Climate Change and...

Annotated Bibliography

Climate Variability

Ice Cores

H. Fischer, M. Wahlen, J. Smith, D. Mastroianni, B. Deck (1999). Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283 (5408): 1712-1714

ABSTRACT: Air trapped in bubbles in polar ice cores constitutes an archive for the reconstruction of the global carbon cycle and the relation between greenhouse gases and climate in the past. High-resolution records from Antarctic ice cores show that carbon dioxide concentrations increased by 80 to 100 parts per million by volume 600 ± 400 years after the warming of the last three deglaciations. Despite strongly decreasing temperatures, high carbon dioxide concentrations can be sustained for thousands of years during glaciations; the size of this phase lag is probably connected to the duration of the preceding warm period, which controls the change in land ice coverage and the buildup of the terrestrial biosphere.

Monnin, E., E.J. Steig, U. Siegenthaler, K. Kawamura, J. Schwander, B. Stauffer, T.F. Stocker, D.L. Morse, J.-M. Barnola, B. Bellier, D. Raynaud, H. Fischer (2004). Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth and Planetary Science Letters 224 (1-2): 45-54

ABSTRACT: High resolution records of atmospheric CO2 concentration during the Holocene are obtained from the Dome Concordia and Dronning Maud Land (Antarctica) ice cores. These records confirm that the CO2 concentration varied between 260 and 280 ppmv in the Holocene as measured in the Taylor Dome ice core. However, there are differences in the CO2 records most likely caused by mismatches in timescales. Matching the Taylor Dome timescale to the Dome C timescale by synchronization of CO2 indicates that the accumulation rate at Taylor Dome increased through the Holocene by a factor two and bears little resemblance to the stable isotope record used as a proxy for temperature. This result shows that different locations experienced substantially different accumulation changes, and casts doubt on the often-used assumption that accumulation rate scales with the saturation vapor pressure as a function of temperature, at least for coastal locations.

Petit, J.R., J. Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. PÉpin, C. Ritz, E. Saltzman, M. Stievenard (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 329: 429-436

ABSTRACT: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial–interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years.

Sigman, D.M., E.A. Boyle (2000). Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407 (6806): 859-869

ABSTRACT: Twenty years ago, measurements on ice cores showed that the concentration of carbon dioxide in the atmosphere was lower during ice ages than it is today. As yet, there is no broadly accepted explanation for this difference. Current investigations focus on the ocean's 'biological pump', the sequestration of carbon in the ocean interior by the rain of organic carbon out of the surface ocean, and its effect on the burial of calcium carbonate in marine sediments. Some researchers surmise that the whole-ocean reservoir of algal nutrients was larger during glacial times, strengthening the biological pump at low latitudes, where these nutrients are currently limiting. Others propose that the biological pump was more efficient during glacial times because of more complete utilization of nutrients at high latitudes, where much of the nutrient supply currently goes unused. We present a version of the latter hypothesis that focuses on the open ocean surrounding Antarctica, involving both the biology and physics of that region.

G. A. Zielinski, P. A. Mayewski, L. D. Meeker, S. Whitlow, M. S. Twickler, M. Morrison, D. A. Meese, A. J. Gow, R. B. Alley (1994). Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implications for the volcano-climate system. Science 264 (5161): 948-952

ABSTRACT: Sulfate concentrations from continuous biyearly sampling of the GISP2 Greenland ice core provide a record of potential climate-forcing volcanism since 7000 B.C. Although 85 percent of the events recorded over the last 2000 years were matched to documented volcanic eruptions, only about 30 percent of the events from 1 to 7000 B.C. were matched to such events. Several historic eruptions may have been greater sulfur producers than previously thought. There are three times as many events from 5000 to 7000 B.C. as over the last two millennia with sulfate deposition equal to or up to five times that of the largest known historical eruptions. This increased volcanism in the early Holocene may have contributed to climatic cooling.

