Climate Change and...

Annotated Bibliography

Climate Variability

Pollen Studies

R. S. Anderson (1990). Holocene forest development and paleoclimates within the central Sierra Nevada, California. Journal of Ecology 78 (2): 470-489

ABSTRACT: (1) The pollen and plant macrofossils in sediments from three high-altitude lakes in the Sierra Nevada, California, document vegetation changes that have occurred over the last 12 500 years. (2) Trees became established around the lakes by c. 10 000 years ago. Early Holocene forests were structurally different from those of today; they were more open than at present, with more montane chaparral shrubs. Several tree species characteristic of modern subalpine forests were rare and restricted to mesic habitats. Significantly drier conditions are inferred. (3) By c. 6000 B.P., effective precipitation had increased, as shown by an increase in subalpine conifers, principallyTsuga mertensiana (mountain hemlock) andAbies magnifica (red fir). (4) The upper altitudinal limits of many subalpine conifers began to fall c. 2500 B.P., coincident with the beginning of Neoglacial cooling. (5) The climatic interpretations are consistent with those previously described for the Pacific North-west region of North America, but not consistent with those for the American South-west.

J.T. Overpeck, D. Rind, R. Goldberg (1990). Climate-induced changes in forest disturbance and vegetation. Nature 343 (4 January): 51-53

ABSTRACT: Recent concern over the ecological effects of future trace-gas-induced climate change has accelerated efforts to understand and quantify climate-induced vegetation change1–9 . Here we discuss new and published climate-model results indicating that global warming favours increased rates of forest disturbance, as a result of weather more likely to cause forest fires (drought, wind and natural ignition sources), convective wind storms, coastal flooding and hurricanes. New sensitivity tests carried out with a vegetation model indicate that climate-induced increases in disturbance could, in turn, significantly alter the total biomass and compositional response of forests to future warming. An increase in disturbance frequency is also likely to increase the rate at which natural vegetation responds to future climate change. Our results reinforce the hypothesis6 that forests could be significantly altered by the first part of the next century. Our modelling also confirms the potential utility of selected time series of fossil pollen data for investigating the poorly understood natural patterns of century-scale climate variability.

Power, M.J., C. Whitlock, P. Bartlein, L.R. Stevens (2006). Fire and vegetation history during the last 3800 years in northwestern Montana. Geomorphology 75 (3-4): 420-436

ABSTRACT: Foy Lake in northwestern Montana provides a record of annual-to-decadal-scale landscape change. Sedimentary charcoal and pollen analyses were used to document fire and vegetation changes over the last 3800 years, which were then compared to similar records from AD 1880 to 2000. The long-term record at Foy Lake suggests shifts between forest and steppe as well as changes in fire regime that are likely the result of climate change. Fire activity (inferred from the frequency of charcoal peaks) averaged 18 fire episodes/1000 years from 3800 to 2125 cal year BP, and increased from 16 fire episodes/1000 years at 2125 cal year BP to 22 episodes/1000 years at 750 cal year BP, a period when the pollen data suggest that steppe vegetation yielded to increasing patches of forest cover. Between 2125 and 750 cal year BP, increased forest cover produced more background charcoal than before and after this period, when vegetation was dominated by steppe. Between 750 and 75 cal year BP steppe has expanded and fire episode frequency averaged 33 episodes/1000 years, increasing to a maximum of 40 episodes/1000 years at ca. 300 cal year BP and then decreasing to present levels. Since AD 1880, the pollen record indicates an increase in shrubs and grasses from AD 1895 to 1960 as a result of vegetation changes associated with timber harvesting and livestock grazing. No fires have been documented in the Foy Lake watershed since AD 1880. Charcoal from the extralocal fires of AD 1910, burning over 4,111,249 ha in Idaho, Montana, and Wyoming, however, is present in Foy Lake. Between AD 1970 and 2000, increased arboreal pollen in the record is consistent with observations that the forest has become more closed. The activities of Euro–Americans have led to a decline in forest cover between AD 1880 and 1970, followed by a recent increase as trees are now growing in areas previously occupied by steppe. Euro–Americans are likely the cause of a reduction in fire activity in watershed since AD 1880.

