Climate Change and...

Annotated Bibliography

Effects of Climate Change

Temperature and Precipitation

Coats, R. (2010). Climate change in the Tahoe basin: regional trends, impacts and drivers. Climatic Change. 32 p

ABSTRACT: The purpose of this study was to quantify the decadal-scale time trends in air temperature, precipitation phase and intensity, spring snowmelt timing, and lake temperature in the Tahoe basin, and to relate the trends to large-scale regional climatic trends in the western USA. Temperature data for six long-term weather stations in the Tahoe region were analyzed for trends in annual and monthly means of maximum and minimum daily temperature. Precipitation data at Tahoe City were analyzed for trends in phase (rain versus snow), decadal standard deviation, and intensity of rainfall. Daily streamflow data for nine gaging stations in and around the Tahoe basin were examined for trends in snowmelt timing, by two methods, and an existing record for the temperature of Lake Tahoe was updated. The results for the Tahoe basin, which contrast somewhat with the surrounding region, indicate strong upward trends in air temperature, a shift from snow to rain, a shift in snowmelt timing to earlier dates, increased rainfall intensity, increased interannual variability, and continued increase in the temperature of Lake Tahoe. Two hypotheses are suggested that may explain why the basin could be warming faster than surrounding regions. Continued warming in the Tahoe basin has important implications for efforts to manage biodiversity and maintain clarity of the lake.

Gaffen, D.J., R.J. Ross (1999). Climatology and trends of U.S. surface humidity and temperature. Journal of Climate 12 (3): 811-828

ABSTRACT: Climatological annual and seasonal dewpoint, specific humidity, and relative humidity maps for the United States are presented using hourly data from 188 first-order weather stations for the period 1961–90. Separate climatologies were calculated for daytime (three observations per day between 0800 and 1600 LST), nighttime (three observations per day between 2000 and 0400 LST), and the full day (eight observations per day, every 3 h).

With extended datasets for the period 1961–95, trends in these same variables and temperature are calculated for each of 170 stations and for eight regions of the country. The data show increases in specific humidity of several percent per decade, and increases in dewpoint of several tenths of a degree per decade, over most of the country in winter, spring, and summer. Nighttime humidity trends are larger than daytime trends. The specific humidity increases are consistent with upward temperature trends. The upward temperature and humidity trends are also consistent with upward trends in apparent temperature, a measure of human comfort based on temperature and humidity. Relative humidity trends are weaker than the specific humidity trends, but they do show evidence of increases, especially in winter and spring.

The possibility that the detected trends may be artifacts of changes in instrumentation was examined, but several lines of reasoning suggest that they are not. Anthropogenic water vapor produced from fossil fuel consumption, both locally and globally, is too small a source to explain the observed trends.

P. Ya. Groisman, R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, J. H. Lawrimore (2004). Contemporary changes of the hydrological cycle over the contiguous United States: trends derived from in situ observations. Journal of Hydrometeorology 5 (1): 64-85

ABSTRACT: Over the contiguous United States, precipitation, temperature, streamflow, and heavy and very heavy precipitation have increased during the twentieth century. In the east, high streamflow has increased as well. Soil wetness (as described by the Keetch–Byram Drought index) has increased over the northern and eastern regions of the United States, but in the southwestern quadrant of the country soil dryness has increased, making the region more susceptible to forest fires. In addition to these changes during the past 50 yr, increases in evaporation, near-surface humidity, total cloud cover, and low stratiform and cumulonimbus clouds have been observed. Snow cover has diminished earlier in the year in the west, and a decrease in near-surface wind speed has also occurred in many areas. Much of the increase in heavy and very heavy precipitation has occurred during the past three decades.

Hu, Q., Feng, S. (2007). Decadal variation of the southwest U.S. summer monsoon circulation and rainfall in a regional model. Journal of Climate 20 (18): 4702-4716

ABSTRACT: Previous studies have identified several major causes for summer rainfall variations over the southwest United States, for example, land memory (i.e., relationships between antecedent winter season precipitation and snow cover anomalies and subsequent summer rainfall anomalies over the southwest United States; these anomalies are likely most important in the northwest United States, although antecedent anomalies in the southwest United States also may be important in determining summer rainfall variations) and sea surface temperature (SST) anomalies in the North Pacific. Atmospheric responses to these “boundary forces” interact with moisture flows from the Gulf of Mexico and from the Gulf of California to influence the rainfall in the Southwest. The land memory and the SST effects were further found to be “naturally separated,” in the sense that they each played a dominant role influencing the monsoon rainfall variation during different periods of the last century. This separation was also manifested by different dominant low-level moisture transport anomalies in those periods. Several new questions have arisen from these findings: How have the land memory and the SST effects been “separated,” so as to affect the monsoon rainfall variations during different periods, or “regimes”? And, what are the corresponding changes of low-level flows, and hence moisture transports into the southwest United States that help achieve the land memory or the SST effects on the rainfall variations during these different regimes? These questions, and related issues, are addressed using a numerical model of regional climate. The model was used to simulate 14 individual warm seasons (April–October) in each of the postulated regimes. Analyses of the simulation results showed systematic and significant changes in atmospheric circulation anomalies between the two regimes. In the early regime (1961–90), when the land memory effect was strong, the average geopotential height was lower and storm activity was more intense over the central and western United States than in the more recent regime (from 1990 on), indicating reduced eddy energy and momentum exchanges between high and low latitudes in the western United States. The effects of these changes on the monsoon rainfall were achieved by very different low-level flow and moisture transport anomalies. In the earlier regime, low-level flow and moisture transport anomalies in the southwest United States were primarily due to easterlies and southeasterlies into the Southwest for its wet monsoon conditions, with reversed anomalies for dry conditions. In the recent regime, these anomalies changed, with primarily southerlies and southwesterlies from the Gulf of California into the Southwest during its wet monsoon conditions, and reversed flow anomalies for dry conditions. These changes indicate that different physical processes, including those responsible for the planetary-scale atmospheric circulation, led to monsoon rainfall variations during each of these regimes.

T. R. Karl, P. D. Jones, R. W. Knight, G. Kukla, N. Plummer, V. Razuvayev, K. P. Gallo, J. Lindseay, R. J. Charlson, T. C. Peterson (1993). A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society 74 (6): 1007-1023

ABSTRACT: Monthly mean maximum and minimum temperatures for over 50% (10%) of the Northern (Southern) Hemisphere landmass, accounting for 37% of the global landmass, indicate that the rise of the minimum temperature has occurred at a rate three times that of the maximum temperature during the period 1951–90 (0.84°C versus 0.28°C). The decrease of the diurnal temperature range is approximately equal to the increase of mean temperature. The asymmetry is detectable in all seasons and in most of the regions studied.

The decrease in the daily temperature range is partially related to increases in cloud cover. Furthermore, a large number of atmospheric and surface boundary conditions are shown to differentially affect the maximum and minimum temperature. Linkages of the observed changes in the diurnal temperature range to large-scale climate forcings, such as anthropogenic increases in sulfate aerosols, greenhouse gases, or biomass burning (smoke), remain tentative. Nonetheless, the observed decrease of the diurnal temperature range is clearly important, both scientifically and practically.

T. R. Karl, J. M. Melillo, T. C. Peterson (2009). Global climate change impacts in the United States. Cambridge University Press: 190 p.

EXECUTIVE SUMMARY: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities.

Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years.

Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades.

Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested.

These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment.

This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the
national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing
significant challenges for water resource management in the West. (Continued)

Kunkel, K. E. (2003). North American trends in extreme precipitation. Natural Hazards 29 (2): 291-305

ABSTRACT: An analysis of extreme precipitation events indicates that there has been a sizable increase in their frequency since the 1920s/1930s in the U.S. There has been no discernible trend in the frequency of the most extreme events in Canada, but the frequency of less extreme events has increased in some parts of Canada, notably in the Arctic. In the U.S., frequencies in the late 1800s/early 1900s were about as high as in the 1980s/1990s. This suggests that natural variability of the climate system could be the cause of the recent increase, although anthropogenic forcing due to increasing greenhouse gas concentrations cannot be discounted as another cause. It is likely that anthropogenic forcing will eventually cause global increases in extreme precipitation, primarily because of probable increases in atmospheric water vapor content and destabilization of the atmosphere. However, the location, timing, and magnitude of local and regional changes remain unknown because of uncertainties about future changes in the frequency/intensity of meteorological systems that cause extreme precipitation.

X. Zheng, R. E. Basher, C. S. Thompson (1997). Trend detection in regional-mean temperature series: maximum, minimum, mean, diurnal range, and SST. Journal of Climate 10 (2): 317-326

ABSTRACT: Regional climate trends are of interest both for understanding natural climate processes and as tests of anthropogenic climate change signatures. Relative to global trends, however, their detection is hampered by smaller datasets and the influence of regional climate processes such as the Southern Oscillation. Regional trends are often presented by authors without demonstration of statistical significance. In this paper, regional-average annual series of air temperature and sea surface temperature for the New Zealand region are analyzed using a systematic statistical approach that selects the optimum statistical model (with respect to serial correlation, linearity, etc.), explicitly models the interannual variability associated with observable regional climate processes, and tests significance. It is found that the residuals are stationary and are a red noise process [ARMA(1,0)] for all the series examined. The SOI and a meridional circulation anomaly index (both high-pass filtered) are “explanatory variables” for interannual variability. For national-average air temperature (AT), linear and exponential trend models are equally valid but for simplicity the linear model is preferred. Failure to model the serial correlation in AT would result in an estimated confidence interval for trend that is too small by 36%. The use of the explanatory variables tightens the confidence interval by 15%.

