Climate Change and...

Annotated Bibliography

Climate Variability

General Circulation Models

Manabe, S., Wetherald, R.T. (1985). Reduction in summer soil wetness induced by an increase in atmospheric carbon dioxide. Science 232 (4750): 626-628

ABSTRACT: The geographical distribution of the change in soil wetness in response to an increase in atmospheric carbon dioxide was investigated by using a mathematical model of climate. Responding to the increase in carbon dioxide, soil moisture in the model would be reduced in summer over extensive regions of the middle and high latitudes, such as the North American Great Plains, western Europe, northern Canada, and Siberia. These results were obtained from the model with predicted cloud cover and are qualitatively similar to the results from several numerical experiments conducted earlier with prescribed cloud cover.

G. A. Meehl, W. M. Washington, C. M. Ammann, J. M. Arblaster, T. M. L. Wigley, C. Tebaldi (2004). Combinations of natural and anthropogenic forcings in Twentieth-century climate. Journal of Climate 17 (19): 3721-3727

ABSTRACT: Ensemble simulations are run with a global coupled climate model employing five forcing agents that influence the time evolution of globally averaged surface air temperature during the twentieth century. Two are natural (volcanoes and solar) and the others are anthropogenic [e.g., greenhouse gases (GHGs), ozone (stratospheric and tropospheric), and direct effect of sulfate aerosols]. In addition to the five individual forcing experiments, an additional eight sets are performed with the forcings in various combinations. The late-twentieth-century warming can only be reproduced in the model with anthropogenic forcing (mainly GHGs), while the early twentieth-century warming is mainly caused by natural forcing in the model (mainly solar). However, the signature of globally averaged temperature at any time in the twentieth century is a direct consequence of the sum of the forcings. The similarity of the response to the forcings on decadal and interannual time scales is tested by performing a principal component analysis of the 13 ensemble mean globally averaged temperature time series. A significant portion of the variance of the reconstructed time series can be retained in residual calculations compared to the original single and combined forcing runs. This demonstrates that the statistics of the variances for decadal and interannual time-scale variability in the forced simulations are similar to the response from a residual calculation. That is, the variance statistics of the response of globally averaged temperatures in the forced runs are additive since they can be reproduced in the responses calculated as a residual from other combined forcing runs.

Stouffer, R.J., J. Yin, J.M. Gregory, K.W. Dixon, M.J. Spelman, W. Hurlin, A.J. Weaver, M. Eby, G.M. Flato, H. Hasumi, A. Hu, J.H. Jungclaus, I.V. Kamenkovich, A. Levermann, M. Montoya, S. Murakami, S. Nawrath, A. Oka, W.R. Peltier, D.Y. Robitaille, A. Sokolov, G. Vettoretti, S.L. Weber (2006). Investigating the causes of the response of the thermohaline circulation to past and future climate changes. Journal of Climate 19 (8): 1365-1387

ABSTRACT: The Atlantic thermohaline circulation (THC) is an important part of the earth's climate system. Previous research has shown large uncertainties in simulating future changes in this critical system. The simulated THC response to idealized freshwater perturbations and the associated climate changes have been intercompared as an activity of World Climate Research Program (WCRP) Coupled Model Intercomparison Project/Paleo-Modeling Intercomparison Project (CMIP/PMIP) committees. This intercomparison among models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere–ocean general circulation models (AOGCMs) seeks to document and improve understanding of the causes of the wide variations in the modeled THC response. The robustness of particular simulation features has been evaluated across the model results. In response to 0.1-Sv (1 Sv 106 m3 s−1 ) freshwater input in the northern North Atlantic, the multimodel ensemble mean THC weakens by 30% after 100 yr. All models simulate some weakening of the THC, but no model simulates a complete shutdown of the THC. The multimodel ensemble indicates that the surface air temperature could present a complex anomaly pattern with cooling south of Greenland and warming over the Barents and Nordic Seas. The Atlantic ITCZ tends to shift southward. In response to 1.0-Sv freshwater input, the THC switches off rapidly in all model simulations. A large cooling occurs over the North Atlantic. The annual mean Atlantic ITCZ moves into the Southern Hemisphere. Models disagree in terms of the reversibility of the THC after its shutdown. In general, the EMICs and AOGCMs obtain similar THC responses and climate changes with more pronounced and sharper patterns in the AOGCMs.