Mensing, S.A., L. V. Benson, M. Kashgarian, S. Lund (2004). A Holocene pollen record of persistent droughts from Pyramid Lake, Nevada, USA. Quaternary Research 62 (1): 29-38

ABSTRACT: Pollen and algae microfossils preserved in sediments from Pyramid Lake, Nevada, provide evidence for periods of persistent drought during the Holocene age. We analyzed one hundred nineteen 1-cm-thick samples for pollen and algae from a set of cores that span the past 7630 years. The early middle Holocene, 7600 to 6300 cal yr B.P., was found to be the driest period, although it included one short but intense wet phase. We suggest that Lake Tahoe was below its rim for most of this period, greatly reducing the volume and depth of Pyramid Lake. Middle Holocene aridity eased between 5000 and 3500 cal yr B.P. and climate became variable with distinct wet and dry phases. Lake Tahoe probably spilled intermittently during this time. No core was recovered that represented the period between 3500 and 2600 cal yr B.P. The past 2500 years appear to have had recurrent persistent droughts. The timing and magnitude of droughts identified in the pollen record compares favorably with previously published18 O data from Pyramid Lake. The timing of these droughts also agrees with the ages of submerged rooted stumps in the Eastern Sierra Nevada and woodrat midden data from central Nevada. Prolonged drought episodes appear to correspond with the timing of ice drift minima (solar maxima) identified from North Atlantic marine sediments, suggesting that changes in solar irradiance may be a possible mechanism influencing century-scale drought in the western Great Basin.

C. E. Briles, C. Whitlock, P. J. Bartlein (2005). Postglacial vegetation, fire, and climate history of the Siskiyou Mountains, Oregon, USA. Quaternary Research 64 (1): 44-56

ABSTRACT: The forests of the Siskiyou Mountains are among the most diverse in North America, yet the long-term relationship among climate, diversity, and natural disturbance is not well known. Pollen, plant macrofossils, and high-resolution charcoal data from Bolan Lake, Oregon, were analyzed to reconstruct a 17,000-yr-long environmental history of high-elevation forests in the region. In the late-glacial period, the presence of a subalpine parkland ofArtemisia , Poaceae,Pinus , andTsuga with infrequent fires suggests cool dry conditions. After 14,500 cal yr B.P., a closed forest ofAbies ,Pseudotsuga ,Tsuga , andAlnus rubra with more frequent fires developed which indicates more mesic conditions than before. An open woodland ofPinus ,Quercus , andCupressaceae , with higher fire activity than before, characterized the early Holocene and implies warmer and drier conditions than at present. In the late Holocene,Abies andPicea were more prevalent in the forest, suggesting a return to cool wet conditions, although fire-episode frequency remained relatively high. The modern forest ofAbies andPseudotsuga and the present-day fire regime developed ca. 2100 cal yr B.P. and indicates that conditions had become slightly drier than before. Sub-millennial-scale fluctuations in vegetation and fire activity suggest climatic variations during the Younger Dryas interval and within the early Holocene period. The timing of vegetation changes in the Bolan Lake record is similar to that of other sites in the Pacific Northwest and Klamath region, and indicates that local vegetation communities were responding to regional-scale climate changes. The record implies that climate-driven millennial- to centennial-scale vegetation and fire change should be considered when explaining the high floristic diversity observed at present in the Siskiyou Mountains.