Significant trends were detected. The trend in AT for 1896–1994 is 0.11 ± 0.035°C decade−1 (95% confidence interval). This is about double the trend reported for global data, which may be due to the relative absence of sulfate aerosols in the South Pacific region. The trends in maximum and minimum temperature over this period are not statistically different. However, for the later period of 1951–90, the trend in maximum temperature reduces to an insignificant value, while the trend in minimum temperature remains high, resulting in a significant downward trend in diurnal range of 0.10°C decade−1 . Similar diurnal range behavior in other regions has been tentatively attributed to increasing cloudiness. The trend in a regional SST series for 1928–94, 0.07°C decade−1 , is about half the trend in AT for the same period. The trend in the difference, SST–AT, −0.06°C decade−1 , is statistically significant. This implies the existence of an atmospheric warming source for the additional air temperature trend, and may mean that the heat fluxes between the atmosphere and ocean in the New Zealand region are subject to a large trend, with the direction of flux change being toward the ocean. The results of the study are consistent with the IPCC predictions of climate change.

G. A. Meehl, F. Zwiers, J. Evans, T. Knutson, L. Mearns, P. Whetton (2000). Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change. Bulletin of the American Meteorological Society 81 (3): 427-436

ABSTRACT: Projections of statistical aspects of weather and climate extremes can be derived from climate models representing possible future climate states. Some of the recent models have reproduced results previously reported in the Intergovernmental Panel on Climate Change (IPCC) Second Assessment Report, such as a greater frequency of extreme warm days and lower frequency of extreme cold days associated with a warmer mean climate, a decrease in diurnal temperature range associated with higher nighttime temperatures, increased precipitation intensity, midcontinent summer drying, decreasing daily variability of surface temperature in winter, and increasing variability of northern midlatitude summer surface temperatures. This reconfirmation of previous results gives an increased confidence in the credibility of the models, though agreement among models does not guarantee those changes will occur. New results since the IPCC Second Assessment Report indicate a possible increase of extreme heat stress events in a warmer climate, an increase of cooling degree days and decrease in heating degree days, an increase of precipitation extremes such that there is a decrease in return periods for 20—yr extreme precipitation events, and more detailed analyses of possible changes in 20—yr return values for extreme maximum and minimum temperatures. Additionally, recent studies are now addressing interannual and synoptic time and space scale processes that affect weather and climate extremes, such as tropical cyclones, El Niño effects, and extratropical storms. However, current climate models are not yet in agreement with respect to possible future changes in such features.

Cole, J.E., E.R. Cook (1998). The changing relationship between ENSO variability and moisture balance in the continental United States. Geophysical Research Letters 25 (24): 4529-4532

ABSTRACT: The El Niño Southern Oscillation (ENSO) system orchestrates a well-documented suite of climate anomalies worldwide. The details of ENSO's extratropical influence vary among events, but this variability has not been described or diagnosed beyond the past few decades, and previous descriptions have looked at inter-event differences rather than decadal patterns. We use a new tree-ring based drought reconstruction for the continental U.S. and instrumental ENSO indices to document systematic decadal changes in the U.S. drought-ENSO relationship since the late 19th century. Significant ENSO-drought correlation occurs consistently in the southwest U.S., but the strength of penetration of moisture anomalies into the continent varies substantially. The most striking change over the past 130 years is the initiation of a "bipolar" ENSO-drought signature around 1920, producing opposite-sign moisture anomalies in the southwest and mid-Atlantic states. Shifts in teleconnection patterns coincide with variations in the strength of ENSO and in a North Pacific mode.

Dettinger, M.D., D.R. Cayan, G.J. McCabe, J.A. Marengo, H. F. Diaz, V. Markgraf (2000). Multiscale streamflow variability associated with El Niño/Southern Oscillation. Cambridge University Press: 113-146

ABSTRACT: Streamflow responses to the El Niño/Southern Oscillation (ENSO) phenomenon in the tropical Pacific are detectable in many regions. During warm-tropical El Niño and cool-tropical La Niña episodes, streamflows are affected throughout the Americas and Australia, in northern Europe, and in parts of Africa and Asia. In North and South America, correlations between peakflow season streamflows and seasonal Southern Oscillation Indices (SOIs) show considerable persistence. In South America, correlations between flows in other seasons with December-February SOIs also are notably persistent, whereas, in North America, correlations are smaller when other, non-peak season time periods are considered.

At least two modes of streamflow response to ENSO are present in the Western Hemisphere. When interannual North and South American streamflow variations are analyzed together in a single principal components analysis, two of the leading components are found to be associated with ENSO climate variability. The more powerful of these modes corresponds mostly to ENSO responses by the rivers of tropical South America east of the Andes, along with rivers in southern South America and the southwestern United States, with Brazil experiencing less runoff during El Niños and the other regions experiencing more runoff. This streamflow mode is correlated globally with ENSO-like sea surface temperature (SST) patterns on both interannual and interdecadal time scales; indeed, the tropical South American rivers east of the Andes are coherent with SOI on virtually all historical time scales. The second ENSO-related streamflow mode characterizes other parts of extratropical streamflow variation, emphasizing the north-south differences in streamflows in North America during ENSO extremes and (less robustly) streamflow variations along the central Andes. The relation of this extratropical streamflow mode to ENSO seems to be mostly from scattered interannual time scales and, overall, its decadal variations follow North Atlantic SSTs.

On decadal time scales, the most remarkable variation identified in the Western Hemisphere ENSO-streamflow correlations or teleconnections is a decades-long contrast between the teleconnections of recent decades and teleconnections from about the 1920s into the 1950s. Correlations between streamflows and SOI, Niño-3 SSTs, and even global SSTs nearly vanished in many regions of North and South America during the earlier period. The change appears to have been associated with weakening of ENSO and, possibly, a weakening of connections between the atmospheric and oceanic components of ENSO during the earlier period. The development of two ENSO-related principal components of North and South American streamflow, rather than one, may be an artifact of the differences in decadal scale responses of streamflows in the tropics and extratropics to multiscale ENSO forcings.

Dracup, J. A., Kahya, E. (1994). The relationships between U.S. streamflow and La Niña events. Water Resources Research 30 (7): 2133-2141

ABSTRACT: In an earlier study of the teleconnection between streamflow and the warm (El Niño) phase of the El Niño/Southern Oscillation (ENSO) cycle, we found a strong relationship evident in four regions of the United States: the Gulf of Mexico, the Northeast, the North Central, and the Pacific Northwest. In this present study we have examined the same four regions for a relationship between streamflow and the cold (La Niña) phase of the Southern Oscillation (SO). Invariably, we found evidence of strong and consistent streamflow responses to La Niña events within the study regions. In each of the four regions, the strongest La Niña signal occurred at the same time of year as had the El Niño signal in their respective years. The sign of the seasonal streamflow anomaly associated with the La Niña events is the opposite of that associated with the El Niño events. This documents the existence of the biennial tendency related to the SO in the streamflow anomaly, which is expected, since La Niña/El Niño are opposite phases of the ENSO cycle. Finally, the relationships between streamflow and La Niño/El Niño were found to be statistically significant, based on the hypergeometric distribution. The results of this study demonstrate coherent, consistent, and significant midlatitude streamflow responses to the tropical SO phenomenon. This confirms the results of previous climatological studies that have examined the extratropical teleconnections from a hydrological and meteorological perspective.

Jin, F., S. An, A. Timmermann, J. Zhao (2003). Strong El Niño events and nonlinear dynamic heating. Geophysical Research Letters 30 (3): 1120

ABSTRACT: We present evidence showing that the nonlinear dynamic heating (NDH) in the tropical Pacific ocean heat budget is essential in the generation of intense El Niño events as well as the observed asymmetry between El Niño (warm) and La Niña (cold) events. The increase in NDH associated with the enhanced El Niño activity had an influence on the recent tropical Pacific warming trend and it might provide a positive feedback mechanism for climate change in the tropical Pacific.

M. D. Dettinger, D. R. Cayan, H. F. Diaz, D. M. Meko (1998). North–south precipitation patterns in western North America on interannual-to-decadal timescales. Journal of Climate 11 (12): 3095-3111

ABSTRACT: The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25° to 55°N varies from year to year, and superimposed on this domain-average variability are varying north–south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north–south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3–7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Niño–Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America.

Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both timescales, two leading EOFs describe 1) a north–south seesaw of precipitation pivoting near 40°N and 2) variations in precipitation near 40°N, respectively. The amount of overall precipitation variability is only about 10% of the mean and is largely determined by precipitation variations around 40°–45°N and most consistently influenced by nearby circulation patterns; in this sense, domain-average precipitation is closely related to the second EOF. The central latitude and latitudinal spread of precipitation distributions are strongly influenced by precipitation variations in the southern parts of western North America and are closely related to the first EOF. Central latitude of precipitation moves south (north) with tropical warming (cooling) in association with midlatitude western Pacific SLP variations, on both interannual and decadal timescales. Regional patterns and zonal averages of precipitation-sensitive tree-ring series are used to corroborate these patterns and to extend them into the past and appear to share much long- and short-term information with the instrumentally based zonal precipitation EOFs and moments.

Quartly, G. D., Srokosz, M. A., Guymer, T. H. (2000). Changes in oceanic precipitation during the 1997-98 El Niño. Geophysical Research Letters 27 (15): 2293-2296

ABSTRACT: The recent El Niño has been by most measures one of the most extreme, and there have been several papers on its thermal signature and associated wind field. There has also been wide coverage of the changes in terrestrial precipitation, with torrential rains in California and devastating fires in Borneo in response to the prolonged drought. Here we complete the picture by examining oceanic precipitation data derived from novel processing of dual-frequency altimetry. An increased area of precipitation, with more frequent and slightly more intense rainfall, is found to mirror the expansion of the western warm pool.

Woolhiser, D. A., T.O. Keefer, K.T. Redmond (1993). Southern oscillation effects on daily precipitation in the southwestern United States. Water Resources Research 29 (4): 1287-1296

ABSTRACT: The effect of the Southern Oscillation on daily precipitation in the southwestern United States is examined by using the Southern Oscillation Index (SOI) to perturb parameters of a stochastic daily precipitation model. Daily precipitation is modeled with a Markov chain-mixed exponential model and seasonal variability of model parameters is described by Fourier series. The hypothesized linkage between the SOI and the model parameters is of the formG (N, t) =G (t) +b S(N, t - t ) whereG (N, t) is the perturbed parameter i for day t of yearN, G (t) is the annually periodic parameteri for dayt ,b is a coefficient, S is the SOI, andt is a lag in days. Daily precipitation data for 27 stations in California, Nevada, Arizona, and New Mexico were analyzed. Perturbations of the logits of the dry-dry transition probabilities resulted in statistically significant improvements in the log likelihood function for 23 stations and perturbations of the mean daily rainfall resulted in significant increases for 18 stations. The most common lag identified was 90 days, suggesting the possibility of conditional simulations of daily precipitation. Seasonal effects were detected, confirming the results of previous analysis with groups of stations.

Xu, Z. X., K. Takeuchi, H. Ishidaira (2004). Correlation between El Niño-Southern Oscillation (ENSO) and precipitation in South-east Asia and the Pacific region. Hydrological Processes 18 (1): 107-123

ABSTRACT: The relationship between El Niño-Southern Oscillation (ENSO) events versus precipitation anomalies, and the response of seasonal precipitation to El Niño and La Niña events were investigated for 30 basins that represent a range of climatic types throughout South-east Asia and the Pacific region. The teleconnection between ENSO and the hydroclimate is tested using both parametric and non-parametric approaches, and the lag correlations between precipitation anomalies versus the Southern Oscillation Index (SOI) several months earlier, as well as the coherence between SOI and precipitation anomalies are estimated. The analysis shows that dry conditions tend to be associated with El Niño in the southern zone, and part of the middle zone in the study area. The link between precipitation anomalies and ENSO is statistically significant in the southern zone and part of the middle zone of the study area, but significant correlation was not observed in the northern zone. Patterns of precipitation response may differ widely among basins, and even the response of a given river basin to individual ENSO events also may be changeable.

D. R. Cayan, K. T. Redmond, L. G. Riddle (1999). ENSO and hydrologic extremes in the western United States. Journal of Climate 12 (9): 2881-2993

ABSTRACT: Frequency distributions of daily precipitation in winter and daily stream flow from late winter to early summer, at several hundred sites in the western United States, exhibit strong and systematic responses to the two phases of ENSO. Most of the stream flows considered are driven by snowmelt. The Southern Oscillation index (SOI) is used as the ENSO phase indicator. Both modest (median) and larger (90th percentile) events were considered. In years with negative SOI values (El Niño), days with high daily precipitation and stream flow are more frequent than average over the Southwest and less frequent over the Northwest. During years with positive SOI values (La Niña), a nearly opposite pattern is seen. A more pronounced increase is seen in the number of days exceeding climatological 90th percentile values than in the number exceeding climatological 50th percentile values, for both precipitation and stream flow. Stream flow responses to ENSO extremes are accentuated over precipitation responses. Evidence suggests that the mechanism for this amplification involves ENSO-phase differences in the persistence and duration of wet episodes, affecting the efficiency of the process by which precipitation is converted to runoff. The SOI leads the precipitation events by several months, and hydrologic lags (mostly through snowmelt) delay the stream flow response by several more months. The combined 6–12-month predictive aspect of this relationship should be of significant benefit in responding to flood (or drought) risk and in improving overall water management in the western states.

Dai, A., I.Y. Fung, A.D. DelGenio (1997). Surface observed global land precipitation variations during 1900-1988. Journal of Climate 10 (11): 2943-2962

ABSTRACT: The authors have analyzed global station data and created a gridded dataset of monthly precipitation for the 1900-1988 period. Statistical analyses suggest that discontinuities associated with instrumental errors are large for many high-latitude station records although they are unlikely to be significant for the majority of the stations. The first leading EOF in global precipitation fields is an ENSO-related pattern concentrating mostly in the low latitudes. The second leading EOF depicts a linear increasing trend (~2.4 mm/decade) in global precipitation fields during the 1900-1988 period. Consistent with the zonal precipitation trends identified in previous analyses, the EOF trend is seen as a long-term increase mostly in North America, mid- to high-latitude Eurasia, Argentina and Australia. The spatial patterns of the trend EOF and the rate of increase are generally consistent with those of the precipitation changes in increasing CO2 GCM experiments.

The North Atlantic Oscillation accounts for ~10% of December-February precipitation variance over North Atlantic surrounding regions. The mode suggests that during high-NAO-index winters, precipitation is above normal in northern (>50°N) Europe, the eastern United States, northern Africa and the Mediterranean; while below-normal precipitation occurs in southern Europe, eastern Canada and western Greenland.

Wet and dry months of one standard deviation occur at probabilities close to those of a normal distribution in midlatitudes. In the subtropics, the mean interval between two extreme events is longer. The monthly wet and dry events seldom (probability <5%) last longer than 2 months. ENSO is the single largest cause for global extreme precipitation events. Consistent with the upward trend in global precipitation, globally, the averaged mean interval between two dry months increased by ~28% from 1900-1944 to 1945-1988. The percentage of wet areas over the U.S. has more than doubled (from ~12% to >24%) since the 1970s while the percentage of dry areas has decreased by a similar amount since the 1940s. Severe droughts and floods comparable to the midwest U.S. 1988 drought and 1993 flood have occurred 2-9 times in each of several other regions of the world during this century.

McCabe, G.J., M.D. Dettinger (1999). Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. International Journal of Climatology 19: 1399-1410

ABSTRACT: Changing patterns of correlations between the historical average June-November Southern Oscillation Index (SOI) and October-March precipitation totals for 84 climate divisions in the western US indicate a large amount of variability in SOI/precipitation relations on decadal time scales. Correlations of western US precipitation with SOI and other indices of tropical El Niño-Southern Oscillation (ENSO) processes were much weaker from 1920 to 1950 than during recent decades. This variability in teleconnections is associated with the character of tropical air-sea interactions as indexed by the number of out-of-phase SOI/tropical sea surface temperature (SST) episodes, and with decadal variability in the North Pacific Ocean as indexed by the Pacific Decadal Oscillation (PDO). ENSO teleconnections with precipitation in the western US are strong when SOI and NINO3 are out-of-phase and PDO is negative. ENSO teleconnections are weak when SOI and NINO3 are weakly correlated and PDO is positive. Decadal modes of tropical and North Pacific Ocean climate variability are important indicators of periods when ENSO indices, like SOI, can be used as reliable predictors of winter precipitation in the US.

Harshburger, B., H. Ye, J. Dzialoski (2002). Observational evidence of the influence of Pacific SSTs on winter precipitation and spring stream discharge in Idaho. Journal of Hydrology 264 (1-4): 157-169

ABSTRACT: Forty years of winter precipitation (23 stations) and spring stream flow discharge records (five stations) from across Idaho are analyzed to reveal regional patterns of association with sea surface temperatures (SSTs) in the Pacific Ocean. Results indicate that winter precipitation in the northern Idaho mountains, between 45° and 48°N, is negatively correlated with fall SSTs in the eastern tropical Pacific Ocean (El Nino and La Nina). Winter precipitation north of 45°N, is negatively correlated with winter SSTs in the northern Pacific (Pacific Decadal Oscillation, PDO). Spring stream discharge in Idaho is also negatively correlated with SSTs in the eastern tropical and northern regions of the Pacific Ocean.

