar calculations performed for three Global Energy and Water Experiment (GEWEX) basins reveal that minimum detection time for some of these basins may be longer than that for the corresponding continent as a whole, thereby calling into question the appropriateness of using continental-scale basins alone for rapid detection of changes in continental water cycles. A case is made for implementing networks of small-scale indicator basins, which collectively mimic the variability in continental P, E, and Q, to detect acceleration in the global water cycle.

Dolph, J., D. Marks, G.A. King, R.J. Naiman (1992). Sensitivity of the regional water balance in the Columbia River basin to climate variability: application of a spatially distributed water balance model. Springer-Verlag: 233-265

ABSTRACT: A one-dimensional water balance model was developed and used to simulate the water balance for the Columbia River Basin. The model was run over a 10 km digital elevation grid representing the U.S. portion of the basin. The regional water balance was calculated usign a monthly time step for a relatively wet year (1972 water year), a relatively dry year (1977 water year), and adouble (2xCO2 ) climate scenario. Input data, spatially distributed over the grid, included precipitation, maximum soil moisture storage capacity, potential evapotranspiration (PET) and threshold baseflow. The model output provides spatially distributed surfaces of actual evapotranspiration (ET), surface runoff, and soil storage. Model performance was assessed by comparing modelled ET and runoff with the input precipitation data, and by comparing modelled runoff with measured runoff. The model reasonably partitions incoming precipitation to evapotranspiration and runoff. However, modelled total annual runoff was significantly less than measured runoff, primarily because precipitation is underestimated by the network of measurement stations and because of limitations associated with the interpolation procedure used to distribute the precipitation across the grid. Estimated precipitation is less than measured runoff, a physical impossibility. Under warmer 2xCO2 climate conditions (January 4.0°K warmer, July 6.5°K warmer), the model predicts that PET increases by about 80%, ET increases, and runoff and soil moisture decrease. Under these climate conditions, the distribution and composition of forests in the region would change dramatically, and water resources would become more limited.

E. J. Barron, W. W. Hay, S. Thompson (1999). The hydrologic cycle: A major variable during earth history. Paleogeography, Paleoclimatology, Palaeoecology 75 (3): 157-174

ABSTRACT: Water plays a central role in nearly all Earth processes and in the evolution of the planet. However, despite the significance of water, our knowledge of it as part of the global system in meager. In fact, for paleoclimatology the primary focus on planetary evolution is centered on temperature variations and little attention is directed towards the role of the hydrologic cycle.

Model analyses presented here based on a series of simulations utilizing the Community Climate Model (CCM) at the National Center for Atmospheric Research demonstrate that the hydrologic cycle is highly sensitive to climate change and to climatic forcing factors such as changes in atmospheric carbon dioxide, plate tectonics, paleogeography, and orbital variations. The implications of the large sensitivity of the hydrologic cycle are of considerable importance. The role of water in explaining much of the Earth's record has probably been underestimated. The importance of water in global change in Earth history may also suggest that the hydrologic cycle should be of primary interest in studies of future global change.

V. K. Arora, G. J. Boer (2001). Effects of simulated climate change on the hydrology of major river basins. Journal of Geophysical Research 106 (D4): 3335-3348

ABSTRACT: Changes in the climatology of precipitation, evapotranspiration, and soil moisture lead also to changes in runoff and streamflow. The potential effects of global warming on the hydrology of 23 major rivers are investigated. The runoff simulated by the Canadian Centre for Climate Modeling and Analysis (CCCma) coupled climate model for the current climate is routed through the river system to the river mouth and compared with results for the warmer climate simulated to occur towards the end of the century. Changes in mean discharge, in the amplitude and phase of the annual streamflow cycle, in the annual maximum discharge (the flood) and its standard deviation, and in flow duration curves are all examined. Changes in flood magnitudes for different return periods are estimated using extreme value analysis. In the warmer climate, there is a general decrease in runoff and 15 out of the 23 rivers considered experience a reduction in annual mean discharge (with a median reduction of 32%). The changes in runoff are not uniform and discharge increases for 8 rivers (with a median increase of 13%). Middle- and high-latitude rivers typically show marked changes in the amplitude and phase of their annual cycle associated with a decrease in snowfall and an earlier spring melt in the warmer climate. Low-latitude rivers exhibit changes in mean discharge but modest changes in their annual cycle. The analysis of annual flood magnitudes show that 17 out of 23 rivers experience a reduction in mean annual flood (a median reduction of 20%). Changes in flow duration curves are used to characterize the different kinds of behavior exhibited by different groups of rivers. Differences in the regional distribution of simulated precipitation and runoff for the control simulation currently limit the application of the approach. The inferred hydrological changes are, nevertheless, plausible and consistent responses to simulated changes in precipitation and evapotranspiration and indicate the kinds of hydrological changes that could occur in a warmer climate.