L. D. Grigg, C. Whitlock (1998). Late-glacial vegetation and climate change in western Oregon. Quaternary Research 49 (3): 287-298

ABSTRACT: Pollen records from two sites in western Oregon provide information on late-glacial variations in vegetation and climate and on the extent and character of Younger Dryas cooling in the Pacific Northwest. A subalpine forest was present at Little Lake, central Coast Range, between 15,700 and 14,850 cal yr B.P. A warm period between 14,850 and 14,500 cal yr B.P. is suggested by an increase inPseudotsuga pollen and charcoal. The recurrence of subalpine forest at 14,500 cal yr B.P. implies a return to cool conditions. Another warming trend is evidenced by the reestablishment ofPseudotsuga forest at 14,250 cal yr B.P. Increased haploxylonPinus pollen between 12,400 and 11,000 cal yr B.P. indicates cooler winters than before. After 11,000 cal yr B.P. warm dry conditions are implied by the expansion ofPseudotsuga . A subalpine parkland occupied Gordon Lake, western Cascade Range, until 14,500 cal yr B.P., when it was replaced during a warming trend by a montane forest. A rise inPinus pollen from 12,800 to 11,000 cal yr B.P. suggests increased summer aridity.Pseudotsuga dominated the vegetation after 11,000 cal yr B.P. Other records from the Pacific Northwest show an expansion ofPinus from ca. 13,000 to 11,000 cal yr B.P. This expansion may be a response either to submillennial climate changes of Younger Dryas age or to millennial-scale climatic variations.

A. Cohen, M. Palacios-Fest, R. Negrini, P. Wigand, D. Erbes (2000). A paleoclimate record for the past 250,000 years from Summer Lake, Oregon, USA: II. Sedimentology, paleontology and geochemistry. Journal of Paleolimnology 24 (2): 151-182

ABSTRACT: We have obtained a detailed paleoenvironmental record in the Summer Lake Basin, Oregon (northwestern Great Basin, US) spanning from 250 ka-5 ka. This record is derived from core and outcrop sites extending from a proximal deltaic setting to near the modern depocenter. Lithostratigraphic, paleontologic (ostracodes and pollen) and geochemical indicators all provide evidence for hydroclimate and climate change over the study interval. Lithostratigraphic analysis of the Summer Lake deposits allows subdivision into a series of unconformity - or paraconformity-bound lithosomes. The unconformity and facies histories indicate that the lake underwent several major lake-level excursions through the Middle and Late Pleistocene. High stands occurred between ~200 and ~165 ka, between ~89 and 50 ka and between ~25 and 13 ka. Uppermost Pleistocene and Holocene sediments have been removed by deflation of the basin, with the exception of a thin veneer of late Holocene sediment. These high stands correspond closely with Marine Oxygen Isotope Stages 6, 4 and 2, within the margin of error associated with the Summer Lake age model. A major unconformity from ~158 ka until ~102 ka (duration varies between sites) interrupts the record at both core and outcrop sites. Lake level fluctuations, in turn are closely linked with TOC and salinity fluctuations, such that periods of lake high stands correlate with periods of relatively low productivity, fresher water and increased water inflow/evaporation ratios. Paleotemperature estimates based on palynology and geochemistry (Mg/Ca ratios in ostracodes) indicate an overall decrease in temperature from ~236 ka-165 ka, with a brief interlude of warming and drying immediately after this (prior to the major unconformity). This temperature decrease was superimposed on higher frequency variations in temperature that are not evident in the sediments deposited during the past 100 ka. Indicators disagree about temperatures immediately following the unconformity (~102-95 ka), but most suggest warmer temperatures between ~100-89 ka, followed by a rapid and dramatic cooling event. Cooler conditions persisted throughout most of the remainder of the Pleistocene at Summer Lake, with the possible exception of brief warm intervals about 27-23 ka. Paleotemperature estimates for the proximal deltaic site are more erratic than for more distal sites, indicative of short term air temperature excursions that are buffered in deeper water. Estimates of paleotemperature from Mg/Ca ratios are generally in good agreement with evidence from upland palynology. However, there is a significant discordance between the upland pollen record and lake indicators with respect to paleoprecipitation for some parts of the record. Several possibilities may explain this discordance. We favor a direct link between lake level and salinity fluctuations and climate change, but we also recognize the possibility that some of these hydroclimate changes in the Summer Lake record may have resulted from episodic drainage captures of the Chewaucan River between the Summer Lake and Lake Abert basins.