The association is asymmetric with stronger responses during negative SSTs for both regions in the Pacific Ocean. Wet and dry conditions are most likely associated with the combination of La Nina–negative PDO and El Nino–positive PDO, respectively. The greatest anomalies occur during the optimal combination of La Nina with negative PDO conditions. The revealed connections are valuable for climatic predictions based on the previous season's SST conditions in the eastern tropical Pacific and slowly evolving SSTs in the northern Pacific Ocean.

Mote, P. W. (2003). Trends in temperature and precipitation in the Pacific Northwest during the twentieth century. Northwest Science 77 (4): 271-282

ABSTRACT: Documenting long-term trends or persistent shifts in temperature and precipitation is important for understanding present and future changes in flora and fauna. Carefully adjusted datasets for climate records in the USA and Canada are combined and used here to describe the spatial and seasonal variation in trends in the maritime, central, and Rocky Mountain climatic zones of the Pacific Northwest. Trends during the 20th century in annually averaged temperature (0.7 degrees C - 0.9 degrees C) and precipitation (13%-38%) exceed the global averages. Largest warming rates occurred in the maritime zone and in winter and at lower elevations in all zones, and smallest warming rates occurred in autumn and in the Rockies. Largest increases in precipitation (upwards of 60% per century) were observed in the dry areas in northeast Washington and south central British Columbia. Increases in precipitation were largest in spring, but were also large in summer in the central and Rocky Mountain climatic zones. These trends have already had profound impacts on streamflow and on certain plant species in the region (Cayan et al. 2001), and other important impacts remain to be discovered. The warming observed in winter and spring can be attributed partially to climatic variations over the Pacific Ocean, and the buildup of greenhouse gases probably also plays an important role.

P.Y. Groisman, R.W. Knight, T. R. Karl (2001). Heavy precipitation and high streamflow in the contiguous United States: trends in the Twentieth Century. Bulletin of the American Meteorological Society 82 (2): 219-246

ABSTRACT: Changes in several components of the hydrological cycle over the contiguous United States have been documented during the twentieth century: an increase of precipitation, especially heavy and very heavy precipitation, and a significant retreat in spring snow cover extent over western regions during the last few decades.

These changes have affected streamflow, including the probability of high flow.

In the eastern half of the United States a significant relationship is found between the frequency of heavy precipitation and high streamflow events both annually and during the months of maximum streamflow. Two factors contributed to finding such a relation: 1) the relatively small contribution of snowmelt to heavy runoff in the eastern United States (compared to the west), and 2) the presence of a sufficiently dense network of streamflow and precipitation gauges available for analysis. An increase of spring heavy precipitation events over the eastern United States indicates with high probability that during the twentieth century an increase of high streamflow conditions has also occurred. In the West, a statistically significant reduction of snow cover extent has complicated the relation between heavy precipitation and streamflow. Increases in peak stream flow have not been observed here, despite increases in heavy precipitation events, and less extensive snow cover is the likely cause.

S. A. Mauget (2003). Intra- to multidecadal climate variability over the continental United States: 1932–99. Journal of Climate 16 (13): 2215-2231

ABSTRACT: Trend analysis is used frequently in climate studies, but it is vulnerable to a number of conceptual shortcomings. This analysis of U.S. climate division data uses an alternate approach. The method used here subjects time series of annual average temperature and total precipitation to tests of Mann–Whitney U statistics over moving sampling windows of intra- to multidecadal (IMD) duration. In applying this method to time series of nationally averaged annual rainfall, a highly significant incidence of wet years is found after the early 1970s. When applied to individual climate divisions this test provides the basis for a climate survey method that is more robust than linear trend analysis, and capable of objectively isolating the timing and location of major IMD climate events over the United States. From this survey, four such periods emerge between 1932 and 1999: the droughts of the 1930s and 1950s, a cool 1964–79 period, and wet–warm time windows at the end of the century. More circumstantial consideration was also given here to the state of ENSO, the Pacific decadal oscillation (PDO), the winter state of the North Atlantic Oscillation, and mean annual Northern Hemisphere surface temperature during those periods. Anecdotal evidence presented here suggests that wet years associated with warm-phase ENSO conditions and the positive phase of the PDO may have played a role in ending the drought periods of the 1930s and 1950s. Conversely, the La Niña–like climate impacts found here during the late 1940s to mid-1950s, and the increased incidence of cold phase ENSO and negative phase PDO conditions during that time, suggests connections between that ocean state and severe drought. Significant late-century warmth was found mainly in the western United States after the mid-1980s, but no evidence of a cooling trend was evident in the southeast, as reported elsewhere. The late-century wet regime appears to have occurred in two phases, with wetness confined to the east during 1972–79, and more concentrated in the southwest and central United States during 1982–99.

Woodhouse, C. A., Kunkel, K. E., Easterling, D. R., Cook, E. R. (2005). The twentieth-century pluvial in the western United States. Geophysical Research Letters 32 (7): L07701

ABSTRACT: Persistent, widespread wet conditions in the western United States in the early twentieth century have been noted in a number of studies. Here, we investigate the character of this pluvial, which covered a roughly 9-state region and lasted about 13 years. Paleoclimatic data used to evaluate the period in a long-term context indicate that the twentieth-century pluvial is an extremely rare event, as previous studies have suggested, even when assessed in the context of a 1186-year reconstruction of regional drought. An analysis of twentieth-century climate data, characterizing precipitation seasonality, intensity, and frequency, shows that the pluvial was primarily a result of winter season, heavy to moderately heavy precipitation events, during a handful of extremely wet winters. Temperatures were also anomalously cool. The combination of duration, intensity, and spatial extent make this an unusual event, not only in twentieth century, but in the past 12 centuries.

S. A. Mauget (2003). Multidecadal regime shifts in U.S. streamflow, precipitation, and temperature at the end of the Twentieth Century. Journal of Climate 16 (23): 3905-3916

ABSTRACT: Intra- to multidecadal variation in annual streamflow, precipitation, and temperature over the continental United States are evaluated here through the calculation of Mann–Whitney U statistics over running-time windows of 6–30-yr duration. When this method is demonstrated on time series of nationally averaged annual precipitation and mean temperature during 1896–2001, it reveals that 8 of the 10 wettest years occurred during the last 29 yr of that 106-yr period, and 6 of the 10 warmest years during the last 16. Both of these results indicate highly significant departures from long-term stationarity in U.S. climate at the end of the twentieth century. The effects of increased wetness are primarily evident in the central and eastern United States, while evidence of warmth is found throughout the Rocky Mountain region and in the West. Analysis of annual streamflow records across the United States during 1939–98 shows broadly consistent effects. Initial evidence of the recent wet regime is most apparent in eastern streamflow, which shows a clear pattern of high-ranked mean annual values during the 1970s. Over the midwestern states, a coherent pattern of high-ranked annual flow is found during multidecadal periods beginning during the late 1960s and early 1970s and ending in either 1997 or 1998. During the late 1980s and early 1990s, a significant incidence of low-ranked annual flow conditions throughout the West was roughly coincident with the onset of western warmth during the mid-1980s. Evidence of highly significant transitions to wetter and warmer conditions nationally, and consistent variation in streamflow analyses, suggests that increased hydrological surplus in the central and eastern United States and increased hydrological deficit in the West may be representative of the initial stages of climate change over the continental United States.

Blasing, T.J., Stahle, D. W., Duvick, D. N. (1988). Tree ring-based reconstruction of annual precipitation in the south-central United States from 1750 to 1980. Water Resources Research 24 (1): 163-171

ABSTRACT: A 231-year reconstruction of annual precipitation, from 1750 through 1980 A.D., was developed from 10 tree ring chronologies (9 post oak,Quercus stellata , and 1 white oak,Q. alba , series) in the south-central United States. Straight line regression was used to calibrate regionally averaged precipitation with ring width data, and the derived reconstruction was verified with independent climatic data and historical evidence. A variance trend in the tree ring data, which may have resulted from nonclimatic factors, was removed. The reconstructed precipitation series indicates that (1) a drought which appears to have been more severe than any in the instrumental record occurred about 1860 and (2) severe and prolonged droughts comparable to twentieth century events have occurred at roughly 15- to 25-year intervals throughout the past 231 years. It follows that serious droughts in the south-central United States could be expected to recur even in the absence of projected CO2 -induced warming.

Graumlich, L.J. (1987). Precipitation variation in the Pacific Northwest (1675-1975) as reconstructed from tree rings. Annals of the Association of American Geographers 77 (1): 19-29

ABSTRACT: Long-term records of precipitation variation for three regions within the Pacific Northwest are reconstructed based on ring-width data from drought-sensitive conifers. Precipitation reconstructions are derived using multiple regression models that predict variation in annual precipitation as a function of standardized and prewhitened tree-ring chronologies. The precipitation reconstructions indicate that droughts similar in magnitude and duration to those observed in the 1920s and 1930s have occurred frequently, at least once per century, in the past. The timing of drought episodes varies spatially, most notably during the nineteenth century. During the first half of the nineteenth century, precipitation was above average in Washington and northern Oregon but below average in southern Oregon and northern California. During the latter half of the nineteenth century, southern Oregon and northern California experienced above average precipitation while Washington and northern Oregon experienced repeated droughts. In contrast, severe, single-year drought events (1973, 1929, 1899, 1839, 1739, 1721, 1717) have affected the Pacific Northwest as a whole, reflecting the scale and persistence of the circulation features that cause such extreme events.