G. A. Zielinski, M. S. Germani (1998). New ice-core evidence challenges the 1620s BC age for the Santorini (Minoan) eruption. Journal of Archeological Science 25 (3): 279-289

ABSTRACT: Determining a reliable calendrical age of the Santorini (Minoan) eruption is necessary to place the impact of the eruption into its proper context within Bronze Age society in the Aegean region. The high-resolution record of the deposition of volcanically produced acids on polar ice sheets, as available in the SO4 2− time series from ice cores (a direct signal), and the high-resolution record of the climatic impact of past volcanism inferred in tree rings (a secondary signal) have been widely used to assign a 1628/1627 BC age to the eruption. The layer of ice in the GISP2 (Greenland) ice core corresponding to 1623±36 BC , which is probably correlative to the 1628/1627 BC event, not only contains a large volcanic-SO4 2− spike, but it contains volcanic glass. Composition of this glass does not match the composition of glass from the Santorini eruption, thus severely challenging the 1620s BC age for the eruption. Similarly, the GISP2 glass does not match the composition of glass from other eruptions (Aniakchak, Mt. St. Helens, Vesuvius) thought to have occurred in the 17th century nor does it match potential Icelandic sources. These findings suggest that an eruption not documented in the geological record is responsible for the many climate-proxy signals in the late 1620s BC. Although these findings do not unequivocally discount the 1620s age, we recommend that 1628/1627 BC no longer be held as the “definitive” age for the Santorini eruption.

C. Oppenheimer (2003). Ice core and palaeoclimatic evidence for the timing and nature of the great mid-13th century volcanic eruption. International Journal of Climatology 23 (4): 417-426

ABSTRACT: Ice cores from both the Arctic and Antarctic record a massive volcanic eruption in around AD 1258. The inter-hemispheric transport of ash and sulphate aerosol suggests a low-latitude explosive eruption, but the volcano responsible is not known. This is remarkable given estimates of the magnitude of the event, which range up to 5 × 1014 - 2 × 1015 kg (200-800 km3 of dense magma), which would make this the largest eruption of the historic period, and one of the very largest of the Holocene. The associated collapse caldera could have had a diameter up to 10-30 km. Palaeoclimate reconstructions indicate very cold austral and boreal summers in AD 1257-59, consistent with known patterns of continental summer cooling following tropical, sulphur-rich explosive eruptions. This suggests an eruption in AD 1257, producing a stronger climate forcing than hitherto recognized.

J. A. Rial (2004). Abrupt climate change: chaos and order at orbital and millennial scales. Global and Planetary Change 41 (2): 95-109

ABSTRACT: Successful prediction of future global climate is critically dependent on understanding its complex history, some of which is displayed in paleoclimate time series extracted from deep-sea sediment and ice cores. These recordings exhibit frequent episodes of abrupt climate change believed to be the result of nonlinear response of the climate system to internal or external forcing, yet, neither the physical mechanisms nor the nature of the nonlinearities involved are well understood. At the orbital (104 –105 years) and millennial scales, abrupt climate change appears as sudden, rapid warming events, each followed by periods of slow cooling. The sequence often forms a distinctive saw-tooth shaped time series, epitomized by the deep-sea records of the last million years and the Dansgaard–Oeschger (D/O) oscillations of the last glacial. Here I introduce a simplified mathematical model consisting of a novel arrangement of coupled nonlinear differential equations that appears to capture some important physics of climate change at Milankovitch and millennial scales, closely reproducing the saw-tooth shape of the deep-sea sediment and ice core time series, the relatively abrupt mid-Pleistocene climate switch, and the intriguing D/O oscillations. Named LODE for its use of the logistic-delayed differential equation, the model combines simplicity in the formulation (two equations, small number of adjustable parameters) and sufficient complexity in the dynamics (infinite-dimensional nonlinear delay differential equation) to accurately simulate details of climate change other simplified models cannot. Close agreement with available data suggests that the D/O oscillations are frequency modulated by the third harmonic of the precession forcing, and by the precession itself, but the entrained response is intermittent, mixed with intervals of noise, which corresponds well with the idea that the climate operates at the edge between chaos and order. LODE also predicts a persistent ~1.5 ky oscillation that results from the frequency modulated regional climate oscillation.