P. A. Stott, S. F. B. Tett (1998). Scale-dependent detection of climate change. Journal of Climate 11 (12): 3282-3294

ABSTRACT: Spatially and temporally dependent fingerprint patterns of near-surface temperature change are derived from transient climate simulations of the second Hadley Centre coupled ocean–atmosphere GCM (HADCM2). Trends in near-surface temperature are calculated from simulations in which HADCM2 is forced with historical increases in greenhouse gases only and with both greenhouse gases and anthropogenic sulfur emissions. For each response an ensemble of four simulations is carried out. An estimate of the natural internal variability of the ocean–atmosphere system is taken from a long multicentury control run of HADCM2.

The aim of the study is to investigate the spatial and temporal scales on which it is possible to detect a significant change in climate. Temporal scales are determined by taking temperature trends over 10, 30, and 50 yr using annual mean data, and spatial scales are defined by projecting these trends onto spherical harmonics.

Each fingerprint pattern is projected onto the recent observed pattern to give a scalar detection variable. This is compared with the distribution expected from natural variability, estimated by projecting the fingerprint pattern onto a distribution of patterns taken from the control run. Detection is claimed if the detection variable is greater than the 95th percentile of the distribution expected from natural variability. The results show that climate change can be detected on the global mean scale for 30- and 50-yr trends but not for 10-yr trends, assuming that the model’s estimate of variability is correct. At subglobal scales, climate change can be detected only for 50-yr trends and only for large spatial scales (greater than 5000 km).

Patterns of near-surface temperature trends for the 50 yr up to 1995 from the simulation that includes only greenhouse gas forcing are inconsistent with the observed patterns at small spatial scales (less than 2000 km). In contrast, patterns of temperature trends for the simulation that includes both greenhouse gas and sulfate forcing are consistent with the observed patterns at all spatial scales.

The possible limits to future detectability are investigated by taking one member of each ensemble to represent the observations and other members of the ensemble to represent model realizations of future temperature trends. The results show that for trends to 1995 the probability of detection is greatest at spatial scales greater than 5000 km. As the future signal of climate change becomes larger relative to the noise of natural variability, detection becomes very likely at all spatial scales by the middle of the next century.

The model underestimates climate variability as seen in the observations at spatial scales less than 2000 km. Therefore, some caution must be exercised when interpreting model-based detection results that include a contribution of small spatial scales to the climate change fingerprint.

Liu, Z., Kutzbach, J., Wu, L. (2000). Modeling climate shift of El Niño variability in the Holocene. Geophysical Research Letters 27 (15): 2265-2268

ABSTRACT: A coupled ocean-atmosphere general circulation model is used to investigate climatic shift of El Nino in the Holocene. The model simulates a reduced ENSO intensity in the early and mid-Holocene, in agreement with paleoclimate record. The ENSO reduction is proposed to be caused by both an intensified Asian summer monsoon and a warm water subduction from the South Pacific into the equatorial thermocline.

L. E. Hay, R. L. Wilby, G.H. Leavesley (2000). A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. Journal of the American Water Resources Association 36 (2): 387-397

ABSTRACT: Simulated daily precipitation, temperature, and runoff time series were compared in three mountainous basins in the United States: (1) the Animas River basin in Colorado, (2) the East Fork of the Carson River basin in Nevada and California, and (3) the Cle Elum River basin in Washington State. Two methods of climate scenario generation were compared: delta change and statistical downscaling. The delta change method uses differences between simulated current and future climate conditions from the Hadley Centre for Climate Prediction and Research (HadCM2) General Circulation Model (GCM) added to observed time series of climate variables. A statistical downscaling (SDS) model was developed for each basin using station data and output from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEPINCAR) reanalysis regridded to the scale of HadCM2. The SDS model was then used to simulate local climate variables using HadCM2 output for current and future conditions. Surface climate variables from each scenario were used in a precipitation-runoff model. Results from this study show that, in the basins tested, a precipitation-runoff model can simulate realistic runoff series for current conditions using statistically down-scaled NCEP output. But, use of downscaled HadCM2 output for current or future climate assessments are questionable because the GCM does not produce accurate estimates of the surface variables needed for runoff in these regions. Given the uncertainties in the GCMs ability to simulate current conditions based on either the delta change or downscaling approaches, future climate assessments based on either of these approaches must be treated with caution.