S.T. Gray, C. L. Fastie, S.T. Jackson, Julio L. Betancourt (2004). Tree-ring-based reconstruction of precipitation in the Bighorn Basin, Wyoming, since 1260 A.D.. Journal of Climate 17 (19): 3855-3865

ABSTRACT: Cores and cross sections from 79 Douglas fir (Pseudotsuga menziesii ) and limber pine (Pinus flexilis ) trees at four sites in the Bighorn Basin of north-central Wyoming and south-central Montana were used to develop a proxy for annual (June–June) precipitation spanning 1260–1998 a.d. The reconstruction exhibits considerable nonstationarity, and the instrumental era (post-1900) in particular fails to capture the full range of precipitation variability experienced in the past 750 years. Both single-year and decadal-scale dry events were more severe before 1900. Dry spells in the late thirteenth and sixteenth centuries surpass both magnitude and duration of any droughts in the Bighorn Basin after 1900. Precipitation variability appears to shift to a higher-frequency mode after 1750, with 15–20-yr droughts becoming rare. Comparisons between instrumental and reconstructed values of precipitation and indices of Pacific basin variability reveal that precipitation in the Bighorn Basin generally responds to Pacific forcing in a manner similar to that of the southwestern United States (drier during La Niña events), but high country precipitation in areas surrounding the basin displays the opposite response (drier during El Niño events).

S.T. Gray, L.J. Graumlich, J. L. Betancourt (2007). Annual precipitation in the Yellowstone National Park region since AD 1173. Quaternary Research 68 (1): 18-27

ABSTRACT: Cores and cross sections from 133 limber pine (Pinus flexilis James) and Douglas fir (Pseudotsuga menziesii (Mirbel) Franco) at four sites were used to estimate annual (July to June) precipitation in the Yellowstone National Park region for the period from AD 1173 to 1998. Examination of the long-term record shows that the early 20th century was markedly wet compared to the previous 700 yr. Extreme wet and dry years within the instrumental period fall within the range of past variability, and the magnitude of the worst-case droughts of the 20th century (AD 1930s and 1950s) was likely equaled or exceeded on numerous occasions before AD 1900. Spectral analysis showed significant decadal to multidecadal precipitation variability. At times this lower frequency variability produces strong regime-like behavior in regional precipitation, with the potential for rapid, high-amplitude switching between predominately wet and predominately dry conditions. Over multiple time scales, strong Yellowstone region precipitation anomalies were almost always associated with spatially extensive events spanning various combinations of the central and southern U.S. Rockies, the northern U.S.–Southern Canadian Rockies and the Pacific Northwest.

S.T. Gray, S.T. Jackson, J. L. Betancourt (2004). Tree-ring based reconstructions of interannual to decadal scale precipitation variability for northeastern Utah since 1226 A.D.. Journal of the American Water Resources Association 40 (4): 947-960

ABSTRACT: Samples from 107 piñon pines (Pinus edulis ) at four sites were used to develop a proxy record of annual (June to June) precipitation spanning the 1226 to 2001 AD interval for the Uinta Basin Watershed of northeastern Utah. The reconstruction reveals significant precipitation variability at interannual to decadal scales. Single-year dry events before the instrumental period tended to be more severe than those after 1900. In general, decadal scale dry events were longer and more severe prior to 1900. In particular, dry events in the late 13th, 16th, and 18th Centuries surpass the magnitude and duration of droughts seen in the Uinta Basin after 1900. The last four decades of the 20th Century also represent one of the wettest periods in the reconstruction. The proxy record indicates that the instrumental record (approximately 1900 to the Present) underestimates the potential frequency and severity of severe, sustained droughts in this area, while over representing the prominence of wet episodes. In the longer record, the empirical probability of any decadal scale drought exceeding the duration of the 1954 through 1964 drought is 94 percent, while the probability for any wet event exceeding the duration of the 1965 through 1999 wet spell is only 1 percent. Hence, estimates of future water availability in the Uinta Basin and forecasts for exports to the Colorado River, based on the 1961 to 1990 and 1971 to 2000 “normal” periods, may be overly optimistic.

Esper, J., E.R. Cook, F.H. Schweingruber (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295: 2250-2253

INTRODUCTION: Preserving multicentennial climate variability in long tree-ring records is critically important for reconstructing the full range of temperature variability over the past 1000 years. This allows the putative "Medieval Warm Period" (MWP) to be described and to be compared with 20th-century warming in modeling and attribution studies. We demonstrate that carefully selected tree-ring chronologies from 14 sites in the Northern Hemisphere (NH) extratropics can preserve such coherent large-scale, multicentennial temperature trends if proper methods of analysis are used. In addition, we show that the average of these chronologies supports the large-scale occurrence of the MWP over the NH extratropics.

Mann, M. E., Bradley, R. S., Hughes, M.K. (1999). Northern Hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophysical Research Letters 26 (6): 759-762

ABSTRACT: Building on recent studies, we attempt hemispheric temperature reconstructions with proxy data networks for the past millennium. We focus not just on the reconstructions, but the uncertainties therein, and important caveats. Though expanded uncertainties prevent decisive conclusions for the period prior to AD 1400, our results suggest that the latter 20th century is anomalous in the context of at least the past millennium. The 1990s was the warmest decade, and 1998 the warmest year, at moderately high levels of confidence. The 20th century warming counters a millennial-scale cooling trend which is consistent with long-term astronomical forcing.

D. M. Meko, C. H. Baisan (2001). Pilot study of latewood-width of conifers as an indicator of variability of summer rainfall in the North American monsoon region. International Journal of Climatology 21 (6): 697-708

ABSTRACT: The variability of the North American Monsoon System (NAMS) is important to the precipitation climatology of Mexico and the southwestern United States. Tree-ring studies have been widely applied to climatic reconstruction in western North America, but as yet, have not addressed the NAMS. One reason is the need for highly resolved seasonal dendroclimatic information. Latewood-width, the portion of the annual tree ring laid down late in the growing season, can potentially yield such information. This paper describes a pilot study of the regional summer precipitation signal in latewood-width from a network of fivePseudotsuga menziesii chronologies developed in the heart of the region of NAMS influence in Arizona, USA. Exploratory data analysis reveals that the summer precipitation signal in latewood is strong, but not equally so over the full range of summer precipitation. Scatter in the relationship increases toward higher levels of precipitation. Adjustment for removal of inter-correlation with earlywood-width appears to strengthen the summer precipitation signal in latewood-width. To demonstrate a possible application to climatic reconstruction, the latewood precipitation signal is modelled using a nonlinear model - a binary recursive classification tree (CT) that attempts to classify summers as dry or not dry from threshold values of latewood-width. The model identifies narrow latewood-width as an effective predictor of a dry summer. Of 14 summers classified dry by latewood-width for the period 1868-1992, 13 are actually dry by the instrumental precipitation record. The results suggest that geographical expansion of coverage by latewood-width chronologies and further development of statistical methods may lead to successful reconstruction of variability of the NAMS on century time scales.

M. D. Dettinger, D. R. Cayan, M. K. Meyer, A. E. Jeton (2004). Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900–2099. Climatic Change 62 (1-3): 283-317

ABSTRACT: Hydrologic responses of river basins in the Sierra Nevada of California to historical and future climate variations and changes are assessed by simulating daily streamflow and water-balance responses to simulated climate variations over a continuous 200-yr period. The coupled atmosphere-ocean-ice-land Parallel Climate Model provides the simulated climate histories, and existing hydrologic models of the Merced, Carson, and American Rivers are used to simulate the basin responses. The historical simulations yield stationary climate and hydrologic variations through the first part of the 20th century until about 1975 when temperatures begin to warm noticeably and when snowmelt and streamflow peaks begin to occur progressively earlier within the seasonal cycle. A future climate simulated with business-as-usual increases in greenhouse-gas and aerosol radiative forcings continues those recent trends through the 21st century with an attendant +2.5 °C warming and a hastening of snowmelt and streamflow within the seasonal cycle by almost a month. The various projected trends in the business-as-usual simulations become readily visible despite realistic simulated natural climatic and hydrologic variability by about 2025. In contrast to these changes that are mostly associated with streamflow timing, long-term average totals of streamflow and other hydrologic fluxes remain similar to the historical mean in all three simulations. A control simulation in which radiative forcings are held constant at 1995 levels for the 50 years following 1995 yields climate and streamflow timing conditions much like the 1980s and 1990s throughout its duration. The availability of continuous climate-change projection outputs and careful design of initial conditions and control experiments, like those utilized here, promise to improve the quality and usability of future climate-change impact assessments.

