A Study of the Spawning Ecology and Early Life History Survival of Bonneville Cutthroat Trout

Phaedra Budy a, Sara Wood b & Brett Roper c

a U.S. Geological Survey, Utah Cooperative Fish and Wildlife Research Unit, Department of Watershed Sciences, Utah State University, Logan, Utah, 84322-5210, USA
b Department of Watershed Sciences, Utah State University, Logan, Utah, 84322-5210, USA
c U.S. Forest Service, Fish and Aquatic Ecology Unit, 860 North 1200 East, Logan, Utah, 84321, USA

Available online: 22 May 2012

To cite this article: Phaedra Budy, Sara Wood & Brett Roper (2012): A Study of the Spawning Ecology and Early Life History Survival of Bonneville Cutthroat Trout, North American Journal of Fisheries Management, 32:3, 436-449

To link to this article: http://dx.doi.org/10.1080/02755947.2012.675945

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
ARTICLE

A Study of the Spawning Ecology and Early Life History Survival of Bonneville Cutthroat Trout

Phaedra Budy*
U.S. Geological Survey, Utah Cooperative Fish and Wildlife Research Unit, Department of Watershed Sciences, Utah State University, Logan, Utah 84322-5210, USA

Sara Wood
Department of Watershed Sciences, Utah State University, Logan, Utah 84322-5210, USA

Brett Roper
U.S. Forest Service, Fish and Aquatic Ecology Unit, 860 North 1200 East, Logan, Utah 84321, USA

Abstract
We completed a large-scale field experiment in four tributaries of the Logan River, Utah, where the largest metapopulation of imperiled Bonneville cutthroat trout Oncorhynchus clarkii utah persists. We documented the spatial and temporal distributions of spawners, quantified substrate use versus substrate availability, and evaluated differences in hatch and emergence fry success between and among sites in relation to habitat characteristics. We observed considerable variability in the timing, magnitude, and duration of spawning among study areas (streams), in part as a function of a variable, multipeaked hydrograph. Nevertheless, across study areas, >70% of redds were constructed on the final descending limb of the hydrograph. Despite large differences in the amount of spawning substrate available, Bonneville cutthroat trout utilized a narrow range of substrate and sizes (3–80 mm) similar to that utilized by other subspecies of cutthroat trout, albeit biased towards larger sizes. Water temperatures generally remained below the recommended range (6–17°C) for spawning; however, the viability of this metapopulation of cutthroat trout suggests that the recommended temperature range for spawning is overestimated for this subspecies and (or) does not account for local thermal adaptation. Hatch varied from 43% to 77% and emergence survival from 39% to 65% among streams, and within-stream variability was substantial; both survival rates declined significantly as a function of increased fine sediment concentrations. Egg development rates were nearly 50% greater in a high-elevation tributary where redd counts were also lowest. In high, mountain systems with short growing seasons, this incubation delay likely presents a significant growth disadvantage for age-0 trout. Our research enhances our understanding of Bonneville cutthroat trout spawning ecology and early survival and provides critical information for aiding in the development of benchmarks for their recovery. Effective conservation efforts should be directed towards minimizing anthropogenic activities that result in excess sedimentation in their critical spawning tributaries.

In the last century, cutthroat trout Oncorhynchus clarkii have experienced large, range-wide reductions in distribution and abundance, due to the combined effects of habitat loss and fragmentation, competition and hybridization with nonnative species, disease, and overharvesting (Behnke 1992; Duncan and Lockwood 2001; Fausch 2008) and now, the additional effects of climate change (Williams et al. 2009). Today, the range of this species is extremely fragmented, with subspecies limited primarily to high elevation lakes and rivers (Behnke 2002). Consequently, of the 14 recognized subspecies of cutthroat trout, 2 are extinct, 3 are listed as threatened under the U.S. Endangered Species Act, and the 9 remaining subspecies are generally imperiled (Williams et al. 2009). Cutthroat trout prefer habitat with clear, cold water, sufficient stream flows, adequate

*Corresponding author: phaedra.budy@usu.edu
Received April 15, 2011; accepted February 7, 2012
streamside vegetation, and habitat complexity and heterogeneity. Their criteria for spawning are thought to be quite specific and require a narrow range of substrate and hydrologic conditions (Hickman and Raleigh 1982; Bjornn and Reiser 1991; Behnke 1992). Because of such stringent habitat requirements, cutthroat trout are particularly sensitive to human disturbances (e.g., livestock grazing, irrigation diversions, road construction); such sensitivity is probably most pronounced in the important spawning and highly variable early life history stages (Duff 1988; Behnke 1992; Kershner 1995).

As spring spawners, typical in high mountain streams, the spawning and early life history stages of cutthroat trout often correspond with the snowmelt and spring spates and are thus extremely difficult to study. While considerable information exists describing the spawning ecology and early life history of other salmonids (e.g., salmon species; Beauchamp et al. 1994; Isaak et al. 2007), significant gaps remain in our understanding of these life stages for Bonneville cutthroat trout Oncorhynchus clarkii utah, the focus of this study (see also Hilderbrand 2003). As with other springtime spawners, cutthroat trout spawning is thought to be initiated in response to seasonal changes, when environmental conditions reflect the transition from winter to spring with increasing water temperatures, increasing day length and receding flows from spring runoff (Behnke 1992). The environmental conditions that follow spring runoff (e.g., stable flows and warm water temperatures) are representative of high mountain rivers and provide ideal conditions for embryo incubation, fry emergence, and juvenile rearing (Behnke 1992; Kershner 1995).

While information describing the spawning ecology and early life history of Bonneville cutthroat trout is limited, a considerable body of literature provides insight into this critical stage for other species of cutthroat trout. Such studies include the description of physical characteristics of redds (e.g., Thurow and King 1994; Schmetterling 2000), and the female age at maturity, fecundity (e.g., Downs et al. 1997). The relationship of habitat availability, habitat type, and substrate characteristics (e.g., percent fine sediment) to spawning distribution, along with redd composition and redd densities have also been characterized (e.g., Magee et al. 1996; Joyce and Hubert 2004). However, to our knowledge, there has been a paucity of research focused on the spawning ecology of Bonneville cutthroat trout, specifically, the quantification of the spawning distribution, spawning duration and timing, fecundity, egg incubation period, emergence time, and egg-to-fry survival. While restoring these imperiled cutthroat trout populations and protecting and preserving remaining healthy populations remains a top priority and concern (Budy et al. 2007; Williams et al. 2009), these data gaps challenge our ability to identify links between land management and cutthroat trout viability and thus limit the effective prioritization of conservation and recovery actions.