D. Fisher, A. Dyke, R. Koerner, J. Bourgeois, C. Kinnard, C. Zdanowicz, A. de Vernal, C. Hillaire-Marcel, J. Savelle, A. Rochon (2006). Natural variability of Arctic sea ice over the Holocene. EOS, Transactions of the American Geophysical Union 87 (28): 3 pp.

ABSTRACT: A consortium of Canadian groups is using ocean cores, ice cores, and mammalian and archeological histories to build a Holocene sea ice history; preliminary results are reported in this article.

Souchez, R. (1997). The buildup of the ice sheet in central Greenland. Journal of Geophysical Research 102 (C12): p. 26,317 (96JC01558)

ABSTRACT: A study of the isotopic and gas composition of the basal silty ice recovered by the Greenland Ice Core Project (GRIP) core indicates that local ice formed in the absence of the Greenland Ice Sheet is still preserved at Summit. Such ice developed most probably within a peat deposit in a permafrost environment. This local ice was subsequently intimately mixed with glacier ice from an advancing ice sheet progressing on the site. This is in agreement with the “highland origin and windward growth” hypothesis for ice sheet development, not for an in situ or regional growth from snowbanks. The basal ice from the GRIP core possibly dates back to the original buildup of the Greenland Ice Sheet 2.4 million years ago.

Röhl, U., T.J. Bralower, R.D. Norris, G. Wefer (2000). New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28 (10): 927-930

ABSTRACT: The late Paleocene thermal maximum (LPTM) is associated with a brief, but intense, interval of global warming and a massive perturbation of the global carbon cycle. We have developed a new orbital chronology for Ocean Drilling Program (ODP) Site 690 (Weddell Sea, Southern Ocean) by using spectral analysis of high-resolution geochemical records. The LPTM interval spans 11 precessional cycles yielding a duration of 210 to 220 k.y. Thed13 C anomaly associated with the LPTM has a magnitude of about -2.5‰ to -3‰; we show that about -2‰ of the excursion occurs within two steps that each were less than 1000 yr in duration. The remainder developed through a series of steps over 52 k.y. The timing of these steps is consistent with a series of nearly catastrophic releases of methane from gas hydrates, punctuated by intervals of relative equilibria between hydrate dissociation and carbon burial. Further, we are able to correlate the records between ODP Sites 690 and 1051 (western North Atlantic) on the scale of 21 k.y. cycles, which demonstrates that the details of thed13 C excursion are recognizable between distant sites. Comparison of cycle records at Sites 690 and 1051 suggests that sediment representing the interval 30 k.y. just prior to and at the onset of the LPTM are missing in the latter location. This unconformity probably resulted from slope failure accompanying methane hydrate dissociation within 10 k.y. of the start of the LPTM.

M. Stuiver, T. F. Braziunas, P. M. Grootes, G. A. Zielinski (1997). Is there evidence for solar forcing of climate in the GISP2 oxygen isotope record?. Quaternary Research 48 (3): 259-266