A. D. Ziegler, J. Sheffield, E. P. Maurer, B. Nijssen, E. F. Wood, D. P. Lettenmaier (2003). Detection of intensification in global- and continental-scale hydrological cycles: temporal scale of evaluation. Journal of Climate 16 (3): 535-547

ABSTRACT: Diagnostic studies of offline, global-scale Variable Infiltration Capacity (VIC) model simulations of terrestrial water budgets and simulations of the climate of the twenty-first century using the parallel climate model (PCM) are used to estimate the time required to detect plausible changes in precipitation (P), evaporation (E), and discharge (Q) if the global water cycle intensifies in response to global warming. Given the annual variability in these continental hydrological cycle components, several decades to perhaps more than a century of observations are needed to detect water cycle changes on the order of magnitude predicted by many global climate model studies simulating global warming scenarios. Global increases in precipitation, evaporation, and runoff of 0.6, 0.4, and 0.2 mm yr-1 require approximately 30–45, 25–35, and 50–60 yr, respectively, to detect with high confidence. These conservative detection time estimates are based on statistical error criteria (a = 0.05, ß = 0.10) that are associated with high statistical confidence, 1 - a (accept hypothesis of intensification when true, i.e., intensification is occurring), and high statistical power, 1 - ß (reject hypothesis of intensification when false, i.e., intensification is not occurring). If one is willing to accept a higher degree of risk in making a statistical error, the detection time estimates can be reduced substantially. Owing in part to greater variability, detection time of changes in continental P, E, and Q are longer than those for the globe. Similar calculations performed for three Global Energy and Water Experiment (GEWEX) basins reveal that minimum detection time for some of these basins may be longer than that for the corresponding continent as a whole, thereby calling into question the appropriateness of using continental-scale basins alone for rapid detection of changes in continental water cycles. A case is made for implementing networks of small-scale indicator basins, which collectively mimic the variability in continental P, E, and Q, to detect acceleration in the global water cycle.

Benestad, R. E. (2003). How often can we expect a record-event?. Climate Research 23 (1): 3-13

ABSTRACT: This study applies a simple framework for analysing the incidence of record events. A test of this method on the global mean temperature yields results consistent with a global warming, where record-warm events are more frequent than for a stationary series. The record event analysis suggests that the number of record-warm monthly global mean temperatures is higher than expected, and that the number of record events in the absolute monthly maximum and minimum temperatures in the Nordic countries is slightly higher than expected from a null hypothesis of a stationary behaviour. Because the different station series are not strictly independent, it is difficult to resolve whether there is a significant trend in the warmest absolute monthly minimum temperatures in the Nordic countries. The behaviour of the maximum monthly 24 h precipitation is not distinguishable from the null hypothesis that the series consists of independent and identically distributed random variables.

Helvey, J.D., W. B. Fowler (1982). Precipitation variability in the Columbia Basin of Washington. Northwest Science 56 (1): 27-33

ABSTRACT: This paper describes time and space variability of precipitation in the semiarid climate of the Columbia Basin in Washington State. Annual variation, as indicated by the coefficient of variation, averages 24.47 percent for the 19 stations used in the analysis. Variation is greater during spring and summer months than during fall and winter. Average annual precipitation increases about 2.47 cm for each 100 m increase in elevation. Simple correlation of annual or seasonal precipitation decreases rapidly as distance between stations increases

Salathé, E. P., Jr. (2006). Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophysical Research Letters 33 (19): L19820

ABSTRACT: Recent global climate model simulations for the IPCC Fourth Assessment report show a realistic North Pacific storm track and Aleutian Low for present-day climate conditions. Under climate change, the storm track and Aleutian Low move northward and intensify. These changes shift precipitation northward along the Pacific coast of North America. In particular, precipitation is intensified over the Pacific Northwest. Results from a statistical downscaling model suggest that precipitation may become more intense both due to the increased frequency of large-scale storms and due to changes in the interaction of these storms with the local terrain.

Davis, O.K. (1994). The correlation of summer precipitation in the southwestern USA with isotopic records of solar activity during the Medieval Warm Period. Climatic Change 26 (2-3): 271-287

ABSTRACT: Decreased solar activity correlates with positive cosmogenic isotope anomalies, and with cool, wet climate in temperate regions of the world. The relationship of isotope anomalies to climate may be the opposite for areas influenced by monsoonal precipitation, i.e., negative anomalies may be wet and warm. Petersen (1988) has found evidence for increased summer precipitation in the American Southwest that can be shown to be coincident with negative14 C anomalies during the Medieval Warm Period. The present study compares palynological indicators of lake level for the Southwest with Petersen's data and with the14 C isotope chronology. Percentages of aquatic pollen and algae from three sites within the Arizona Monsoon record greater lake depth or fresher water from A.D. 700–1350, between the Roman IV and Wolf positive isotope anomalies, thereby supporting Petersens's findings. Maximum summer moisture coincides with maximum population density of prehistoric people of the Southwest. However, water depth at a more northern site was low at this time, suggesting a climate-isotope relationship similar to that of other temperate regions. Further analysis of latitudinal patterns is hampered by inadequate14 C dating.

D. R. Cayan, M. D. Dettinger, H. F. Diaz, N.E. Graham (1998). Decadal variability of precipitation over western North America. Journal of Climate 11 (12): 3148-3166

ABSTRACT: Decadal (>7- yr period) variations of precipitation over western North America account for 20%–50% of the variance of annual precipitation. Spatially, the decadal variability is broken into several regional [O (1000 km)] components. These decadal variations are contributed by fluctuations in precipitation from seasons of the year that vary from region to region and that are not necessarily concentrated in the wettest season(s) alone. The precipitation variations are linked to various decadal atmospheric circulation and SST anomaly patterns where scales range from regional to global scales and that emphasize tropical or extratropical connections, depending upon which precipitation region is considered. Further, wet or dry decades are associated with changes in frequency of at least a few short-period circulation “modes” such as the Pacific–North American pattern. Precipitation fluctuations over the southwestern United States and the Saskatchewan region of western Canada are associated with extensive shifts of sea level pressure and SST anomalies, suggesting that they are components of low-frequency precipitation variability from global-scale climate processes. Consistent with the global scale of its pressure and SST connection, the Southwest decadal precipitation is aligned with opposing precipitation fluctuations in northern Africa.

A. M. Carleton, D.A. Carpenter, P. J. Weser (1990). Mechanisms of interannual variability of the southwest United States summer rainfall maximum. Journal of Climate 3 (9): 999-1015

ABSTRACT: The mid-summer rainfall singularity of the Southwest United States (principally Arizona) exhibits marked variations on interannual and decadal time scales. Examination of the synoptic mechanisms involved in these variations is undertaken here. In particular, associations between the rainfall, the dominant latitude of the summertime mid-tropospheric subtropical ridge (STR) over the southwest United States, and the sea surface temperatures (SSTs) of the equatorial and North Pacific region are documented. The analysis utilizes a composite approach for sets of extreme years chosen on the basis of the rainfall and circulation anomalies.

It is found that northward (southward) displaced seasonal STR is associated with wetter (drier) summers in Arizona. Further, these extremes have tended to follow winters characterized by positive (negative) phases of the Pacific-North America (PNA) teleconnection pattern. The latter association arises, at least in part from the “memory” imparted to the atmosphere by the accompanying anomalies of Pacific SSTs. However, during the summer season, more localized anomalies of SST appear important for Arizona rainfall variations. In wet (but not dry) summers, an enhanced longitudinal gradient of SST exists between the west coast of the United States, Baja California, and the Gulf of California. This is accompanied by a steeper gradient of lower tropospheric heights (and implied stronger geostrophic flow) and also a reversal in both the total (850–500 mb) and partial (850–700 mb) thickness gradients across the region compared with dry summers. These results seem to confirm the importance of lower-level southwesterly flow for moisture transport into the deserts.

Recent decadal variations in the singularity involve particularly runs of wetter (drier) summers in the 1950s (1970s). Preliminary analysis of these variations for years that were non-ENSO suggests that they may result from the operation of mechanisms similar to those attending the interannual variability of Arizona summer rainfall (viz., the STR and Pacific SSTs). A contributory mechanism in the longer-term trend of STR between these decades appears to be a change in the tropical–extratropical gradient of Pacific SSTs during the summer and antecedent spring. The gradient evidently strengthened during the period, helping to explain the shift to more frequent southward displacements of STR over the Southwest and, accordingly, reduced summer rainfall in Arizona.