In addition to being difficult to quantify and sensitive, for most salmonids, these early life stages typically exhibit high rates of natural mortality for both incubating embryos and emergent fry (e.g., Knight et al. 1999; Kershner 1995). Furthermore, a wide suite of abiotic variables (e.g., water temperature, dissolved oxygen, water velocity, gravel size, percent fine sediment) can be influential in determining early survival (Hickman and Raleigh 1982; Bjornn and Reiser 1991; Kondolf 2000). In addition, disturbances to habitat via land-use activities can alter these key physical factors. Hickman and Raleigh (1982) suggest that suitable spawning criteria for cutthroat trout in general include (1) water temperatures of 6–17°C, with optimal embryo incubation at 10°C, (2) mean water column velocities suitable for embryo incubation of 0.11–0.90 m/s, with optimal velocities of 0.30–0.60 m/s, and (3) a range of substrate sizes for embryo incubation of 3–80 mm and optimal at 15–60 mm. The critical value for dissolved oxygen is not known at this time for cutthroat trout embryos but is assumed to be similar to that of adults; optimal dissolved oxygen levels for adult cutthroat trout are >7 mg/L at <15°C and ≥9 mg/L at >15°C (Hickman and Raleigh 1982). Overall, the abundance of spawning gravel is perhaps one of the most critical and limiting factors for both successful redd construction and embryo incubation (Kondolf et al. 1991). Despite these general criteria, we know extremely little about how spawning criteria differ among the different subspecies of cutthroat trout, subspecies that are adapted to very different environments.

Land-use activities, such as livestock grazing, can have direct and indirect detrimental impacts on spawning because redds are extremely vulnerable to trampling by livestock and to fine sediment accumulation via bankside disturbances from grazing livestock (Gregory and Gamett 2009). Anthropogenic activities such as road construction and irrigation diversions also have the potential to negatively affect spawning either by fine sediment increases or redd dewatering (Hickman and Duff 1978; Kershner 1995). The effects of fine sediment accumulation can be significant because sediment caps can form over redds and smother or suffocate incubating embryos and prevent fry emergence (Tappel and Bjornn 1983; Lisle 1989). Given the challenges of quantifying early life history survival in the wild, laboratory-based studies have evaluated the relationship between some of these key abiotic variables and cutthroat trout survival at the early life stage in controlled laboratory settings. Young (1991), for example, used Colorado River cutthroat trout O. clarkii pleuriticus eggs in a laboratory setting to assess the degree to which different proportions of sediment (≥13.8 mm) impacted early survival and concluded that egg-to-fry survival declined in respect to the percent fine sediment. Similarly, while studying the effects of water temperature reduction on survival of cutthroat trout embryos fertilized at 7°C, Hubert and Gern (1995) found survival to the hatching stage to be lower for those embryos that were at an earlier development stage when water temperatures were reduced to 3°C. While these studies have advanced our knowledge of the early life stages of cutthroat trout in general, they have not identified mechanistic linkages between habitat quality and quantity, and survival as they occur in nature.
Within the context of native trout conservation and recovery, the overall goal of our research was to gain a better understanding of, and to identify the underlying factors controlling, the spawning ecology and early life stage survival of Bonneville cutthroat trout. To meet that goal, we selected four study streams in the Logan River drainage that captured the natural range of Bonneville cutthroat trout habitat characteristics and redd densities and focused our research on three primary objectives in those streams: (1) documenting the spatial and temporal distribution of spawning, (2) quantifying substrate use versus substrate availability, and (3) evaluating differences in hatch and emergent fry success among and within study areas as a function of variation in habitat quality and quantity.

METHODS

Study area.—Our study area was located within the Logan River drainage, in northern Utah. The headwaters of the Logan River (2,600 m elevation) originate in the Bear River Mountains of southeastern Idaho, flowing approximately 64 river kilometers southwest into the Logan Canyon of northern Utah and eventually draining into the Little Bear River in Cache Valley (see Budy et al. 2007 for a more detailed site description; Figure 1). The upper Logan River is characterized by a fairly unconfined valley, with moderate to steep gradient channels, coarse sediment loads, and discharge of 0.24–7.57 m3/s. The lower reaches of the river are typified by a dissected canyon, with lower gradient channels, smaller substrate, and fluctuations in discharge from 1.41 to 29.03 m3/s. The Logan River’s hydrograph varies seasonally, with snowmelt-driven high flows in the spring (April–May) followed by relatively stable base flow conditions throughout the remainder of the year. As is typical across the intermountain West, anthropogenic activities that potentially affect in-stream and riparian habitat in this area are concentrated over summer and early autumn seasons (June–October) and include livestock grazing, horseback riding, dispersed camping, and off-road motorized vehicle use. The Logan River drainage is home to one of the largest remaining metapopulations of imperiled Bonneville cutthroat trout, where its densities far exceed those documented for any other Bonneville cutthroat trout population throughout the Bonneville Basin (Budy et al. 2007), making this population ideal for ecological research and also a conservation priority.

Based on a pilot study of all tributaries and a subset of mainstream areas in 2007, we a priori chose four study streams within the Logan River drainage to conduct our research (Table 1; Figure 1). Spawn Creek (1,800 m in elevation) is a small, spring-fed, first-order tributary to Temple Fork, with perennial flows largely controlled by groundwater input; mean summertime water temperature is 9°C. Temple Fork (1,745 m in elevation), also a perennial creek and a tributary to the main stem of the Logan River, originates from Temple Springs; stream flow is largely driven by spring runoff, and mean summertime temperature is 10°C. Beaver Creek (2,000 m in elevation) and Franklin Basin (2,052 m in elevation) each originate from headwater springs in southern Idaho; their perennial stream flows are dominated by spring-runoff, and mean summer water temperatures are 10°C and 8°C, respectively. Franklin Basin and Beaver Creek join to form the main stem of the Logan River. We chose these sites because they represented a wide range of redd densities and habitat characteristics. In addition, Spawn Creek, anecdotally known as a primary area for Bonneville cutthroat trout spawning (Fleener 1951; Bernard and Israelsen 1982), was the site of a recent restoration project, where a fenced exclosure was constructed to prevent cattle access to the entirety of the stream, except for the first 200 m (Hansen and Budy 2011). In contrast, Temple Fork is susceptible to livestock grazing and the associated impacts of riparian grazing during the spring and summer months.