M. R. Allen, W. J. Ingram (2002). Constraints on future changes in climate and the hydrologic cycle. Nature 419 (6903): 224-232

ABSTRACT: What can we say about changes in the hydrologic cycle on 50-year timescales when we cannot predict rainfall next week? Eventually, perhaps, a great deal: the overall climate response to increasing atmospheric concentrations of greenhouse gases may prove much simpler and more predictable than the chaos of short-term weather. Quantifying the diversity of possible responses is essential for any objective, probability-based climate forecast, and this task will require a new generation of climate modelling experiments, systematically exploring the range of model behaviour that is consistent with observations. It will be substantially harder to quantify the range of possible changes in the hydrologic cycle than in global-mean temperature, both because the observations are less complete and because the physical constraints are weaker.

Cayan, D. R., K.P. Georgakakos (1995). Hydroclimatology of continental watersheds, 2, Spatial analyses. Water Resources Research 31 (3): 677-698

ABSTRACT: We diagnose the spatial patterns and further examine temporal behavior of anomalous monthly-seasonal precipitation, temperature, and atmospheric circulation in relationship to hydrologic (soil water and potential evapotranspiration) fluctuations at two watersheds in the central United States. The bulk hydrologic balance at each of the two watersheds, Boone River, Iowa (BN), and Bird Creek, Oklahoma (BC), was determined from the rainfall-runoff-routing watershed model described in part 1. There are many similarities among the hydroclimatic linkages at the two basins. In both, relationships with precipitation and temperature indicate that the forcing occurs on regional scales, much larger than the individual watersheds. Precipitation exhibits anomaly variability over 500-km scales, and sometimes larger. Anomalous temperature, which is strongly correlated with potential evapotranspiration, often extends from the Great Plains to the Appalachian Mountains. Seasonally, the temperature and precipitation anomalies tend to have greatest spatial coherence in fall and least in summer. The temperature and precipitation tend to have out-of-phase anomalies (e.g., warm associated with dry). Thus low soil water conditions are reinforced by low precipitation and high potential evapotranspiration, and vice versa for high soil water. Soil water anomalies in each basin accumulate over a history of significant large-scale climate forcing that usually appears one or two seasons in advance. These forcing fields are produced by atmospheric circulation anomaly patterns that often take on hemispheric scales. BN and BC have strong similarities in their monthly circulation patterns producing heavy/light monthly precipitation episodes, the primary means of forcing of the watersheds. The patterns exhibit regional high or low geopotential anomalies just upstream over the western United States or near the center of the country. The regional circulation features are often part of a train, with teleconnections upstream over the North Pacific and downstream over the North Atlantic/Eurasia sector. Synoptic scale events exhibit very similar patterns to the monthly circulations, only more intense.

Georgakakos, K. P., D.H. Bae, D.R. Cayan (1995). Hydroclimatology of continental watersheds, 1, Temporal analyses. Water Resources Research 31 (3): 655-676