ABSTRACT: Changes in solar constant over an 11 yr cycle suggest a certain, but limited, degree of solar forcing of climate. The high-resolution climate (oxygen isotope) record of the Greenland GISP2 (Greenland Ice Sheet Project 2) ice core has been analyzed for solar (and volcanic) influences. The atmospheric14 C record is used as a proxy of solar change and compared to the oxygen isotope profile in the GISP2 ice core. An annual oxygen isotope profile is derived from centimeter-scale isotope measurements available for the post-A.D. 818 interval. Associated extreme summer and winter isotope ratios were found to yield similar climate information over the last millennium. The detailed record of volcanic aerosols, converted to optical depth and volcanic explosivity change, was also compared to the isotope record and the oxygen isotope response calibrated to short-term volcanic influences on climate. This calibration shows that century-scale volcanic modulation of the GISP2 oxygen isotope record can be neglected in our analysis of solar forcing. The timing, estimated order of temperature change, and phase lag of several maxima in14 C and minima in18 O are suggestive of a solar component to the forcing of Greenland climate over the current millennium. The fractional climate response of the cold interval associated with the Maunder sunspot minimum (and14 C maximum), as well as the Medieval Warm Period and Little Ice Age temperature trend of the past millennium, are compatible with solar climate forcing, with an order of magnitude of solar constant change of ~0.3%. Even though solar forcing of climate for the current millennium is a reasonable hypothesis, for the rest of the Holocene the century-scale events are more frequent in the oxygen isotope record than in the14 C record and a significant correlation is absent. For this interval, oceanic/atmospheric circulation forcing of climate may dominate. Solar forcing during the surprisingly strong 1470 yr climate cycle of the 11,000–75,000 yr B.P. interval is rather hypothetical.

M. Stuiver, P. M. Grootes, T. F. Braziunas (1995). The GISP2d18 O climate record of the past 16,500 Years and the role of the sun, ocean, and volcanoes. Quaternary Research 44 (3): 341-354

ABSTRACT: Measured18 O/16 O ratios from the Greenland Ice Sheet Project 2 (GISP2) ice core extending back to 16,500 cal yr B.P. provide a continuous record of climate change since the last glaciation. High-resolution annual18 O/16 O results were obtained for most of the current millennium (A.D. 818-1985) and record the Medieval Warm Period, the Little Ice Age, and a distinct 11-yr18 O/16 O cycle. Volcanic aerosols depress central Greenland annual temperature (~1.5°C maximally) and annual18 O/16 O for about 4 yr after each major eruptive event. On a bidecadal to millennial time scale, the contribution of solar variability to Holocene Greenlandic temperature change is ~0.4°C. The role of thermohaline circulation change on climate, problematic during the Holocene, is more distinct for the 16,500-10,000 cal yr B.P. interval. (Analogous to14 C age calibration terminology, we express time in calibrated (cal) yr B.P. (A.D. 1950 = 0 cal yr B.P.)). The Oldest Dryas/Bølling/Older Dryas/Allerød/Younger Dryas sequence appears in great detail. Bidecadal variance in18 O/16 O, but not necessarily in temperature, is enhanced during the last phase of lateglacial time and the Younger Dryas interval, suggesting switches of air mass transport between jet stream branches. The branched system is nearly instantaneously replaced at the beginning of the Bølling and Holocene (at ~14,670 and ~11,650 cal yr B.P., respectively) by an atmospheric circulation system in which18 O/16 O and annual accumulation initially track each other closely. Thermodynamic considerations of the accumulation rate-temperature relationship can be used to evaluate the18 O/16 O-temperature relationship. The GISP2 ice-layer-count years of major GISP2 climate transitions also support the use of coral14 C ages for age calibration.

L. Benson, S. Lund, R. Negrini, B. Linsley, M. Zic (2003). Response of North American Great Basin lakes to Dansgaard–Oeschger oscillations. Quaternary Science Reviews 22 (21-22): 2239-2251

ABSTRACT: We correlate oscillations in the hydrologic and/or cryologic balances of four Great Basin surface-water systems with Dansgaard–Oeschger (D–O) events 2–12. This correlation is relatively strong at the location of the magnetic signature used to link the lake records, but becomes less well constrained with distance/time from the signature. Comparison of proxy glacial and hydrologic records from Owens and Pyramid lakes indicates that Sierran glacial advances occurred during times of relative dryness. If our hypothesized correlation between the lake-based records and the GISP2d18 O record is correct, it suggests that North Atlantic D–O stades were associated with relatively cold and dry conditions and that interstades were associated with relatively warm and wet conditions throughout the Great Basin between 50,500 and 27,000 GISP2 yr B.P. The Great Basin lacustrine climate records reinforce the hypothesis that D–O events affected the climate throughout much of the Northern Hemisphere during marine isotope stages 2 and 3. However, the absolute phasing between lake-size and ice-cored18 O records remains difficult to determine.