<table>
<thead>
<tr>
<th>Study stream</th>
<th>Mean base flow (m3/s)</th>
<th>Mean width (m)</th>
<th>Length of survey reach (m)</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spawn Creek</td>
<td>0.11</td>
<td>1.85</td>
<td>2,200</td>
<td>1,800</td>
</tr>
<tr>
<td>Temple Fork</td>
<td>0.37</td>
<td>3.71</td>
<td>2,500</td>
<td>1,745</td>
</tr>
<tr>
<td>Beaver Creek</td>
<td>0.04</td>
<td>4.41</td>
<td>3,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Franklin Basin</td>
<td>0.31</td>
<td>8.41</td>
<td>3,000</td>
<td>2,052</td>
</tr>
</tbody>
</table>

Downloaded by [National Forest Service Library] at 12:36 07 June 2012
Redd counts.—We initiated biweekly redd counts during the last week of April 2008 in selected portions of each of the four study streams (these areas we refer to as “redd study areas”) to document the spatial and temporal distribution of Bonneville cutthroat trout spawning; counts were continued until spawning activity ceased in July 2008. These study areas constituted the majority of spawning activity as observed during the pilot study of 2007; redd counts were conducted throughout approximately 2.5 km of each stream, depending on stream topography. In each redd study area, we identified the presence and location of new redds (redds were classified as an area of cleaned gravel with a characteristic pocket and pillow shape; Hassemer 1993) and recorded the location of each redd using a hand-held GPS unit. We also marked the vegetation near each redd with flagging tape to visually identify redds and prevent double-counting in subsequent surveys. In addition, all efforts were made to visually identify fish presence, whether directly on a redd or nearby.

Discharge and water temperature.—We used a combination of stage-height recorders and discharge measurements to project an hourly discharge value throughout spawning in each of our four study streams. In addition, we installed temperature data loggers in each of our four study areas; each logger was set to record temperature every hour.

Spawning substrate use and availability.—To describe the physical characteristics of spawning substrate used by Bonneville cutthroat trout in our four redd study areas, we measured the gravel composition along the width of each redd via 100-count Wolman pebble surveys (Wolman 1954). Given the conservation status of Bonneville cutthroat trout and our desire to not disturb any redds, the gravel immediately adjacent to each redd was assumed to be of a similar composition to the gravel that was encountered by the spawning female prior to redd construction (Thurow and King 1994). To avoid bias, we measured a randomly selected subset of redds during different times (every 1–2 weeks as based on new redd activity) throughout the spawning season in each of our four redd study areas. All attempts were made to measure the gravel composition of an arbitrary but logistically feasible minimum of 30% of the total redds in each area.

We conducted 55 Wolman pebble surveys in each area to characterize substrate availability (Wolman 1954). We delineated each study area (about 2.5 km) into eleven 200-m reaches. Within each 200-m reach, we then defined twenty 10-m segments, parallel to stream flow and randomly selected 5 of the 20 transects in each reach to conduct a 100-count pebble survey. We assessed the distribution of available substrate in each study area within the range recommended for cutthroat trout spawning (i.e., 3–80 mm; Hickman and Raleigh 1982) and calculated the proportion of substrate used versus the proportion available for each substrate size category.

Egg-to-fry survival experiment.—To assess differences in fry hatch and emergence success of Bonneville cutthroat trout, we placed hatchery (local fluvial Bear Lake strain) broodstock, eyed eggs (i.e., day 20 of development at time of installation) into slotted egg incubation boxes and buried the boxes in locations throughout the Logan River drainage on 1 July 2008. Mean daily water temperatures at the time of installation as recorded by the temperature loggers at the egg-box level were 11.4°C in Spawn Creek, 9.1°C in Temple Fork, 7.2°C in Franklin Basin and 10.4°C in Beaver Creek. Our primary goal was to install egg boxes in sites where spawning had been observed during the 2008 redd counts. To determine appropriate sites for egg box installation (hereafter referred to as egg box [EB] sites), we randomly selected a subset of redds in each of our four study areas and selected nearby sites for our egg boxes, after assessing flow and substrate characteristics via a Wolman pebble survey.

In total, we installed 96 egg boxes throughout our four study areas (24 egg boxes per redd study area); these 24 eggs boxes were separated into 4 EB sites (6 egg boxes/site). We used an egg box design based on Harris (1973) and modified according to Wood and Budy (2009). Each egg box (tubular in shape) was 10 cm long by 10 cm wide, and constructed of rigid, tubular polypropylene, with an approximate slot size of 1 × 5 mm to allow adequate delivery of water and oxygen, yet prevent escape of sac and emergent fry. We equipped each egg box with lightweight, flexible polyethylene caps perforated with small holes (1.5 mm). Each egg box was filled with spawning sized gravel and 100 eyed, hatchery-fertilized Bonneville cutthroat trout eggs (Utah Division of Wildlife Resources, Mantua Fish Hatchery). The top 3–4 cm of each box was left empty to allow room for emerging fry. While we did not record the mean size or shape of the gravel used in the egg boxes, every effort was made to use similar sized gravel at each egg box. Each EB site a T-post was driven into the stream bed, and six egg boxes were attached to the base of the T-post by wire, buried approximately 10–15 cm into the gravel to approximate the natural conditions of a spawning cutthroat trout (Smith 1941). In addition, each study site was equipped with a temperature data logger, buried at the depth of the egg boxes and set to record temperature every hour.