K. E. Kunkel, K. Andsager, D. R. Easterling (1999). Long-term trends in extreme precipitation events over the conterminous United States and Canada. Journal of Climate 12 (8): 2515-2527

ABSTRACT: This paper describes the results of an analysis of trends in short duration (1–7 days) extreme precipitation events that have a recurrence interval of 1 yr or longer for stations in the United States and Canada. This definition of extreme precipitation was chosen because such events are highly correlated with hydrologic flooding in some U.S. regions. The dominant temporal characteristic of a national event composite index is significant low-frequency variability. There were lengthy periods of a below-average number of events in the 1930s and 1950s and an above-average number of events in the early 1940s, early 1980s, and 1990s. Regional variations often differ substantially from the national composite. A simple linear analysis indicates that the overall trend covering the period 1931–96 has been upward at a highly statistically significant rate over the southwest United States and in a broad region from the central Great Plains across the middle Mississippi River and southern Great Lakes basins. The national trend for the United States is upward at a rate of 3% decade-1 for the period 1931–96. While the annual trend for Canada is upward for the period 1951–93, it is not statistically significant. Although the high statistical significance of the results is partially a consequence of the low frequency during the 1930s and 1950s located in the first half of the record, the latter half of the record exhibits an upward trend nearly identical to the entire record. However, an analysis of a 101-yr record of midwestern stations shows that heavy precipitation event frequencies around the turn of the twentieth century (1896–1906) were higher than for other periods of comparable length, except for 1986–96. Although data were not available in digital form to extend the analysis back to 1896 for the entire United States, the midwestern analysis shows that interpretation of the recent upward trends must account for the possibility of significant natural forcing of variability on century timescales.

Duell, L. F. W. (1994). The sensitivity of northern Sierra Nevada streamflow to climate change. Water Resources Bulletin 30 (5): 841-859

ABSTRACT: The sensitivity of streamflow to climate change was investigated in the American, Carson, and Truckee River Basins, California and Nevada. Nine gaging stations were used to represent streamflow in the basins. Annual models were developed by regressing 1961-1991 streamflow data on temperature and precipitation. Climate-change scenarios were used as inputs to the models to determine streamflow sensitivities. Climate-change scenarios were generated from historical time series by modifying mean temperatures by a range of +4°C to -4°C and total precipitation by a range of +25 percent to -25 percent. Results show that streamflow on the warmer, lower west side of the Sierra Nevada generally is more sensitive to temperature and precipitation changes than is streamflow on the colder, higher east side. A 2°C rise in temperature and a 25-percent decrease in precipitation results in streamflow decreases of 56 percent on the American River and 25 percent on the Carson River. A 2°C decline in temperature and a 25-percent increase in precipitation results in streamflow increases of 102 percent on the American River and 22 percent on the Carson River.

Groisman, P.Y., D. R. Easterling (1994). Variability and trends of total precipitation and snowfall over the United States and Canada. Journal of Climate 7 (1): 184-205

ABSTRACT: The biases and large-scale inhomogeneities in the time series of measured precipitation and snowfall over the United States and Canada are discussed and analyzed. The spatial statistical characteristics of monthly and annual snowfall and total precipitation are investigated and parameterized. After adjustments and selection of the “best” network, reliable “first guess” estimates of North American snowfall and precipitation are obtained. Century-long time series of unbiased annual precipitation over the regions to the south of 55°N and 40-year time series of unbiased area-averaged annual precipitation and snowfall for all of North America are developed. The analysis of their trends shows the following.

1) During the last 100 years, annual precipitation has increased in southern Canada (south of 55°N) by 13% and in the contiguous United States by 4%; however, the main domain of this century-scale precipitation increase is eastern Canada and adjacent to it northern regions of the United States.

2) Up to a 20% increase has occurred in annual snowfall and rainfall during the last four decades in Canada north of 55°N.

The relationships between century-long precipitation time series over North America with Northern Hemisphere surface air temperature and the South Oscillation index (SOI) are investigated. It is shown that ENSO (negative anomaly of SOI) is usually accompanied by an increase of precipitation whenever it affects the United States (especially in the southwestern region of the country).

Sewall, J.O. (2005). Precipitation shifts over western North America as a result of declining Arctic sea ice cover: the coupled system response. Earth Interactions 9 (26): 1-23

ABSTRACT: Changes in Arctic sea ice cover have the potential to impact midlatitude climate. A previous sensitivity study utilizing the National Center for Atmospheric Research’s (NCAR) atmospheric general circulation model [AGCM; Community Climate Model, version 3 (CCM3)] to explore climate sensitivity to declining Arctic sea ice cover suggested that, as Arctic sea ice cover is reduced, precipitation patterns over western North America will shift toward dryer conditions in southwestern North America and wetter conditions in northwestern North America. Here, three complementary lines of research validate and explore the robustness of this possible climate change impact: 1) repetition of the previous sensitivity study (specified constant Arctic sea ice cover and atmospheric CO2 ) with an updated version of the NCAR AGCM [third Community Atmosphere Model (CAM3)], 2) investigation of the climate response to dynamically reduced Arctic sea ice cover (driven by a quadrupling of atmospheric CO2 ) in the coupled NCAR Community Climate System Model (CCSMv3), and 3) analysis of similar results from six other coupled climate system models. Results from the CAM3 sensitivity study are similar to those from the original study with declining Arctic sea ice cover driving up to 25% less mean annual precipitation (MAP) over southwestern North America and up to an 8% increase in MAP over northwestern North America. The seven coupled models also reproduce this same general pattern. At the time of CO2 quadrupling, Arctic sea ice cover is reduced (up to 90% in boreal winter) and MAP over southwestern North America decreases by up to 30% while MAP in northwestern North America increases by up to 40%. These results represent a significant shift in the precipitation pattern over western North America and support the findings of the original sensitivity study in suggesting that, as future reductions in Arctic sea ice cover take place, there will be a substantial impact on water resources in western North America.

Hamlet, A. F., D.P. Lettenmaier (2007). Effects of 20th century warming and climate variability on flood risk in the western U.S.. Water Resources Research 43 (W06427): doi:10.1029/2006WR005099

ABSTRACT: Using precipitation and temperature data for the 20th century in combination with a macroscale hydrologic model, we evaluate changes in flood risk in the western U.S. associated both with century-scale warming and interannual climate variations. In addition, we examine the implications of apparent increases in precipitation variability over the region since the mid-1970s. We use detrended temperature data representing early and late 20th century climate to force the variable infiltration capacity hydrologic model and show that spatially homogeneous temperature changes over the western U.S. in the 20th century on the order of +1°C per century have resulted in substantial changes in flood risks over much of the region. Although changes specific to particular geographic areas are apparent in some cases, the overall changes due to observed warming trends are well categorized by midwinter temperature regimes in each watershed. Cold river basins where snow processes dominate the annual hydrologic cycle ( <−6°C average in midwinter) typically show reductions in flood risk due to overall reductions in spring snowpack. Relatively warm rain-dominant basins (> 5°C average in midwinter) show little systematic change. Intermediate or transient basins show a wide range of effects depending on competing factors such as the relative role of antecedent snow and contributing basin area during storms that cause flooding. Warmer transient basins along the coast in Washington, Oregon, and California, in particular, tend to show increased flood risk. While the absolute value of simulated changes in flood risk is affected by basin scale, the nature of the relationship of flood risk to basin temperatures in midwinter is largely scale-independent. Climate variations associated with Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO) also have strong effects on flood risks. In contrast to the effects associated with 20th century warming, the climate variability signal is characterized by regional scale patterns related to the geographic distribution of cool season precipitation also identified in many previous studies. In general, the largest changes in simulated flood risks are associated with years when PDO and ENSO are “in phase,” particularly in the southwest. Changes in the variability of cool season precipitation after about 1973, the causes of which are uncertain, are shown to result in increased flood risk over much of the western U.S. in the simulations.

D. R. Cayan, S. A. Kammerdiener, M. D. Dettinger, J. M. Caprio, D.H. Peterson (2001). Changes in the onset of spring in the western United States. Bulletin of the American Meteorological Society 82 (3): 399-415

ABSTRACT: Fluctuations in spring climate in the western United States over the last 4–5 decades are described by examining changes in the blooming of plants and the timing of snowmelt–runoff pulses. The two measures of spring's onset that are employed are the timing of first bloom of lilac and honeysuckle bushes from a long–term cooperative phenological network, and the timing of the first major pulse of snowmelt recorded from high–elevation streams. Both measures contain year–to–year fluctuations, with typical year–to–year fluctuations at a given site of one to three weeks. These fluctuations are spatially coherent, forming regional patterns that cover most of the west. Fluctuations in lilac first bloom dates are highly correlated to those of honeysuckle, and both are significantly correlated with those of the spring snowmelt pulse. Each of these measures, then, probably respond to a common mechanism. Various analyses indicate that anomalous temperature exerts the greatest influence upon both interannual and secular changes in the onset of spring in these networks. Earlier spring onsets since the late 1970s are a remarkable feature of the records, and reflect the unusual spell of warmer–than–normal springs in western North America during this period. The warm episodes are clearly related to larger–scale atmospheric conditions across North America and the North Pacific, but whether this is predominantly an expression of natural variability or also a symptom of global warming is not certain.

A. L. Westerling, H. G. Hidalgo, D. R. Cayan, T. W. Swetnam (2006). Warming and earlier spring increases western U.S. forest wildfire activity. Sciencexpress (6 July): 1-9

ABSTRACT: Western United States forest wildfire activity is widely thought to have increased in recent decades, but surprisingly, the extent of recent changes has never been systematically documented. Nor has it been established to what degree climate may be driving regional changes in wildfire. Much of the public and scientific discussion of changes in western United States wildfire has focused rather on the effects of 19th and 20th century land-use history. We compiled a comprehensive database of large wildfires in western United States forests since 1970 and compared it to hydro-climatic and land-surface data. Here, we show that large wildfire activity increased suddenly and dramatically in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons. The greatest increases occurred in mid-elevation, Northern Rockies forests, where land-use histories have relatively little effect on fire risks, and are strongly associated with increased spring and summer temperatures and an earlier spring snowmelt.