W. S. Merritt, Younes Alila, M. Barton, B. Taylor, S. Cohen, D. Neilsen (2006). Hydrologic response to scenarios of climate change in subwatersheds of the Okanagan basin, British Columbia. Journal of Hydrology 326 (1-4): 79-108

ABSTRACT: Scenarios of climate change were generated for the Okanagan Basin, a snow-driven semi-arid basin located in the southern interior region of British Columbia. Three global climate models (GCMs) were used to generate high (A2) and low (B2) emission scenarios; the Canadian global coupled model (CGCM2), the Australian developed CSIROMk2, and the HadCM3 model developed at the Hadley Centre in the United Kingdom. The three time periods simulated were 2010–2039 (2020s), 2040–2069 (2050s) and 2070–2099 (2080s). An increase in winter temperature of 1.5–4.0 °C and a precipitation increase of the order of 5-20% is predicted by the 2050s. Modelled summer precipitation is more variable with predicted change ranging from zero to a 35% decrease depending on the GCM and emission scenario. Summer temperatures were simulated to increase by approximately 2–4 °C. The UBC Watershed Model was used to model the hydrologic response of gauged sub watersheds in the basin under the altered climates. All scenarios consistently predicted an early onset of the spring snowmelt, a tendency towards a more rainfall dominated hydrograph and considerable reductions in the annual and spring flow volumes in the 2050s and 2080s. Of the three climate models, the CGCM2 model provided the most conservative predictions of the impacts of climate change in Okanagan Basin. Simulations based on the CSIROMk2 climate model suggested greatly reduced snowpack and flow volumes despite a sizeable increase in the winter precipitation. The scenarios raise questions over the availability of future water resources in the Okanagan Basin, particularly as extended periods of low flows into upland reservoirs are likely to coincide with increased demand from agricultural and domestic water users.

N. L. Miller, K. E. Bashford, E. Strem (2003). Potential impacts of climate change on California hydrology. Journal of the American Water Resources Association 39 (4): 771-784

ABSTRACT: Previous reports based on climate change scenarios have suggested that California will be subjected to increased wintertime and decreased summertime streamflow. Due to the uncertainty of projections in future climate, a new range of potential climatological future temperature shifts and precipitation ratios is applied to the Sacramento Soil Moisture Accounting Model and Anderson Snow Model in order to determine hydrologic sensitivities. Two general circulation models (GCMs) were used in this analysis: one that is warm and wet (HadCM2 run 1) and one that is cool and dry (PCM run B06.06), relative to the GCM projections for California that were part of the Third Assessment Report of the Intergovernmental Panel on Climate Change. A set of specified incremental temperature shifts from 1.5°C to 5.0°C and precipitation ratios from 0.70 to 1.30 were also used as input to the snow and soil moisture accounting models, providing for additional scenarios (e.g., warm/dry, cool/wet). Hydrologic calculations were performed for a set of California river basins that extend from the coastal mountains and Sierra Nevada northern region to the southern Sierra Nevada region; these were applied to a water allocation analysis in a companion paper. Results indicate that for all snow producing cases, a larger proportion of the streamflow volume will occur earlier in the year. The amount and timing is dependent on the characteristics of each basin, particularly the elevation. Increased temperatures lead to a higher freezing line, therefore less snow accumulation and increased melting below the freezing height. The hydrologic response varies for each scenario, and the resulting solution set provides bounds to the range of possible change in streamflow, snowmelt, snow water equivalent, and the change in the magnitude of annual high flows. An important result that appears for all snowmelt driven runoff basins, is that late winter snow accumulation decreases by 50 percent toward the end of this century.

Stone, M.C., R.H. Hotchkiss, L.O. Mearns (2003). Water yield responses to high and low spatial resolution climate change scenarios in the Missouri River basin. Geophysical Research Letters 30 (4): 1186

ABSTRACT: Water yield responses to two climate change scenarios different spatial scales were compared for the Missouri River Basin. A coarse-resolution climate change scenario created from runs of the Commonwealth Scientific and Industrial Research Organization General Circulation Model CSIRO GCM). The high-resolution climate change scenario developed using runs of the Regional Climate Model RegCM, for which the GCM provided the initial and lateral boundary conditions. Water yield responses to the high- and resolution climate change scenarios were investigated using the Soil and Water Assessment Tool (SWAT). Basinwide water yield increased for both GCM and RegCM scenarios but with an overall greater increase for the RegCM scenario. Significant differences in water yields were found between the GCM and RegCM climate scenarios.