D. Genty, D. Blamart, R. Ouahdi, M. Gilmour, A. Baker, J. Jouzel, S. Van-Exter (2003). Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data. Nature 421 (6925): 833-837

ABSTRACT: The signature of Dansgaard–Oeschger events—millennial-scale abrupt climate oscillations during the last glacial period—is well established in ice cores and marine records. But the effects of such events in continental settings are not as clear, and their absolute chronology is uncertain beyond the limit of14 C dating and annual layer counting for marine records and ice cores, respectively. Here we present carbon and oxygen isotope records from a stalagmite collected in southwest France which have been precisely dated using234 U/230 Th ratios. We find rapid climate oscillations coincident with the established Dansgaard–Oeschger events between 83,000 and 32,000 years ago in both isotope records. The oxygen isotope signature is similar to a record from Soreq cave, Israel, and deep-sea records, indicating the large spatial scale of the climate oscillations. The signal in the carbon isotopes gives evidence of drastic and rapid vegetation changes in western Europe, an important site in human cultural evolution. We also find evidence for a long phase of extremely cold climate in southwest France between 61.2 ±0.6 and 67.4 ±0.9 kyr ago.

K. M. Menking, J. L. Bischoff, J. A. Fitzpatrick, J. W. Burdette, R. O. Rye (1997). Climatic/hydrologic oscillations since 155,000 yr B.P. at Owens Lake, California, reflected in abundance and stable isotope composition of sediment carbonate. Quaternary Research 48 (1): 58-68

ABSTRACT: Sediment grain size, carbonate content, and stable isotopes in 70-cm-long (~1500-yr) channel samples from Owens Lake core OL-92 record many oscillations representing climate change in the eastern Sierra Nevada region since 155,000 yr B.P. To first order, the records match well the marined18 O record. At Owens Lake, however, the last interglaciation appears to span the entire period from 120,000 to 50,000 yr B.P., according to our chronology, and was punctuated by numerous short periods of wetter conditions during an otherwise dry climate. Sediment proxies reveal that the apparent timing of glacial–interglacial transitions, notably the penultimate one, is proxy-dependent. In the grain-size and carbonate-content records this transition is abrupt and occurs at ~120,000 yr B.P. In contrast, in the isotopic records the transition is gradual and occurs between 145,000 and 120,000 yr B.P. Differences in timing of the transition are attributed to variable responses by proxies to climate change.

G. A. Zielinski, P. A. Mayewski, L. D. Meeker, S. Whitlow, M. S. Twickler (1996). A 110,000-Yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research 45 (2): 109-118

ABSTRACT: The time series of volcanically produced sulfate from the GISP2 ice core is used to develop a continuous record of explosive volcanism over the past 110,000 yr. We identified ~850 volcanic signals (700 of these from 110,000 to 9000 yr ago) with sulfate concentrations greater than that associated with historical eruptions from either equatorial or mid-latitude regions that are known to have perturbed global or Northern Hemisphere climate, respectively. This number is a minimum because decreasing sampling resolution with depth, source volcano location, variable circulation patterns at the time of the eruption, and post-depositional modification of the signal can result in an incomplete record. The largest and most abundant volcanic signals over the past 110,000 yr, even after accounting for lower sampling resolution in the earlier part of the record, occur between 17,000 and 6000 yr ago, during and following the last deglaciation. A second period of enhanced volcanism occurs 35,000–22,000 yr ago, leading up to and during the last glacial maximum. These findings further support a possible climate-forcing component in volcanism. Increased volcanism often occurs during stadial/interstadial transitions within the last glaciation, but this is not consistent over the entire cycle. Ages for some of the largest known eruptions 100,000–9000 yr ago closely correspond to individual sulfate peaks or groups of peaks in our record.

bottom right