To assess survival to both the hatch and emergence stages and compensate for the differing water temperatures among the streams, we first used periodic temperature readings and a relationship between development times and mean temperatures from Merriman (1935) to predict hatch and emergence timing for each of our study sites. At the times predicted for the completion of each stage, we removed half of our egg boxes (n = 3) at hatch and the remaining at emergence. If live eggs or live sac fry were present when we checked the egg boxes at the actual installation site, we reinstalled those egg boxes to allow for further hatching or emergence development. After the majority of eggs had emerged, we transported all egg boxes back to the laboratory, where all fry and any remaining eggs were counted. Survival was calculated as the number of fry alive divided by the number of eggs at initiation.

Based on past research of the deleterious impacts of fine sediment accumulation on incubating embryos and developing fry, we evaluated for potential relative differences in fine sediment accumulation within the egg boxes for both the hatch and
emergence stages. We collected the accumulated substrate from each egg box, and oven dried (110°C for approximately 12 h) and weighed fine sediment, (i.e., <4 mm in diameter). Relative differences in within egg box sedimentation were expressed as the proportion of fines standardized by the maximum weight of fines observed across all boxes.

Statistical analysis.—For our third objective, evaluating differences in hatch and emergence fry success among and within sites as a function of variation in habitat quality and quantity, we first used a single factor analysis of variance (ANOVA) test of hatch and emergence survival rates both among and within study areas. Across redd site tests compared the mean hatch or emergence survival (dependent variable) across each of four redd study areas. Within EB-site tests compared the hatch or emergence survival (dependent variable) of each set of three egg boxes within each study area (n = 16). Second, because survival values range from 0 to 1 in the binomial link function, we used logistic regression to assess the relationship between mean hatch and emergence survival (dependent variables) as a function of fine sediment (independent variable) measured in each of the 16 EB sites across our four redd study areas (SAS Institute 2005). We standardized the proportion of fine sediment by the maximum weight of fines for both hatch (208 g) and emergence (291 g). Lastly, to assess whether sedimentation was more influential at earlier (hatch) or later (emergence) development stages, we compared the statistical significance (single-factor ANOVA) between fine sediment accumulations at the hatch versus the emergence stage at all study sites. We assessed statistical significance of all tests using an a priori \(\alpha = 0.05 \).

RESULTS

Redd Counts

We observed substantial variability in the timing, magnitude, and duration of Bonneville cutthroat trout spawning among our four redd study areas during the 2008 spawning season. Notably, the onset of spawning in our two mid-elevation tributaries occurred a month earlier (mid-May) than in our high-elevation tributaries (mid-June; Figure 1). We identified the onset of spawning in our mid-elevation tributaries during May 2008 and first counted redds on 13 May at Spawn Creek and 15 May at Temple Fork. In Spawn Creek, spawning peaked on 19 May; we observed two peaks in spawning in Temple Fork, the first peak occurring on 9 June and the second peak occurring on 23 June. In these stream areas, spawning continued through to the first week of July 2008, commencing on 7 July, with 128 redds counted in Spawn Creek and 213 in Temple Fork. In the high-elevation streams, the first redds were identified on 10 June in Franklin Basin and 16 June in Beaver Creek; spawning peaked in early July and was completed by 15 July in Beaver Creek and by 23 July in Franklin Basin.

In total, from May to July 2008, we counted 388 Bonneville cutthroat trout redds throughout the four redd study areas, and the densities were varied: Temple Fork = 85.2 redds/km, Spawn Creek = 58.2 redds/km, Beaver Creek = 7.6 redds/km, and Franklin Basin = 8.0 redds/km. Redds identified in Beaver Creek and Franklin Basin contributed 12% to the total number of redds counted, the majority being in Temple Fork (55%) and Spawn Creek (33%).

Discharge and Water Temperature

The winter of 2007–2008 was characterized by an above average snowfall in Logan River drainage, followed by three distinct peaks in the hydrograph during spring and summer months (USGS 2010). Similarly, we observed three distinct, well-spaced peaks in discharge in three of our four study streams (Figure 2). Characteristics of spawning (e.g., timing, magnitude, duration, frequency) appeared to be largely controlled by the respective hydrology of each stream.

In Temple Fork, spawning activity began with a mean daily discharge of 0.5 m³/s on 15 May. Discharge at this time was extremely low, with flows receding from the stream’s first large peak in discharge (Figure 2). As discharge increased to a second peak on 20 May, spawning ceased, but resumed again on a very small scale, following the second peak. Spawning increased rapidly after the third and final peak in discharge on 2 June; 86% of the redds were constructed after the third peak (Figure 2).

In contrast to Temple Fork, stream flows at Spawn Creek were considerably lower at the onset of spawning, with a mean daily discharge of 0.1 m³/s. Spawn Creek is primarily spring-fed, and no pronounced spring-time peaks in discharge were observed (Figure 2). However, we observed the onset of spawning during the lowest springtime flow. Discharge gradually increased in Spawn Creek during the course of spawning, reaching a peak of 0.2 m³/s on July 3.

Similar to the hydrology at Temple Fork, both high-elevation tributaries experienced three peaks in discharge. The magnitude of these peaks, though, was much larger than at Temple Fork. Beaver Creek experienced its first peak event on 20 May (Figure 2). Spawning at Beaver Creek started approximately 12 d after the second peak in discharge at a discharge of 0.9 m³/s. Spawning activity was relatively low, but stable, as discharge increased to a third and final peak on 18 June. As discharge receded, spawning peaked, with 83% of the total redds created after the third peak.

Franklin Basin also experienced its first peak in discharge on 20 May, but with a considerably higher discharge than Beaver Creek (Figure 2). Spawning started on the descending limb of the hydrograph’s second peak, at a discharge of 10.2 m³/s, with one redds identified. As discharge increased to a third peak, spawning started to increase slightly, and six redds were observed before the peak. We counted zero redds during a red peak on 19 June, 4 d before the third and final peak. Of the total redds counted, 71% were identified after the last peak.