ABSTRACT: The linkage between meteorology/climate and hydrology of temperate latitude catchments on daily to decade time scales is studied. Detailed hydrology is provided by a hydrologic catchment model, adapted from the operational streamflow forecast model of the National Weather Service River Forecast System. The model is tuned to respond to observed daily precipitation and potential evaporation input. Results from the Bird Creek basin with outlet near Sperry, Oklahoma, and from the Boone River basin with outlet at Webster City, Iowa, indicate that the model quite accurately simulates the observed daily discharge over 40 years at each of the two 2000-km2 basins. Daily cross-correlations between observed and simulated basin outflows were better than 0.8 for both basins over a 40-year historical period. Soil moisture variability over a period of four decades is studied, and an assessment of temporal and spatial (as related to the separation distance of the two basins) scales present in the estimated soil moisture record is made. Negative soil water anomalies have larger magnitudes than positive anomalies, and comparison of the simulated soil water records of the two basins indicates spatial scales of variability that in several cases are as long as the interbasin distance. The temporal scales of soil water content are considerably longer than those of the forcing atmospheric variables for all seasons and both basins. Timescales of upper and total soil water content anomalies are typically 1 and 3 months, respectively. Linkage between the hydrologic components and both local and regional-to-hemispheric atmospheric variability is studied, both for atmosphere forcing hydrology and hydrology forcing atmosphere. For both basins, cross-correlation analysis shows that local precipitation strongly forces soil water in the upper soil layers with a 10-day lag. There is no evidence of soil water feedback to local precipitation. However, significant cross-correlation values are obtained for upper soil water leading daily maximum temperature with 5-10 day lags, especially during periods of extremely high or low soil water content. Complementary results of a spatial hydroclimatic analysis are presented in a companion paper (Cayan and Georgakakos, this issue).

Rodriguez-Iturbe, I. (2000). Ecohydrology: a hydrologic perspective of climate–soil–vegetation dynamics. Water Resources Research 36 (1): 3-9

ABSTRACT: The hydrologic mechanisms underlying the climate-soil-vegetation dynamics and thus controlling the most basic ecologic patterns and processes are described as one very exciting research frontier for the years to come. In this personal opinion I have concentrated on those processes where soil moisture is the key link between climate fluctuations and vegetation dynamics in space and time. The soil moisture balance equation at a site is shown to be the keystone of numerous fundamental questions which may be instrumental in the quantitative linkage between hydrologic dynamics and ecological patterns and processes. Some of those questions are outlined here, and possible avenues of attack are suggested. The space-time links between climate, soil, and vegetation are also explored from the hydrologic perspective, and some exciting research perspectives are outlined.

Walter, M.T., D.S. Wilks, J.Y. Parlange, R.L. Schneider (2004). Increasing evapotranspiration from the conterminous United States. Journal of Hydrometeorology 5 (3): 405-408

ABSTRACT: Recent research suggests that evapotranspiration (ET) rates have changed over the past 50 years; however, some studies conclude ET has increased, and others conclude that it has decreased. These studies were indirect, using long-term observations of air temperature, cloud cover, and pan evaporation as indices of potential and actual ET. This study considers the hydrological cycle more directly and uses published precipitation and stream discharge data for several large basins across the conterminous United States to show that ET rates have increased over the past 50 years. These results suggest that alternative explanations should be considered for environmental changes that previously have been interpreted in terms of decreasing large-scale ET rates.

Bonfils, C., Santer, B. D., Pierce, D. W., Hidalgo, H. G., Bala, G., Das, T., Barnett, T. P., Cayan, D. R., Doutriaux, C., Wood, A. W., Mirin, A., Nozawa, T. (2008). Detection and attribution of temperature changes in the mountainous western United States. Journal of Climate 21 (23): 6404-6424

ABSTRACT: Large changes in the hydrology of the western United States have been observed since the mid-twentieth century. These include a reduction in the amount of precipitation arriving as snow, a decline in snowpack at low and midelevations, and a shift toward earlier arrival of both snowmelt and the centroid (center of mass) of streamflows. To project future water supply reliability, it is crucial to obtain a better understanding of the underlying cause or causes for these changes. A regional warming is often posited as the cause of these changes without formal testing of different competitive explanations for the warming. In this study, a rigorous detection and attribution analysis is performed to determine the causes of the late winter/early spring changes in hydrologically relevant temperature variables over mountain ranges of the western United States. Natural internal climate variability, as estimated from two long control climate model simulations, is insufficient to explain the rapid increase in daily minimum and maximum temperatures, the sharp decline in frost days, and the rise in degree-days above 0°C (a simple proxy for temperature-driven snowmelt). These observed changes are also inconsistent with the model-predicted responses to variability in solar irradiance and volcanic activity. The observations are consistent with climate simulations that include the combined effects of anthropogenic greenhouse gases and aerosols. It is found that, for each temperature variable considered, an anthropogenic signal is identifiable in observational fields. The results are robust to uncertainties in model-estimated fingerprints and natural variability noise, to the choice of statistical downscaling method, and to various processing options in the detection and attribution method.

bottom right