G. J. McCabe, D. M. Wolock (1999). General-circulation-model simulations of future snowpack in the western United States. Journal of the American Water Resources Association 35 (6): 1473-1484

ABSTRACT: April 1 snowpack accumulations measured at 311 snow courses in the western United States (U.S.) are grouped using a correlation-based cluster analysis. A conceptual snow accumulation and melt model and monthly temperature and precipitation for each cluster are used to estimate cluster-average April 1 snowpack. The conceptual snow model is subsequently used to estimate future snowpack by using changes in monthly temperature and precipitation simulated by the Canadian Centre for Climate Modeling and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HADLEY) general circulation models (GCMs). Results for the CCC model indicate that although winter precipitation is estimated to increase in the future, increases in temperatures will result in large decreases in April 1 snowpack for the entire western US. Results for the HADLEY model also indicate large decreases in April 1 snowpack for most of the western US, but the decreases are not as severe as those estimated using the CCC simulations. Although snowpack conditions are estimated to decrease for most areas of the western US, both GCMs estimate a general increase in winter precipitation toward the latter half of the next century. Thus, water quantity may be increased in the western US; however, the timing of runoff will be altered because precipitation will more frequently occur as rain rather than as snow.

Neilson, R. P., D. Marks (1994). A global perspective of regional vegetation and hydrologic sensitivities from climate change. Journal of Vegetation Science 5 (5): 715-730

ABSTRACT: A biogeographic model, MAPSS (Mapped Atmosphere-Plant-Soil System), predicts changes in vegetation leaf area index (LAI), site water balance and runoff, as well as changes in biome boundaries. Potential scenarios of global and regional equilibrium changes in LAI and terrestrial water balance under 2 x CO2 climate from five different general circulation models (GCMs) are presented. Regional patterns of vegetation change and annual runoff are surprisingly consistent among the five GCM scenarios, given the general lack of consistency in predicted changes in regional precipitation patterns. Two factors contribute to the consistency among the GCMs of the regional ecological impacts of climatic change: (1) regional, temperature-induced increases in potential evapotranspiration (PET) tend to more than offset regional increases in precipitation; and (2) the interplay between the general circulation and the continental margins and mountain ranges produces a fairly stable pattern of regionally specific sensitivity to climatic change. Two areas exhibiting among the greatest sensitivity to drought-induced forest decline are eastern North America and eastern Europe to western Russia. Regional runoff patterns exhibit much greater spatial variation in the sign of the response than do the LAI changes, even though they are deterministically linked in the model. Uncertainties with respect to PET or vegetation water use efficiency calculations can alter the simulated sign of regional responses, but the relative responses of adjacent regions appear to be largely a function of the background climate, rather than the vagaries of the GCMs, and are intrinsic to the landscape. Thus, spatial uncertainty maps can be drawn even under the current generation of GCMs.

Leung, L.R., M.S. Wigmosta (1999). Potential climate change impacts on mountain watersheds in the Pacific Northwest. Journal of the American Water Resources Association 35 (6): 1463-1471

ABSTRACT: Global climate change due to the buildup of greenhouse gases in the atmosphere has serious potential impacts on water resources in the Pacific Northwest. Climate scenarios produced by general circulation models (GCMs) do not provide enough spatial specificity for studying water resources in mountain watersheds. This study uses dynamical downscaling with a regional climate model (RCM) driven by a GCM to simulate climate change scenarios. The RCM uses a subgrid parameterization of orographic precipitation and land surface cover to simulate surface climate at the spatial scale suitable for the representation of topographic effects over mountainous regions. Numerical experiments have been performed to simulate the present-day climatology and the climate conditions corresponding to a doubling of atmospheric CO2 concentration. The RCM results indicate an average warming of about 2.5°C, and precipitation generally increases over the Pacific Northwest and decreases over California. These simulations were used to drive a distributed hydrology model of two snow dominated watersheds, the American River and Middle Fork Flathead, in the Pacific Northwest to obtain more detailed estimates of the sensitivity of water resources to climate change. Results show that as more precipitation falls as rain rather than snow in the warmer climate, there is a 60 percent reduction in snowpack and a significant shift in the seasonal pattern of streamfiow in the American River. Much less drastic changes are found in the Middle Fork Flathead where snowpack is only reduced by 18 percent and the seasonal pattern of streamflow remains intact. This study shows that the impacts of climate change on water resources are highly region specific. Furthermore, under the specific climate change scenario, the impacts are largely driven by the warming trend rather than the precipitation trend, which is small.