Daily mean temperatures during the spawning season were variable and fluctuated largely in response to flow (Figure 3). The daily range in water temperatures during the spawning
FIGURE 2. Number of Bonneville cutthroat trout (BCT) reds counted and average daily discharge during their 2008 spawning season in Beaver Creek, Franklin Basin, Spawn Creek, and Temple Fork.
FIGURE 3. Number of Bonneville cutthroat trout (BCT) redds counted and average daily temperature during their 2008 spawning season in Beaver Creek, Franklin Basin, Spawn Creek, and Temple Fork, from top to bottom.
season (May–July) ranged from 4.1 to 14.0°C in Temple Fork, 3.7–16.7°C in Spawn Creek, 3.1–10.9°C in Franklin Basin, and 3.9–13.0°C in Beaver Creek. In the colder, high elevation streams Beaver Creek and Franklin Basin, spawning activity appeared to increase after mean daily stream temperatures remained above 7°C.

Substrate Use and Availability

Bonneville cutthroat trout used a relatively narrow range of substrate throughout our four study areas, but primarily within the range of 3–80 mm (Figure 4). We did observe a few exceptions to this pattern in Temple Fork and Spawn Creek, where fish used a small proportion of larger particles (≥90 mm; Figure 4). We quantified the percentage of substrate considered suitable for cutthroat trout spawning (3–80 mm; Hickman and Raleigh 1982) as approximately 55% in Temple Fork, 81% in Spawn Creek, 26% in Franklin Basin, and 60% in Beaver Creek.

Egg-to-Fry Survival Experiments

Egg-to-hatch survival (i.e., hatch survival rate) varied substantially both among and within our four redd study areas (Figure 5; Table 2). Egg boxes supported high rates of hatch survival in both Temple Fork (77%) and Beaver Creek (74%). In contrast, mean hatch survival rates were lower in Spawn Creek (43%) and Franklin Basin (60%). Hatch survival rates were variable across our four redd study areas ($P = 0.12$; Table 3). We also observed a large degree of spatial variability in hatch survival across sites within some, but not all, areas (e.g., Franklin Basin: $P = 0.06$, Spawn Creek: $P = 0.03$; Table 3).

Similar to the pattern of hatch survival rates, emergence survival rates also varied among and within our four redd study areas (Figure 5). Emergence survival rates were relatively high in Temple Fork (65% emergence) and Beaver Creek (57%; Table 2); Franklin Basin (41%) and Spawn Creek (39%) supported lower rates. Despite this variability,
TABLE 2. Bonneville cutthroat trout egg-to-fry survival rates (hatch and emergence), hatch, and emergence times, and measurements of key abiotic variables for the four tributary sites. Daily mean temperature was calculated over the course of each study site’s respective hatch and emergence periods. Egg boxes were installed in all study sites on 1 July 2008.

<table>
<thead>
<tr>
<th>Site</th>
<th>Number of days to hatch ending</th>
<th>Mean hatch survival (%)</th>
<th>Mean water temperature (°C)</th>
<th>Mean fine sediment (g)</th>
<th>Number of days to emergence ending</th>
<th>Mean emergence survival (%)</th>
<th>Mean water temperature (°C)</th>
<th>Mean fine sediment (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-elevation tributaries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temple Fork 1</td>
<td>14</td>
<td>65</td>
<td>8.99</td>
<td>26</td>
<td>28</td>
<td>42</td>
<td>9.45</td>
<td>34</td>
</tr>
<tr>
<td>Temple Fork 2</td>
<td>14</td>
<td>80</td>
<td>8.99</td>
<td>19</td>
<td>28</td>
<td>63</td>
<td>9.44</td>
<td>32</td>
</tr>
<tr>
<td>Temple Fork 3</td>
<td>14</td>
<td>84</td>
<td>8.51</td>
<td>22</td>
<td>28</td>
<td>84</td>
<td>8.99</td>
<td>36</td>
</tr>
<tr>
<td>Temple Fork 4</td>
<td>14</td>
<td>80</td>
<td>8.48</td>
<td>43</td>
<td>28</td>
<td>72</td>
<td>8.97</td>
<td>30</td>
</tr>
<tr>
<td>Spawn Creek 1</td>
<td>12</td>
<td>23</td>
<td>10.73</td>
<td>125</td>
<td>28</td>
<td>6</td>
<td>10.80</td>
<td>238</td>
</tr>
<tr>
<td>Spawn Creek 2</td>
<td>12</td>
<td>22</td>
<td>10.68</td>
<td>15</td>
<td>28</td>
<td>31</td>
<td>10.79</td>
<td>88</td>
</tr>
<tr>
<td>Spawn Creek 3</td>
<td>12</td>
<td>79</td>
<td>10.60</td>
<td>63</td>
<td>28</td>
<td>60</td>
<td>10.74</td>
<td>32</td>
</tr>
<tr>
<td>Spawn Creek 4</td>
<td>12</td>
<td>49</td>
<td>10.60</td>
<td>40</td>
<td>28</td>
<td>60</td>
<td>10.73</td>
<td>69</td>
</tr>
<tr>
<td>Mean</td>
<td>60</td>
<td>56</td>
<td>9.70</td>
<td>44</td>
<td></td>
<td>52</td>
<td>9.99</td>
<td>70</td>
</tr>
</tbody>
</table>

High-elevation tributaries								
Beaver Creek 1	12	67	10.18	26	28	61	11.21	49
Beaver Creek 2	12	74	9.95	22	28	44	10.36	58
Beaver Creek 3	12	75	9.91	29	28	65	10.28	91
Beaver Creek 4	12	81	9.86	16	28	58	10.23	49
Franklin Basin 1	22	21	6.98	141	38	1	7.50	291
Franklin Basin 2	22	62	7.04	56	38	48	7.65	124
Franklin Basin 3	22	75	6.65	85	38	61	7.09	117
Franklin Basin 4	22	83	6.39	25	38	55	6.67	55
Mean	67	67	8.37	50		47	8.87	104

mean study area emergence survival rates were not significantly different among the four areas (Table 3). Emergence survival rates were variable within individual EB sites for both Franklin Basin (P = 0.03; Table 3) and Spawn Creek (P = 0.11) study areas, ranging 1–61% and 6–60%, respectively (Table 2).

We observed a relatively wide range of fine sediment accumulation within egg boxes throughout our 16 EB sites, many boxes having little accumulated sediment and a few being nearly full (Table 2). Across redd study areas, fine sediment accumulation within egg boxes was lowest in Temple Fork and Beaver Creek and higher levels in some EB sites in Spawn Creek and Franklin Basin. We observed a significant, negative relationship between survival, for both hatch and emergence, and fine sediment (Table 3; Figure 6).