Pierce, D. W., Barnett, T. P., Santer, B. D., Gleckler, P. J. (2009). Selecting global climate models for regional climate change studies. Proceedings of the National Academy of Sciences 106 (21): 8441-8446

ABSTRACT: Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures.

Bonfils, C., Santer, B. D., Pierce, D. W., Hidalgo, H. G., Bala, G., Das, T., Barnett, T. P., Cayan, D. R., Doutriaux, C., Wood, A. W., Mirin, A., Nozawa, T. (2008). Detection and attribution of temperature changes in the mountainous western United States. Journal of Climate 21 (23): 6404-6424

ABSTRACT: Large changes in the hydrology of the western United States have been observed since the mid-twentieth century. These include a reduction in the amount of precipitation arriving as snow, a decline in snowpack at low and midelevations, and a shift toward earlier arrival of both snowmelt and the centroid (center of mass) of streamflows. To project future water supply reliability, it is crucial to obtain a better understanding of the underlying cause or causes for these changes. A regional warming is often posited as the cause of these changes without formal testing of different competitive explanations for the warming. In this study, a rigorous detection and attribution analysis is performed to determine the causes of the late winter/early spring changes in hydrologically relevant temperature variables over mountain ranges of the western United States. Natural internal climate variability, as estimated from two long control climate model simulations, is insufficient to explain the rapid increase in daily minimum and maximum temperatures, the sharp decline in frost days, and the rise in degree-days above 0°C (a simple proxy for temperature-driven snowmelt). These observed changes are also inconsistent with the model-predicted responses to variability in solar irradiance and volcanic activity. The observations are consistent with climate simulations that include the combined effects of anthropogenic greenhouse gases and aerosols. It is found that, for each temperature variable considered, an anthropogenic signal is identifiable in observational fields. The results are robust to uncertainties in model-estimated fingerprints and natural variability noise, to the choice of statistical downscaling method, and to various processing options in the detection and attribution method.

Stephens, G. L., Ellis, T. D. (2008). Controls of global-mean precipitation increases in global warming GCM experiments. Journal of Climate 21 (23): 6141-6155

ABSTRACT: This paper examines the controls on global precipitation that are evident in the transient experiments conducted using coupled climate models collected for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The change in precipitation, water vapor, clouds, and radiative heating of the atmosphere evident in the 1% increase in carbon dioxide until doubled (1pctto2x) scenario is examined. As noted in other studies, the ensemble-mean changes in water vapor as carbon dioxide is doubled occur at a rate similar to that predicted by the Clausius–Clapeyron relationship. The ratio of global changes in precipitation to global changes in water vapor offers some insight on how readily increased water vapor is converted into precipitation in modeled climate change. This ratio is introduced in this paper as a gross indicator of the global precipitation efficiency under global warming.

The main findings of this paper are threefold. First, increases in the global precipitation track increase atmospheric radiative energy loss and the ratio of precipitation sensitivity to water vapor sensitivity is primarily determined by changes to this atmospheric column energy loss. A reference limit to this ratio is introduced as the rate at which the emission of radiation from the clear-sky atmosphere increases as water vapor increases. It is shown that the derived efficiency based on the simple ratio of precipitation to water vapor sensitivities of models in fact closely matches the sensitivity derived from simple energy balance arguments involving changes to water vapor emission alone. Second, although the rate of increase of clear-sky emission is the dominant factor in the change to the energy balance of the atmosphere, there are two important and offsetting processes that contribute to in the model simulations studied: One involves a negative feedback through cloud radiative heating that acts to reduce the efficiency; the other is the global reduction in sensible heating that counteracts the effects of the cloud feedback and increases the efficiency. These counteracting feedbacks only apply on the global scale. Third, the negative cloud radiative heating feedback occurs through reductions of cloud amount in the middle troposphere, defined as the layer between 680 and 440 hPa, and by slight global cloud decreases in the lower troposphere. These changes act in a manner to expose the warmer atmosphere below to high clouds, thus resulting in a net warming of the atmospheric column by clouds and a negative feedback on the precipitation.

A. M. Fowler, K. J. Hennessy (1995). Potential impacts of global warming on the frequency and magnitude of heavy precipitation. Natural Hazards 11 (3): 283-303

ABSTRACT: It is now widely recognised that the most significant impacts of global warming are likely to be experienced through changes in the frequency of extreme events, including flooding. This paper reviews physical and empirical arguments which suggest that global warming may result in a more intense hydrological cycle, with an associated increase in the frequency and/or magnitude of heavy precipitation. Results derived from enhanced-greenhouse experiments using global climate models (GCMs) are shown to be consistent with these physical and empirical arguments. Detailed analysis of output from three GCMs indicates the possibility of substantial increases in the frequency and magnitude of extreme daily precipitation, with amplification of the effect as the return period increases. Moreover, return period analyses for locations in Australia, Europe, India, China and the USA indicate that the results are global in scope. Subsequent discussion of the limitations of GCMs for this sort of analysis highlights the need for caution when interpreting the precipitation results presented here. However, the consistency between physically-based expectations, empirical observations, and GCM results is considered sufficient for the GCM results to be taken seriously, at least in a qualitative sense, especially considering that the alternative seems to be reliance by planners on the fundamentally flawed concept of a stationary climate.

Frei, C., C. Schär, D. Lüthi, H. C. Davies (1998). Heavy precipitation processes in a warmer climate. Geophysical Research Letters 25 (9): 1431-1434

ABSTRACT: Climate simulations have suggested that a greenhouse-gas induced global warming would also lead to a moistening of the atmosphere and an intensification of the mean hydrological cycle. Here we study possible attendant effects upon the frequency of heavy precipitation events. For this purpose simulations with a regional climate model are conducted, driven by observed and modified lateral boundary conditions and sea-surface temperature distributions. The modifications correspond to a uniform 2K temperature increase and an attendant 15% increase of the specific humidity (unchanged relative humidity). This strategy allows to isolate the effects of an increased atmospheric moisture content from changes in the atmospheric circulation. The numerical experiments, carried out over Europe and for the fall season, indicate a substantial shift towards more frequent events of strong precipitation. The magnitude of the response increases with the intensity of the event and reaches several 10s of percent for events exceeding 30 mm per day. These results appear to apply to all precipitation events dominated by sea-to-land moisture transport.

Myoung, B., Y. Deng (2009). Interannual variability of the cyclonic activity along the U.S. Pacific coast: influences on the characteristics of winter precipitation in the western United States. Journal of Climate 22 (21): 5732-5747

ABSTRACT: This study examines the observed interannual variability of the cyclonic activity along the U.S. Pacific coast and quantifies its impact on the characteristics of both the winter total and extreme precipitation in the western United States. A cyclonic activity function (CAF) was derived from a dataset of objectively identified cyclone tracks in 27 winters (1979/80–2005/06). The leading empirical orthogonal function (EOF1) of the CAF was found to be responsible for the EOF1 of the winter precipitation in the western United States, which is a monopole mode centered over the Pacific Northwest and northern California. On the other hand, the EOF2 of the CAF contributes to the EOF2 of the winter precipitation, which indicates that above-normal precipitation in the Pacific Northwest and its immediate inland regions tends to be accompanied by below-normal precipitation in California and the southwestern United States and vice versa. The first two EOFs of CAF (precipitation) account for about 70% (78%) of the total interannual variance of CAF (precipitation). The second EOF modes of both the CAF and precipitation are significantly linked to the ENSO signal on interannual time scales. A composite analysis further reveals that the leading CAF modes increase (decrease) the winter total precipitation by increasing (decreasing) both the number of rainy days per winter and the extremeness of precipitation. The latter was quantified in terms of the 95th percentile of the daily rain rate and the probability of precipitation being heavy given a rainy day. The implications of the leading CAF modes for the water resources and the occurrence of extreme hydrologic events in the western United States, as well as their dynamical linkages to the Pacific storm track and various atmospheric low-frequency modes (i.e., teleconnection patterns), are also discussed.

D. R. Easterling, G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, L. O. Mearns (2000). Climate extremes: observations, modeling, and impacts. Science 289 (5487): 2068-2074

ABSTRACT: One of the major concerns with a potential change in climate is that an increase in extreme events will occur. Results of observational studies suggest that in many areas that have been analyzed, changes in total precipitation are amplified at the tails, and changes in some temperature extremes have been observed. Model output has been analyzed that shows changes in extreme events for future climates, such as increases in extreme high temperatures, decreases in extreme low temperatures, and increases in intense precipitation events. In addition, the societal infrastructure is becoming more sensitive to weather and climate extremes, which would be exacerbated by climate change. In wild plants and animals, climate-induced extinctions, distributional and phenological changes, and species' range shifts are being documented at an increasing rate. Several apparently gradual biological changes are linked to responses to extreme weather and climate events.

bottom right