Hamlet, A.F., D.P. Lettenmaier (1999). Effects of climate change on hydrology and water resources in the Columbia River basin. Journal of the American Water Resources Association 35 (6): 1597-1623

ABSTRACT: As part of the National Assessment of Climate Change, the implications of future climate predictions derived from four global climate models (GCMs) were used to evaluate possible future changes to Pacific Northwest climate, the surface water response of the Columbia River basin, and the ability of the Columbia River reservoir system to meet regional water resources objectives. Two representative GCM simulations from the Hadley Centre (HC) and Max Planck Institute (MPI) were selected from a group of GCM simulations made available via the National Assessment for climate change. From these simulations, quasi-stationary, decadal mean temperature and precipitation changes were used to perturb historical records of precipitation and temperature data to create inferred conditions for 2025, 2045, and 2095. These perturbed records, which represent future climate in the experiments, were used to drive a macro-scale hydrology model of the Columbia River at 118 degree resolution. The altered streamfiows simulated for each scenario were, in turn, used to drive a reservoir model, from which the ability of the system to meet water resources objectives was determined relative to a simulated hydrologic base case (current climate). Although the two GCM simulations showed somewhat different seasonal patterns for temperature change, in general the simulations show reasonably consistent basin average increases in temperature of about 1.8-2.1°C for 2025, and about 2.32.9°C for 2045. The HC simulations predict an annual average temperature increase of about 4.5°C for 2095. Changes in basin averaged winter precipitation range from -1 percent to +20 percent for the HC and MPI scenarios, and summer precipitation is also variously affected. These changes in climate result in significant increases in winter runoff volumes due to increased winter precipitation and warmer winter temperatures, with resulting reductions in snowpack. Average March 1 basin average snow water equivalents are 75 to 85 percent of the base case for 2025, and 55 to 65 percent of the base case by 2045. By 2045 the reduced snowpack and earlier snow melt, coupled with higher evapotranspiration in early summer, would lead to earlier spring peak flows and reduced runoff volumes from April-September ranging from about 75 percent to 90 percent of the base case. Annual runoff volumes range from 85 percent to 110 percent of the base case in the simulations for 2045. These changes in streamfiow create increased competition for water during the spring, summer, and early fall between nonfirm energy production, irrigation, instream flow, and recreation. Flood control effectiveness is moderately reduced for most of the scenarios examined, and desirable navigation conditions on the Snake are generally enhanced or unchanged. Current levels of winter-dominated firm energy production are only significantly impacted for the MPI 2045 simulations.

Sewall, J.O. (2005). Precipitation shifts over western North America as a result of declining Arctic sea ice cover: the coupled system response. Earth Interactions 9 (26): 1-23

ABSTRACT: Changes in Arctic sea ice cover have the potential to impact midlatitude climate. A previous sensitivity study utilizing the National Center for Atmospheric Research’s (NCAR) atmospheric general circulation model [AGCM; Community Climate Model, version 3 (CCM3)] to explore climate sensitivity to declining Arctic sea ice cover suggested that, as Arctic sea ice cover is reduced, precipitation patterns over western North America will shift toward dryer conditions in southwestern North America and wetter conditions in northwestern North America. Here, three complementary lines of research validate and explore the robustness of this possible climate change impact: 1) repetition of the previous sensitivity study (specified constant Arctic sea ice cover and atmospheric CO2 ) with an updated version of the NCAR AGCM [third Community Atmosphere Model (CAM3)], 2) investigation of the climate response to dynamically reduced Arctic sea ice cover (driven by a quadrupling of atmospheric CO2 ) in the coupled NCAR Community Climate System Model (CCSMv3), and 3) analysis of similar results from six other coupled climate system models. Results from the CAM3 sensitivity study are similar to those from the original study with declining Arctic sea ice cover driving up to 25% less mean annual precipitation (MAP) over southwestern North America and up to an 8% increase in MAP over northwestern North America. The seven coupled models also reproduce this same general pattern. At the time of CO2 quadrupling, Arctic sea ice cover is reduced (up to 90% in boreal winter) and MAP over southwestern North America decreases by up to 30% while MAP in northwestern North America increases by up to 40%. These results represent a significant shift in the precipitation pattern over western North America and support the findings of the original sensitivity study in suggesting that, as future reductions in Arctic sea ice cover take place, there will be a substantial impact on water resources in western North America.