Mean daily water temperatures during the course of the experiment were similar and close to the optimal temperature for cutthroat trout embryo incubation in all study areas except Franklin Basin. Mean daily water temperatures during the course of the experiment were somewhat greater at mid-elevation tributaries, Temple Fork (9.0°C) and Spawn Creek (10.7°C), than in the high-elevation tributaries of Beaver Creek (10.2°C) and Franklin Basin (7.2°C; Figure 7). Mean daily stream discharge in general during the course of the egg-to-fry experiment was 0.3 m³/s in Temple Fork, 3.7 m³/s in Franklin Basin, 0.1 m³/s in Spawn Creek, and 0.38 m³/s in Beaver Creek.

Embryo developmental rates in study sites within the high-elevation tributary, Franklin Basin, were considerably later than in the other study sites. Embryo development progressed rapidly in study sites at Spawn Creek and Beaver Creek, with hatching completed on 12 July, only 12 d after installation. Stream conditions in Temple Fork also supported rapid development, with hatching completed at 14 d after installation. In contrast, fry in Franklin Basin finished hatching 22 d after installation. Fry completed emergence on 28 July in Temple Fork, Spawn Creek, and Beaver Creek, only 28 d after installation and a full 11 d before emergence was completed in Franklin Basin (7 August).

DISCUSSION

Although we observed Bonneville cutthroat trout spawning during a similar time frame (e.g., May–August) as other subspecies of cutthroat trout, we also observed large variability in the onset, magnitude and duration of spawning in partial response to a unique, multi-peak hydrograph. Cutthroat trout strategize to maximize fitness and survival of young in
challenging mountain environments by spawning on the descending limb of the hydrograph, such that subsequent flow and water temperatures will be at near optimal conditions for embryo incubation and the posthatch rearing (Hickman and Raleigh 1982; Bjornn and Reiser 1991; Behnke 1992). For example, Thurow and King (1994) observed Yellowstone cutthroat trout *O. clarkii bouvieri* spawning on the descending limb of the hydrograph in Pine Creek, Idaho, and likewise, Schmetterling (2000) noted that the spawning period of westslope cutthroat trout *O. clarkii lewisi* in four tributaries in western Montana occurred after a single peak flow event in May.

Despite the importance of strong annual cues, flexibility in spawn timing in response to a dynamic hydrograph is an evolutionarily robust life history strategy that has been observed for other subspecies of cutthroat trout. Accordingly we observed pronounced differences in the timing, magnitude, and duration of spawning between just our mid-elevation and high-elevation tributaries. Humboldt cutthroat trout *O. clarkii humboldtensis*, for example, a closely related species to the Lahontan cutthroat trout *O. clarkii henshawi* in Nevada (Nelson et al. 1987) similarly demonstrated two discrete spawning periods following two discrete peak flow events in April and May. As such, we believe the variation we observed in the timing of Bonneville cutthroat trout spawning among our four study streams may be explained, in part, by characteristics of the hydrograph. The spring and summer of 2008 represented a somewhat unique year for the Logan River, both spatially and temporally, with three peak flow events occurring from May to July (USGS 2010). More typically, the Logan River has either one, large snowmelt driven pulse or two smaller pulses, with the majority of spawning probably occurring on the descending limb of the final peak in the hydrograph. In this study, while we did observe spawning initiations in response to the first two peak flow events of the spring and summer, the majority of spawning was delayed until after the third peak flow event, when spawning conditions (e.g., water temperature, discharge) appeared closer to optimal conditions. Interestingly, in Spawn Creek, one of our small, first-order study tributaries, the spring runoff spate is insignificant in magnitude, and the hydrograph demonstrates little variability due to perennial spring inputs. In this study area, trout may be cueing

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Statistical test</th>
<th>df</th>
<th>F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hatch stage survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Across study sites</td>
<td>Single-factor ANOVA</td>
<td>3, 12</td>
<td>2.44</td>
<td>0.12</td>
</tr>
<tr>
<td>Temple Fork</td>
<td>Single-factor ANOVA</td>
<td>3, 8</td>
<td>1.08</td>
<td>0.41</td>
</tr>
<tr>
<td>Spawn Creek</td>
<td>Single-factor ANOVA</td>
<td>3, 8</td>
<td>4.92</td>
<td>0.03</td>
</tr>
<tr>
<td>Beaver Creek</td>
<td>Single-factor ANOVA</td>
<td>3, 8</td>
<td>1.79</td>
<td>0.23</td>
</tr>
<tr>
<td>Franklin Basin</td>
<td>Single-factor ANOVA</td>
<td>3, 8</td>
<td>3.78</td>
<td>0.06</td>
</tr>
<tr>
<td>Mean hatch fine sediment versus mean hatch survival (all study sites combined)</td>
<td>Logistic regression</td>
<td>1</td>
<td>n/a</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean hatch daily stream temperature versus mean hatch survival (all study sites combined)</td>
<td>Logistic regression</td>
<td>1</td>
<td>n/a</td>
<td><0.001</td>
</tr>
<tr>
<td>Emergence stage survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Across study sites</td>
<td>Single-factor ANOVA</td>
<td>3, 12</td>
<td>1.38</td>
<td>0.30</td>
</tr>
<tr>
<td>Temple Fork</td>
<td>Single-factor ANOVA</td>
<td>3, 8</td>
<td>2.58</td>
<td>0.13</td>
</tr>
<tr>
<td>Spawn Creek</td>
<td>Single-factor ANOVA</td>
<td>3, 8</td>
<td>2.80</td>
<td>0.12</td>
</tr>
<tr>
<td>Beaver Creek</td>
<td>Single-factor ANOVA</td>
<td>3, 8</td>
<td>0.27</td>
<td>0.84</td>
</tr>
<tr>
<td>Franklin Basin</td>
<td>Single-factor ANOVA</td>
<td>3, 8</td>
<td>5.24</td>
<td>0.03</td>
</tr>
<tr>
<td>Mean emergence fine sediment vs. mean emergence survival (all study sites combined)</td>
<td>Logistic regression</td>
<td>1</td>
<td>n/a</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean emergence daily stream temperature vs. mean hatch survival (all study sites combined)</td>
<td>Logistic regression</td>
<td>1</td>
<td>n/a</td>
<td>>0.100</td>
</tr>
<tr>
<td>Hatch versus emergence</td>
<td>Single-factor ANOVA</td>
<td>1, 29</td>
<td></td>
<td>0.20</td>
</tr>
</tbody>
</table>