L. D. Grigg, C. Whitlock, W. E. Dean (2001). Evidence for millennial-scale climate change during marine isotope stages 2 and 3 at Little Lake, western Oregon, U.S.A.. Quaternary Research 56 (1): 10-22

ABSTRACT: Pollen and geochemical data from Little Lake, western Oregon, suggest several patterns of millennial-scale environmental change during marine isotope stage (MIS) 2 (14,100–27,600 cal yr B.P.) and the latter part of MIS 3 (27,600–42,500 cal yr B.P.). During MIS 3, a series of transitions between warm- and cold-adapted taxa indicate that temperatures oscillated by ca. 2°–4°C every 1000–3000 yr. Highs and lows in summer insolation during MIS 3 are generally associated with the warmest and coldest intervals. Warm periods at Little Lake correlate with warm sea-surface temperatures in the Santa Barbara Basin. Changes in the strength of the subtropical high and the jet stream may account for synchronous changes at the two sites. During MIS 2, shifts between mesic and xeric subalpine forests suggest changes in precipitation every 1000–3000 yr. Increases inTsuga heterophylla pollen at 25,000 and 22,000 cal yr B.P. imply brief warmings. Minimum summer insolation and maximum global ice-volumes during MIS 2 correspond to cold and dry conditions. Fluctuations in precipitation at Little Lake do not correlate with changes in the Santa Barbara Basin and may be explained by variations in the strength of the glacial anticyclone and the position of the jet stream.

Lynch, E.A. (1998). Origin of a park-forest vegetation mosaic in the Wind River Range, Wyoming. Ecology 79 (4): 1320-1338

ABSTRACT: The vegetation of the montane and subalpine zones of the Rocky Mountains is a mosaic of conifer forests and large (1 ha to several square kilometers) treeless “parks” dominated by sagebrush (Artemisia spp.), grasses, and forbs. Three hypotheses for the origin of parks are proposed. The “permanent site hypothesis” states that the park–forest vegetation mosaic is a result of differences in physical characteristics of sites. In the “remnant hypothesis” parks are thought to be remnants of vegetation that was widespread under previous climate conditions. The “replacement hypothesis” states that parks replace forest vegetation in response to disturbance, climate change, or a combination of these two factors. Patterns in the past distribution of park and forest vegetation in the vicinity of Fish Creek Park (elevation 2750 m) were used to test these hypotheses.

Fossil pollen extracted from the sediments of five small ponds in and around Fish Creek Park was used to reconstruct Holocene vegetation changes. Changes in vegetation were reconstructed through the use of multivariate analyses and pollen ratios derived from modern surface samples and by comparison with pollen data from other studies. The pollen record indicates that shortly after deglaciation (11000 yr BP) the area supported alpine tundra, followed by whitebark pine–spruce–fir parkland at 9500 yr BP. From 8500 to 6000 yr BP, a pine parkland occupied the area, perhaps in response to climate conditions warmer than today. By 5000 yr BP a mixed pine–spruce–fir forest resembling the modern subalpine forest near Fish Creek Park probably replaced the pine parkland at all five sites. The modern park vegetation originated only within the last 2500 yr.

The conversion to park vegetation may not have been synchronous at all three sites, and the replacement of forest by park did not always result in a long-term conversion to park vegetation. The timing and pattern of changes in the vegetation mosaic eliminate the permanent site and remnant hypotheses and suggest instead that climatic cooling over the last several thousand years, possibly combined with removal of forest cover by fire or some other disturbance, could explain the origin of Fish Creek Park.

bottom right