Marks, D., G.A. King, J. Dolph (1993). Implications of climate change for the water balance of the Columbia River Basin, USA. Climate Research 2 (3): 203-213

ABSTRACT: Global climate change will affect the terrestrial biosphere primarily through changes in regional energy and water balance. Changes in soil moisture and evapotranspiration will particularly affect water and forest resources. Existing spatially lumped hydrologic models are not adequate to analyze the potential effects of climate change on the regional water balance over large river basins or regions primarily because they do not satisfactorily account for the spatial and temporal variability of hydrologic processes. Here we summarize application of a spatially distributed water balance model that was tested using historical data from the U. S. portion of the Columbia River Basin In the Pacific Northwest for a very dry (1977) and very wet (1972) water year. The model adequately partitions incoming precipitation into evapotranspiration and runoff. Because precipitation in the basin is underestimated from measured data, modeled runoff is less than measured runoff from the basin during both the wet and dry years The potential effects of climate change on runoff and soil moisture in the Columbia River Basin were simulated using 2xCO2 scenario data from the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM). The predicted future climate conditions significantly increase potential evapotranspiration, causing a 20% reduction in runoff relative to input precipitation, and a 58 % reduction in soil moisture storage. If these changes in regional water balance are realized the distribution and composition of forests in the Northwest would change markedly, and water resources would become more limited. Because of uncertainties in future climate scenarios, and limitations in the implementation of the water balance model, the 2xCO2 results should be viewed only as a sensitivity analysis.

Stephens, G. L., Ellis, T. D. (2008). Controls of global-mean precipitation increases in global warming GCM experiments. Journal of Climate 21 (23): 6141-6155

ABSTRACT: This paper examines the controls on global precipitation that are evident in the transient experiments conducted using coupled climate models collected for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The change in precipitation, water vapor, clouds, and radiative heating of the atmosphere evident in the 1% increase in carbon dioxide until doubled (1pctto2x) scenario is examined. As noted in other studies, the ensemble-mean changes in water vapor as carbon dioxide is doubled occur at a rate similar to that predicted by the Clausius–Clapeyron relationship. The ratio of global changes in precipitation to global changes in water vapor offers some insight on how readily increased water vapor is converted into precipitation in modeled climate change. This ratio is introduced in this paper as a gross indicator of the global precipitation efficiency under global warming.

The main findings of this paper are threefold. First, increases in the global precipitation track increase atmospheric radiative energy loss and the ratio of precipitation sensitivity to water vapor sensitivity is primarily determined by changes to this atmospheric column energy loss. A reference limit to this ratio is introduced as the rate at which the emission of radiation from the clear-sky atmosphere increases as water vapor increases. It is shown that the derived efficiency based on the simple ratio of precipitation to water vapor sensitivities of models in fact closely matches the sensitivity derived from simple energy balance arguments involving changes to water vapor emission alone. Second, although the rate of increase of clear-sky emission is the dominant factor in the change to the energy balance of the atmosphere, there are two important and offsetting processes that contribute to in the model simulations studied: One involves a negative feedback through cloud radiative heating that acts to reduce the efficiency; the other is the global reduction in sensible heating that counteracts the effects of the cloud feedback and increases the efficiency. These counteracting feedbacks only apply on the global scale. Third, the negative cloud radiative heating feedback occurs through reductions of cloud amount in the middle troposphere, defined as the layer between 680 and 440 hPa, and by slight global cloud decreases in the lower troposphere. These changes act in a manner to expose the warmer atmosphere below to high clouds, thus resulting in a net warming of the atmospheric column by clouds and a negative feedback on the precipitation.

bottom right