TABLE 3. Results of statistical tests for Bonneville cutthroat trout hatch and emergence survival. Across-site tests compared the mean hatch or emergence survival at each of the four study areas. Within-site tests compared the hatch or emergence survival (dependent variables) of each set of three egg boxes within each study area.
FIGURE 6. Relationship between level of fine sediment, calculated as proportion of fines, standardized by the maximum weight of fines in Logan River, Utah, study streams and (A) percent hatch survival \[
\text{logit}(\text{hatch probability}) = -0.0110 \times \text{fine sediment} + 1.220; \quad \text{Wald chi-square for slope} = 86.1594, P < 0.001,
\] and (B) percent emergence survival \[
\text{logit}(\text{emergence}) = -0.0128 \times \text{fine sediment} + 1.0647; \quad \text{Wald chi-square for slope} = 151.5350, P < 0.001.
\]

into flows either at Temple Fork or the main stem of the Logan River as they stage and migrate through to Spawn Creek (Figure 1). They may also be cueing on stream water temperature (e.g., Homel and Budy 2008; Seidel 2009).

Water temperature is also known to play an important role in cutthroat trout spawning (Behnke 2002), and notably, the temperature ranges we observed in our four study streams were considerably lower than spawning temperatures observed for other subspecies of cutthroat trout. In each of our four streams, water temperatures were often below the recommended range for cutthroat trout spawning (e.g., 6–17°C; Hickman and Raleigh 1982) throughout the spawning season. Furthermore, in the coldest, high-elevation streams, they appeared to delay spawning until stream temperatures remained above 7°C. Thurow and King (1994) observed Yellowstone cutthroat trout spawning in a mean water temperature range of 10–14°C, a minimum water temperature range of 4–9°C, and a maximum water temperature range of 16–20°C. In addition, the onset of spawning was not observed until mean daily temperatures were above 10°C and minimum daily temperatures above 4°C; however, they did not measure or report associated discharge. In our study, the unique multi-peaked hydrograph contributed to nonlinear patterns of warming and cooling across the spring season, in contrast to a consistent pattern of warming along a descending limb of the hydrograph, and temperatures were colder than reported elsewhere during spawning. Given the extremely large size and viability of this metapopulation of Bonneville cutthroat trout (Budy et al. 2007), we suggest the recommended temperature range for spawning in the published Habitat Suitability Index for cutthroat trout in general (Hickman and Raleigh 1982) is probably overestimated and (or) does not account for local thermal adaptation (e.g., Keleher and Rahel 1996; Jensen et al. 2003).

While discharge and temperature may provide important cues for spawning, suitable substrate must be available for successful spawning, incubation, and emergence (Kondolf and Wolman 1993; Kondolf 2000). Tributary streams, such as those we studied, often represent ideal spawning conditions, including a high availability of suitable sized substrate (Bjornn and Reiser 1991; Knapp and Vredenburg 1996; Magee et al. 1996). While we documented spawning over a large spatial scale, from mid- to high-elevation tributaries, the size range of substrate used was relatively narrow but still corresponded with the size range available. For example, Franklin Basin is dominated by a steep gradient and cobble-boulder sized substrate with limited suitable spawning gravel available. The spawning habitat that is available is suboptimal, restricted to marginal areas along the bank, and silty in composition; these areas along the bank are also highly susceptible to cattle intrusion during the spring and summer months (Seidel 2009; Hansen and Budy 2011). Our observed
low redd counts appeared to coincide with the low abundance of available spawning substrate in Franklin Basin (and perhaps also colder stream temperatures, as discussed above). These results confirm that even in systems where fish densities are high overall and habitat is near pristine, the local abundance of spring-spawning salmonids may be limited at the reproductive stage, if spawning substrate availability is low and (or) stream conditions are unsuitable for the successful spawning and rearing of young (Magee et al. 1996; Knapp et al. 1998).

Despite differences in the amount of available spawning substrate among our four study areas, trout in each area appeared to primarily utilize substrate within the range recommended for cutthroat trout spawning (3–80 mm, Hickman and Raleigh 1982). Bonneville cutthroat trout used substrate similar to that of westslope cutthroat trout—0.07–50.8 mm (Magee et al. 1996) and 6–110 mm (Schmetterling 2000)—but of sizes greater than the range observed for Snake River spotted cutthroat trout *O. clarkii behnkei* (proposed name) of 2–20 mm (Joyce and Hubert 2004). The variability observed in spawning substrate use among subspecies of cutthroat trout may simply be a function of fish size (i.e., larger fish utilize large substrate) and available substrate.

While we made every effort to accurately identify the onset of spawning and the presence of redds, our study did have important and obvious limitations and constraints. Observer error can limit the accuracy and precision of redd counts, when counts are used as a technique to monitor adult fish populations (Dunham et al. 2001; Al-Chokhachy et al. 2005; Muhlfeld et al. 2006). The purpose of our redd counts, though, was not to monitor or estimate adult Bonneville cutthroat trout populations, but rather, to provide critical information in furthering our understanding of their temporal and spatial distribution throughout the Logan River drainage. Nevertheless, observers may have underestimated the number of redds or the date of the onset of spawning, especially in our high-elevation study streams, where flow conditions were high and turbid into late June. However, in years when the magnitude, frequency, and duration of peak flows events is smaller, we might expect that flow and water conditions (i.e., turbidity levels) could potentially be suitable for spawning earlier in the spring and summer than that observed in 2008. As such, our identification of the onset of spawning in our four redd study areas may have been accurate, and the low density of redds observed in Franklin Basin and Beaver Creek may simply be a function of a shorter available spawning season due to hydrologic stream conditions (e.g., Hickman and Raleigh 1982; Thurow and King 1994).

In addition to the constraints on our ability to identify the onset of spawning, it is important to understand the somewhat unavoidable limitations of estimating hatch and emergence survival, even with a large-scale field experiment and substantial degree of effort. Our estimates of survival are likely an over-estimation of survival under natural conditions. Incubating embryos, sac fry, and emergent fry were protected, by a large degree, from both abiotic and biotic factors, such as scouring flows, predation (e.g., by mottled sculpin *Cottus bairdii*), and to a certain degree, anthropogenic impacts (e.g., trampling from recreationists, grazing livestock; Kershner 1995; DeVries 1997; Gregory and Gamett 2009). In contrast, some boxes may have experienced artificially high sediment accumulation, based simply on small microhabitat differences in location within the artificial redd. Despite these potential limitations, our estimates of hatch and emergence survival provided an excellent description of the relative variability in early survival among a wide range of habitat conditions and provides novel information on a life stage for which there was little previously known.

In our experiments, we observed variability in hatch and emergence survival rates both among and within our four study areas, especially throughout study sites in tributaries (Spawn Creek and Franklin Basin). Such variability is likely driven by important microhabitat site differences in intragravel conditions, such as the proportion of fine sediment and other substrate characteristics (Bjorn and Reiser 1991). The negative relationship between salmonid early life stage survival and fine sediment has been firmly and mechanistically documented in the literature (e.g., Chapman 1988; Julien and Bergeron 2006). Further, using Colorado River cutthroat trout *O. clarkii pleuriticus* eggs in a laboratory setting, Young (1991) assessed the degree to which different proportions of sediment impacted early survival, concluding that egg-to-fry survival was highest with geometric mean particle sizes 13.8 mm and greater. Kondolf (2000) similarly highlights the importance of water flow through redds for the delivery of dissolved oxygen and the removal of metabolic waste. Fine sediment accumulation within the incubation gravel can greatly impede these critical and necessary processes and may explain the differences we observed in hatch survival and emergence survival in Franklin Basin. In contrast, in Spawn Creek, we actually observed a low mean hatch survival and a low mean amount of fine sediment in one of our four redd study sites, highlighting the role of other environmental conditions, perhaps outside of the egg boxes. Further, it is also important to note that the level of fine sediment we observed in our egg boxes may be a function of natural conditions, anthropogenic conditions, our egg box design, or some combination of the three. Regardless of the ultimate determinate of the proportion fines, the negative relationship we observed between fine sediment and hatch and emergence survival rates has important and obvious implications for land-use management and Bonneville cutthroat trout conservation (e.g., McHugh et al. 2004). In systems or areas that are naturally near the upper limits for fine sediments, even a small degree of increase in sedimentation can have large effects on early survival. Based on these results, if protection of Bonneville cutthroat trout is a management priority, efforts should be made to prevent excessive sedimentation in critical spawning streams.

In addition to fine sediment, water temperature also serves as a key physical factor that has a strong, mechanistic influence on salmonid early life stage survival and embryo development. In our study, embryo development was delayed in the cold,
high-elevation tributary, Franklin Basin, and fry emerged approximately 10 d later in Franklin Basin than in Temple Fork, Spawn Creek, and Beaver Creek. The relationship between delayed cutthroat trout embryo development and cooler or decreasing water temperatures has been documented extensively in the laboratory (e.g., Merriman 1935; Stonecypher et al. 1994; Hubert and Gern 1995), with Hickman and Raleigh (1982) recommending optimal water temperatures for cutthroat trout embryo incubation at 10°C. Mean daily water temperatures in all study sites except Franklin Basin were close to the optimal temperature for embryo incubation; in contrast, mean daily temperatures observed in redd study sites in Franklin Basin were on average at least 2°C cooler over the course of the experiment (i.e., about 7°C). Fry that emerge earlier in the summer may have a greater potential to reach the critical body size need to successfully survive winter, as opposed to fry that emerge later in the season and lack the body size and mass needed to endure the harsh winter conditions common in the Logan River drainage (Cerven 1973; Smith and Griffith 1994). Based on the results of our spawning surveys, as well as our egg-to-fry survival experiments, high-elevation tributary, Franklin Basin appears to be naturally less suited for both spawning and embryo incubation, relative to the conditions observed in the other three tributaries. These results have important implications for local restoration activities (Budy et al. 2007) and demonstrate a template for prioritizing conservation actions more broadly.

The conservation and recovery of imperiled, native fish species poses several significant recovery challenges. Specifically, identifying the life stage(s) most limiting for a given fish species and then prioritizing conservation efforts accordingly can be a complicated and challenging endeavor (e.g., Budy and Schaller 2007; Williams et al. 2009). Our study is one of few to quantify both the spawning ecology and early life history survival of cutthroat trout via a large-scale, replicated field study. The variability we observed in the timing of Bonneville cutthroat trout spawning and redd densities appeared to be strongly linked to variation in in-stream habitat conditions (e.g., discharge, substrate) and, as such, has important range-wide implications for the conservation and restoration of their spawning habitat. In addition, the results of our egg-to-fry survival experiments highlighted the deleterious effects of fine sediment to hatch and emergence survival. By studying a system in which the quality and connectivity of habitat still supports a very large metapopulation of Bonneville cutthroat trout, we were able to enhance understanding of cutthroat trout spawning ecology and early survival and provide critical information to assist development of benchmarks for the recovery and persistence of Bonneville cutthroat trout in this and other systems.

ACKNOWLEDGMENTS

This research was primarily funded by the U.S. Forest Service, Utah Division of Wildlife Resources, Project XII, Sport Fisheries Research, Grant Number F-47-R, Segment 20 and in-kind support from the U.S. Geological Survey, Utah Cooperative Fish and Wildlife Research Unit. Special thanks to Gary Thiede for providing technical advice and logistical oversight of our field crews, and graduate students in the Fish Ecology Laboratory at Utah State University. Susan Durham provided statistical advice and assistance and Christy Meredith assisted with GIS and graphical issues. We would also like to thank David Koons and Jeremiah Wood for intellectual and field contributions; a long list of seasonal technicians also assisted with field work. Any use of trade product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

REFERENCES

Harris, G. S. 1973. A simple egg box planting technique for estimating the survival of eggs deposited in stream gravel.

